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© Introduction
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RNA Polymerase

Figure: RNA Polymerase transcribing RNA from DNA. Image from “"Molecule of
the Month"” at the protein data bank:
http://mgl.scripps.edu/people/goodsell/pdb/pdb98/pdb98_1.html
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Outline

© Modelling Transcriptional Regulation
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ODE Model of Activation

@ Linear Activation Model (Barenco et al., 2006, Genome Biology)

dx; (t
B g+ 560)- Dy (0)
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ODE Model of Activation

@ Linear Activation Model (Barenco et al., 2006, Genome Biology)
dx; (t)
— = B Sf ()= Dx(y)

@ x;(t) — concentration of gene j's mRNA

Neil D. Lawrence (Manchester) Inferring Functions with GPs



ODE Model of Activation

@ Linear Activation Model (Barenco et al., 2006, Genome Biology)

dx; (t
B g+ 560)- Dy (0)

@ x;(t) — concentration of gene j's mRNA

@ f(t) — concentration of active transcription factor
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ODE Model of Activation

@ Linear Activation Model (Barenco et al., 2006, Genome Biology)

dx; (t)
— = B Sf ()= Dx(y)
@ x(t) — concentration of gene j's mRNA

@ f(t) — concentration of active transcription factor

@ Model parameters: baseline B;, sensitivity S; and decay D;
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ODE Model of Activation

Linear Activation Model (Barenco et al., 2006, Genome Biology)

dx; (t
% = Bj + 5f (t) — Djx; (1)

@ x(t) — concentration of gene j's mRNA

@ f(t) — concentration of active transcription factor

@ Model parameters: baseline B;, sensitivity S; and decay D;
°

Application: identifying co-regulated genes (targets)
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ODE Model of Activation

@ Linear Activation Model (Barenco et al., 2006, Genome Biology)
dx; (t)
— = B Sf ()= Dx(y)

xj(t) — concentration of gene j's mRNA

f(t) — concentration of active transcription factor

o
o
@ Model parameters: baseline B;, sensitivity S; and decay D;
@ Application: identifying co-regulated genes (targets)

°

Problem: how do we fit the model when f(t) is not observed?
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Why use a model-based approach?

@ Co-regulated genes can differ greatly in their expression profiles
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Why use a model-based approach?

@ Co-regulated genes can differ greatly in their expression profiles
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Why use a model-based approach?

@ Co-regulated genes can differ greatly in their expression profiles
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Why use a model-based approach?

@ Co-regulated genes can differ greatly in their expression profiles
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@ Clustering cannot be relied on to identify co-regulated genes
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Why use a model-based approach?

@ Co-regulated genes can differ greatly in their expression profiles

210764_t - CYR61 204748t - PTGS2

10°
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@ Clustering cannot be relied on to identify co-regulated genes

@ A model-based approach is required
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Models of non-linear regulation
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Models of non-linear regulation

@ Non-linear Activation: Michaelis-Menten Kinetics

d(t) . | Sf(y) -
5 =B S F(e jx; (t)

used by Rogers and Girolami (2006)
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Models of non-linear regulation

@ Non-linear Activation: Michaelis-Menten Kinetics

by (t) 5 Sf()

dt T+ (2) % ()
used by Rogers and Girolami (2006)
@ Non-linear Repression
dx; (t) Sj
=B+ —————Dix; (t
dt J+7J-+f(t) 7% ()

used by Khanin et al., 2006, PNAS 103
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Standard inference approach

@ Previous approaches all use similar inference methodology:
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Standard inference approach

@ Previous approaches all use similar inference methodology:

> Represent f(t) as coarse-grained piecewise continuous function
[flvf2)"'7fd]
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Standard inference approach

@ Previous approaches all use similar inference methodology:

> Represent f(t) as coarse-grained piecewise continuous function
[flvf2)"'7fd]
» Often discretize where data are collected
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Standard inference approach

@ Previous approaches all use similar inference methodology:

> Represent f(t) as coarse-grained piecewise continuous function
[f17f2)"'7fd]

» Often discretize where data are collected

» Treat f; as additional model parameters
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Standard inference approach

@ Previous approaches all use similar inference methodology:

> Represent f(t) as coarse-grained piecewise continuous function
[ s, ]
» Often discretize where data are collected
» Treat f; as additional model parameters
» Use maximum likelihood or Bayesian MCMC to estimate {f;} along

with other model parameters of interest
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Standard inference approach

@ Previous approaches all use similar inference methodology:

> Represent f(t) as coarse-grained piecewise continuous function
[ s, ]
» Often discretize where data are collected
» Treat f; as additional model parameters
» Use maximum likelihood or Bayesian MCMC to estimate {f;} along

with other model parameters of interest

@ Limitations:
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Standard inference approach

@ Previous approaches all use similar inference methodology:

> Represent f(t) as coarse-grained piecewise continuous function

[flvf2""7fd]
» Often discretize where data are collected
» Treat f; as additional model parameters
» Use maximum likelihood or Bayesian MCMC to estimate {f;} along

with other model parameters of interest

@ Limitations:

» Arbitrary choice of discretization points
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Standard inference approach

@ Previous approaches all use similar inference methodology:

> Represent f(t) as coarse-grained piecewise continuous function
[ fove s ]

» Often discretize where data are collected

» Treat f; as additional model parameters

» Use maximum likelihood or Bayesian MCMC to estimate {f;} along
with other model parameters of interest

@ Limitations:

» Arbitrary choice of discretization points
» Coarse-grain gives crude approximation to f(t)
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Standard inference approach

@ Previous approaches all use similar inference methodology:

> Represent f(t) as coarse-grained piecewise continuous function
[ fove s ]

» Often discretize where data are collected

» Treat f; as additional model parameters

» Use maximum likelihood or Bayesian MCMC to estimate {f;} along
with other model parameters of interest

@ Limitations:

» Arbitrary choice of discretization points
» Coarse-grain gives crude approximation to f(t)
» Fine-grain leads to harder inference problem
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Outline

© Gaussian Process Inference for Linear Activation
o
o
o
o
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Gaussian Processes

@ Gaussian Process

where

m (t)
k(t,t)

f(t) « GP (m(t), k (£, 1))

= E[f ()] = (f(t))
= E[(f(t) = m(t) (F (£) = m(¢))]

» Skip Covariance Functions

Neil D. Lawrence (Manchester)
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Covariance Functions

RBF Kernel Function
t— t')?
k (t, t/) = aexp (—%)

@ Covariance matrix is built
using the inputs to the
function t.

@ For the example above it
was based on Euclidean
distance.

@ The covariance function is
also know as a kernel.
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Different Covariance Functions

MLP Kernel Function

/
k(t,t') = asin™ ( wit b )
Vwt2 + b+ 1vVwt? + b+ 1

@ A non-stationary
covariance matrix (Williams,
1997).

@ Derived from a multi-layer
perceptron (MLP).
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Covariance Samples

demCovFuncSample

o

Figure: RBF kernel with v = 1072, a=1
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with /=1, a =1
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Covariance Samples

demCovFuncSample

o

1S
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Figure: RBF kernel with / =0.3, a =4
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Covariance Samples

demCovFuncSample

o

1S

o

Figure:  MLP kernel with « =8, w = 100 and b = 100
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Covariance Samples

demCovFuncSample

o

-1 -0.5 0 0.5 1

Figure:  MLP kernel with « =8, b =0 and w = 100
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Linear Activation Model

Recall the linear model

dx; (t)
dt

= Bj + ij(t) — D_,'Xj (t) .

This differential equation can be solved for x; (t) as

B; t
X (t) = =2 + 5,-/ e D=0 f () du .
D; 0
Note: This is a linear operation on f (t).

If f(t) is a zero mean Gaussian process then x; (t) is also a Gaussian

i B;
process with mean D -

» Skip GP Properties
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Two Properties of GPs

The integral of a GP is also a GP,

f(t) ~ N(O, Kff)

and .
g()= [ f(wdu
0
then
g(t) ~ N(0,Kg),
where

t pt
Kgg (t, t’) = /0 /0 ke (u, u') dudu
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Two Properties of GPs

Product with deterministic function
Product with a deterministic funciton leads to another GP,

f(t) ~ N(O, Kff) s

and
g (t) =f(t)h(t)
where h(t) is a deterministic function then,

g(t) ~ N(0,Kgg),

where
keg (t.t") = h(t) ke (t, ') h (1)
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Covariance for Transcription Model

RBF covariance function for f (t)

% (t) = 2 4 S exp (—Dyt) /Ot f (u) exp (Diu) du.

D;
» Here: \‘ ‘
(D[S0 % ]

.let
(5 [5[05[05] -

fO @) @)

@ Joint distribution
for x1 (t), x2 (t)
and f (t).

Se s bt
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Joint Sampling of x (t) and f (t) from Covariance

gpsimTest
2 2
) \ 15
1 1
05 05
G0 10 20 30 40 50 00 10 20 30 40 50

Figure: Left: joint samples from the transcription covariance, blue: f (t), cyan:
x1 (t) and red: xa (t). Right: numerical solution for f (t) of the differential
equation from xy (t) and x; (t) (blue and cyan). True f (t) included for
comparison.
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Joint Sampling of x (t) and f (t) from Covariance

gpsimTest
3 3
25 25
2 2
15 15
1 1
0 10 20 30 40 50 0 10 20 30 40 50

Figure: Left: joint samples from the transcription covariance, blue: f (t), cyan:
x1 (t) and red: xa (t). Right: numerical solution for f (t) of the differential
equation from xy (t) and x; (t) (blue and cyan). True f (t) included for
comparison.
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Joint Sampling of x (t) and f (t) from Covariance

gpsimTest
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Figure: Left: joint samples from the transcription covariance, blue: f (t), cyan:
x1 (t) and red: xa (t). Right: numerical solution for f (t) of the differential
equation from xy (t) and x; (t) (blue and cyan). True f (t) included for
comparison.
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Covariance Function

Any linear opearation of a GP = Related GP

f(t) ~ GP (0, ke (t, 1)) = x; (t) ~ GP (%, ke (t, t'))

J

Hence, the cross-covariances between the genes is

t ot
by (8.6) =515 [ [ & P00k (¢) duds
0 J0

Cross-covariances between x; (t) and f (t) is

t
k. (£, ) :/0 e Ptk ¢ (t,) du .
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Prediction of the transcription factor concentration f(t)

Under the linear model, we have

f 0 K Krx
MR IErad)
Standard GP Regression yields the mean and covariance function of the
predicted process as

B
<f>post = KfXK)&l (X - _>

D
KBt Kir — Kex Ko Knr
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Artificial Example: Inferring f(t)
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Artificial Example: Inferring f(t)
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Parameter Estimation for the Linear Model

A likelihood function for the model parameters 6 = {B;, S;, D;}}; and
GP length scale / is obtained by integrating out the latent function f(t)

1.0 = [ | I pbslo.f(e)) | pir(0IN ()
J
Under the GP model, the log marginal likelihood is then given by

1 - 1
logL(0,1) = _EXT (K + O‘%I) Yx Elog ‘K + O‘%I‘ — glog27r
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Cell Damage

@ Radiation damages molecules in the cell.
@ Most of this damage is quickly repaired — single strand breaks,
backbone break.
@ Double strand breaks are more serious — a complete disconnect along
the chromosome.
@ Cell cycle stages:
» Gy: Cell is not dividing.
» Gy Cell is preparing for meitosis, chromosomes have divided.
» S: Cell is undergoing meitosis (DNA synthesis).
@ Main problem is in G1. In G2 there are two copies of the

chromosome. In G1 only one copy.
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p53 “Guardian of the Cell”

Responsible for Repairing DNA damage
Activates DNA Repair proteins
Pauses the Cell Cycle (prevents replication of damage DNA)

Initiates apoptosis (cell death) in the case where damage can't be
repaired.

Large scale feeback loop with NF-xB.
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p53 DNA Damage Repair

Figure: pb3. Left unbound, Right bound to DNA. Images by David S. Goodsell
from http://www.rcsb.org/ (see the “Molecule of the Month” feature).
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Some p53 Targets

DDB2 DNA Damage Specific DNA Binding Protein 2. (also
governed by C/ EBP-beta, E2F1, E2F3,...).

p21 Cycline-dependent kinase inhibitor 1A (CDKN1A). A
regulator of cell cycle progression. (also goverened by
SREBP-1a, Sp1, Sp3,... ).
hPA26/SESN1 sestrin 1 Cell Cycle arrest.
BIK: BCL2-interacting killer. Induces cell death (apoptosis)
TNFRSF10b: tumor necrosis factor receptor superfamily, member 10b. A
transducer of apoptosis signals.

Data from Barenco et al. (2006). Microarray time course measuring gene
expression after applying a dose of radiation to the system.
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p53 (RBF covariance)

Pei Gao

Inferred p53 protein gene TNFRSF20b mRNA gene DDB2 mRNA

B=0.4489
D =0.4487
S =0.40601

3

2r A T

1

G0 2 4 6 8 10 12 0O 2 4 6 8 10 12

gene BIK mRNA gene hPA26 mRNA
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Ranking with ERK Signalling

@ Target Ranking for Elk-1.
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Elk-1 (MLP covariance)

Jennifer Withers
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selection

Fitted model used to rank potential targets of Elk-1

Predicted target gene Predicted non-target gene
3 T T T T T T T T 18— T T T T T T T T
1.6f R
251 4 k3
L4t i3 ]
2 1 1.2f R
1k 1
15F R
0.8F R
ir ] 0.6 —
041 R
05F R
0.2r R
or 7] ot 1
_02L— . . . . . . . .
4 6 0 1 2 3 4 5 6 7 8
time (h) time (h)
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Qo
Qo
o
@ Non-linear Response Models
o
o
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Nonlinear Response Models

Consider the following modification to the model,

dxfo'l_gf) = B+ g (£ (1)) — Dy (1),

where g (+) is a non-linear function. The differential equation can still be
solved,

B; Y pit—y
(0= 5 +5 [ O g (7 () du
J 0
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MAP-Laplace Approximation

Based on Laplace’s method,
(F | x) = N(F. A1) (=) alr-7)
p(f | x) = , ocexp | —5

where f = argmaxp(f | x) and A= —VV log p(f | y) |r_7 is the Hessian
of the negative posterior at that point.

To obtain f and A, we define the following function v (f) as:

log p(f|x) oc ¢(f) = log p(x | f) + log p(f)
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MAP-Laplace Approximation

Assigning a GP prior distribution to f(t), it then follows that
1 1 n
log p(f) = 2f K= f 2Iog|K| 2IogQw

where K is the covariance matrix of f(t). Hence,

Vi(f) = Vlog p(x|f) — K~1f
VVi(f) = VViogp(x|f) — K1 = —W — K1
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Estimation of (f)

Newton's method is applied to find the maximum of ¥(f) as

1o = £ (VYu(F)) V()
= (W + K )™ (WF — Vlog p(x|f))
In addition, A = —VV¢(f) = W + K~ where W is the negative Hessian

matrix. Hence, the Laplace approximation to the posterior is a Gaussian
with mean f and covariance matrix A~1as

p(f | x)~ N(F,A™H) = N(F, (W + K1)
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Model Parameter Estimation

The marginal likelihood is useful for estimating the model parameters 6
and covariance parameters /

p(x[0,1) = / p(x|F. 0. )p(F)df = / exp((F))dF

Using Taylor expansion of 1(f),

1

. 1
log p(x|6, 1) = log p(x|f,8,1) — 5fTK—lf — 5 log |/ + KW|

The parameters n = {6, /} can be then estimated by using

dlog p(x|n) _ 0Olog p(x|n) oo 0log p(x|n) OF
an - on explicit of on
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Michaelis-Menten Kinetics

Pei Gao

@ The Michaelis-Menten activation model uses the following
non-linearity

() = —
gi tN= —
J e
where we are using a GP f (t) to model the log of the TF activity.
Inferred p53 protein Inferred p53 protein

4 2

15

it

0.5 ;:' ",' ‘\.\\: __________

% 4 s 8 10 12 % a6 8 10 12
(a)
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Repression Model

Pei Gao
@ We can use an analogous model of repression,

1
§(F(0) =

In the case of repression we have to include the transient term,

B; t
5 (0) = aje 4 Zr s [P g(f (w)au
J
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SOS Response

@ Post replication DNA system: allows DNA replication to bypass errors
in the DNA.

@ DNA damage may occur as a result of activity of antibiotics.

@ LexA is bound to the genome preventing transcription of the SOS
genes.

@ RecA protein is stimulated by single stranded DNA, inactivates the
LexA repessor.

@ This allows several of the LexA targets to transcribe.

@ The SOS pathway may be essential in antibiotic resistance Cirz et al.
(2005).

@ Aim is to target these proteins to produce drugs to increase efficacy
of antibiotics Lee et al. (2005).
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LexA Experimental Description

e Data from Courcelle et al. (2001)

@ UV irradiation of E. coli. in both wild-type cells and lexAl mutants,
which are unable to induce genes under LexA control.

@ Response measured with two color hybridization to cDNA arrays.
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Their Model

Given measurements of gene expression at N time points (to, t1, ..., tN—1),
the temporal profile of a gene k, 1k(t), that solves the ODE in Eq. 1 can
be approximated by

lNZ
Fk(‘]_ﬂke 5|N'+_+'G —M z[eﬁﬂjl_cﬁﬂj)

=0

5

(2]
where 7); = w on each subinterval (tj,t/ +1),;=0,...,N—2.
This is under the simplifying assumption that 7 (t) is a piece-wise constant
function on each subinterval (¢, ¢/ + 1). One can come up with linear
(or higher order) 7 (t) approximations on each subinterval. This will
introduce additional parameters, which will be impossible to infer
with any certainty given limited amount of data.

Khanin et al. (2006)
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Their Results

A
00 02 04 08 08 10 12

00 02 04 08 08 10

o 10 2 N @ 0 e
Time, min

Figure: Fig. 2 from Khanin et al. (2006): Reconstructed activity level of master
repressor LexA, following a UV dose of 40 J/m?2.
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Their Results

Figure: Fig. 3 from Khanin et al. (2006):

the LexA SIM.
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Results for the repressor LexA

Inferred LexA Activity

recN mRNA

Pei Gao

dinl mRNA

2) D=090765
$=36777 § 92
Alpha = -5.7436 N
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5
) 20 40 60 0 20 40 60
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Figure: Our results using an MLP kernel. To apear at ECCB08 Gao et al. (2008).
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MCMC for Non Linear Response

Michalis Titsias

The Metropolis-Hastings algorithm
o Initialize f(©)

@ Form a Markov chain. Use a proposal distribution Q(f(t*1)|f(t)) and
accept with the M-H step

min (1 p(y[f)p(FCEHD) Q(f<f>|f<t+1>)>

p(y[F®)p(F1)  Q(F+LIF(D)

o f can be very high dimensional (hundreds of points)
@ How do we choose the proposal Q(f(t+1)|f(t))?

» Can we use the GP prior p(f) as the proposal?
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Sampling using control points

@ Separate the points in f into two groups:

» few control points f.
» and the large majority of the remaining points f, = f \ fc

@ Sample the control points f. using a proposal q(f£t+1)|f£t))

@ Sample the remaining points f, using the conditional GP prior
(t+1),g(t+1)
p(fp " lfe )

@ The whole proposal is
QUHIIFD) = p( VIR )g(fE IR

@ lts like sampling from the prior p(f) but imposing random walk
behaviour through the control points
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Sampling using control points: Regression-Examples

Sample 121 points using 10 control points

2 ‘ 4
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Sampling using control points: Regression-Examples

Sample 121 points using 10 control points

2 ‘ 4
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Sampling using control points: Regression-Examples

Sample 121 points using 10 control points
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Sampling using control points: Regression-Examples

Sample 121 points using 10 control points

2 ‘ 4
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Sampling using control points: Regression-Examples

Sample 121 points using 10 control points
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Sampling using control points: Regression-Examples

Sample 121 points using 10 control points

2 +

155
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Sampling using control poin

Few samples drawn during MCMC
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Sampling using control points: Adaption of the proposal

Issues that need to be resolved during the burn in MCMC phase

@ Number of control points
@ Which points should be used as control points

@ Improve the acceptance rate by

» Adapting the variance of q(f£t+l)|f§t)) during the burn in period
» Sampling the control points in a block-wise manner (keep some of
them fixed when you sample others)

For the transcription factor modelling application there are natural choices
for all the above issues. In the data we have considered so far we only

need to adapt the variances of q(f£t+1)|f£t))
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Transcriptional regulation using Gaussian processes

@ Solve the equation
B, t
5(t) = 2 + Ajep(~Dit) + exp(—DJ-t)/ g(F(u)) exp(Dju)du
J 0

o Apply numerical integration using a very dense grid (u;)7_; and

f=(fi(u)iy
Pt
B;
xj(t) ~ D + Ajexp(—D;t) + Sjexp(—D;t) Z wpg(fp) exp(Djup)
J p=1

Assuming Gaussian noise for the observed gene expressions {x;:}, the
ODE defines the likelihood p(x|f)

@ Bayesian inference: Assume a GP prior for the transcription factor f
and apply MCMC to infer (f, {A;, B;, Dj,Sj}j’V:l)

» f is inferred in a continuous manner (P> T)
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Results in E.coli data: Khanin et al. (2006)

@ One transcription factor (lexA) that acts as a repressor. We consider
the Michaelis-Menten kinetic equation

dt i Texp(f(t)) +; (1)
@ We have 14 genes (5 kinetic parameters each)
@ Gene expressions are available for T = 6 time slots
e TF (f) is discretized using 121 points
o MCMC details:

» 6 control points are used (placed in a equally spaced grid)
» Running time was 5 hours for 2 million sampling iterations plus burn in
» Acceptance rate for f after burn in was between 15% — 25%

Neil D. Lawrence (Manchester) Inferring Functions with GPs



Results in E.coli data: Predicted gene expressions

dinF Gene dinl Gene lexA Gene

0 10 20 30 40 50 60 0 10 20 0 40 50 60 0 10 20 30 40 50 60
recN Gene TuvA Gene
35 5
........................ 3
...... »
0 2

-0 1

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 0 40 50 60
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Results in E.coli data: Predicted gene expressions

ruvB Gene

sbmC Gene

SulA Gene

o 10 20 30 40 50

30

umuD Gene

40

30

uvrB Gene

40

50
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Results in E.coli data: Predicted gene expressions

yebG Gene YjiW Gene
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Results in E.coli data: Protein concentration

Inferred protein
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Results in E.coli data: Kinetic parameters
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Results in E.coli data: Genes with low sensitivity value

recN Gene umuC Gene uvrB Gene
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Results in E.coli data: Confidence intervals for the kinetic

parameters

Basal rates Decay rates
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p53 System Again

@ One transcription factor (p53) that acts as an activator. We consider
the Michaelis-Menten kinetic equation

dxi(t) o < exp(f(t))
dt 7 Texp(f(t)) +

— Djx(t)

@ We have 5 genes

@ Gene expressions are available for T = 7 times and there are 3
replicas of the time series data

e TF (f) is discretized using 121 points
e MCMC details:

» 7 control points are used (placed in a equally spaced grid)
» Running time 4/5 hours for 2 million sampling iterations plus burn in
» Acceptance rate for f after burn in was between 15% — 25%
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Predicted gene

Data used by Barenco et al. (2006):

expressions for the 1st replica

TNFRSF10b Gene - first Replica

DDB2 Gene - first Replica BIK Gene - first Replica

8 10 12

Clp1/p21 Gene - first Replica

]
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Data used by Barenco et al. (2006): Protein concentrations

Inferred p53 protein Inferred ps3 protein Inferred ps3 protein

Linear model (Barenco et al. predictions are shown as crosses)

Inferred protein Inferred protein Inferred protein
o o -~
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J . 15)
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o 2 2 6 B 10 12 o 2 @ 6 B 10 12 0

Nonlinear (Michaelis-Menten kinetic equation)
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p53 Data Kinetic parameters

Basal rates Decay rates
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Our results (grey) compared with Barenco et al. (2006) (black). Note that
Barenco et al. use a linear model
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Qo
Qo
o
@ Non-linear Response Models
o
o
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Cascaded Differential Equations

Antti Honkela

@ Transcription factor protein also has governing mRNA.
@ This mRNA can be measured.

@ In signalling systems this measurement can be misleading because it is
activated (phosphorylated) transcription factor that counts.

@ In development phosphorylation plays less of a role.
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Drosophila Mesoderm Development

Data from Furlong Lab in Heidelberg.

@ Describe mesoderm development.
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Cascaded Differential Equations

Antti Honkela

We take the production rate of active transcription factor to be given by

%&_t)=0y(t)—6f(t)
() 5, o »
dt = Bj + 5f (t) — Djx; (1)

The solution for f(t), setting transient terms to zero, is

t
f(t)= a/ y(v)?vOdy .
0
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Results for Mef2 using the Cascade

Driving Input mMRNA Gene Rya-r44F mRNA

Inferred Mef2 Protein Gene ttk MRNA

0.4

01 4 6 8 10 12 13 4 6 8 10 12
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Discussion and Future Work
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Discussion and Future Work

@ Integration of probabilistic inference with mechanistic models.
@ These results are small simple systems.
@ Ongoing work:

» Scaling up to larger systems

» Applications to other types of system, e.g. non-steady-state
metabolomics, spatial systems etc.

» Improved approximations.

» Stochastic differential equations
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