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Transcriptional regulation of gene expression
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RNA Polymerase

Figure: RNA Polymerase transcribing RNA from DNA. Image from “Molecule of
the Month” at the protein data bank:
http://mgl.scripps.edu/people/goodsell/pdb/pdb98/pdb98_1.html
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ODE Model of Activation

Linear Activation Model (Barenco et al., 2006, Genome Biology)

dxj (t)

dt
= Bj + Sj f (t)− Djxj (t)

xj (t) – concentration of gene j ’s mRNA

f (t) – concentration of active transcription factor

Model parameters: baseline Bj , sensitivity Sj and decay Dj

Application: identifying co-regulated genes (targets)

Problem: how do we fit the model when f (t) is not observed?
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Why use a model-based approach?

Co-regulated genes can differ greatly in their expression profiles
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Clustering cannot be relied on to identify co-regulated genes

A model-based approach is required
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Models of non-linear regulation

Non-linear Activation: Michaelis-Menten Kinetics

dxj (t)

dt
= Bj +

Sj f (t)

γj + f (t)
− Djxj (t)

used by Rogers and Girolami (2006)

Non-linear Repression

dxj (t)

dt
= Bj +

Sj

γj + f (t)
− Djxj (t)

used by Khanin et al., 2006, PNAS 103
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Standard inference approach

Previous approaches all use similar inference methodology:

I Represent f (t) as coarse-grained piecewise continuous function
[f1, f2, . . . , fd ]

I Often discretize where data are collected
I Treat fi as additional model parameters
I Use maximum likelihood or Bayesian MCMC to estimate {fi} along

with other model parameters of interest

Limitations:

I Arbitrary choice of discretization points
I Coarse-grain gives crude approximation to f (t)
I Fine-grain leads to harder inference problem
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Gaussian Processes

Gaussian Process

f (t) v GP
(
m (t) , k

(
t, t ′
))

where

m (t) = E [f (t)] = 〈f (t)〉
k
(
t, t ′
)

= E
[
(f (t)−m (t))

(
f
(
t ′
)
−m

(
t ′
))]

Skip Covariance Functions
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Covariance Functions

RBF Kernel Function

k
(
t, t ′
)

= α exp

(
−(t − t ′)2

2l2

)

Covariance matrix is built
using the inputs to the
function t.

For the example above it
was based on Euclidean
distance.

The covariance function is
also know as a kernel.
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Different Covariance Functions

MLP Kernel Function

k
(
t, t ′
)

= αsin−1

(
wtt ′ + b√

wt2 + b + 1
√

wt ′2 + b + 1

)

A non-stationary
covariance matrix (Williams,

1997).

Derived from a multi-layer
perceptron (MLP).
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with γ = 10−
1
2 , α = 1
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with l = 1, α = 1
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with l = 0.3, α = 4
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Covariance Samples

demCovFuncSample
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Figure: MLP kernel with α = 8, w = 100 and b = 100
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Covariance Samples

demCovFuncSample
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Figure: MLP kernel with α = 8, b = 0 and w = 100
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Linear Activation Model

Recall the linear model

dxj (t)

dt
= Bj + Sj f (t)− Djxj (t) .

This differential equation can be solved for xj (t) as

xj (t) =
Bj

Dj
+ Sj

∫ t

0
e−Dj (t−u)f (u) du .

Note: This is a linear operation on f (t).

If f (t) is a zero mean Gaussian process then xi (t) is also a Gaussian
process with mean Bi

Di
.

Skip GP Properties

Neil D. Lawrence (Manchester) Inferring Functions with GPs 30th April 2008 16 / 81



Two Properties of GPs

The integral of a GP is also a GP,

f (t) ∼ N (0,Kff )

and

g (t) =

∫ t

0
f (u) du

then
g (t) ∼ N (0,Kgg ) ,

where

kgg

(
t, t ′
)

=

∫ t

0

∫ t′

0
kff

(
u, u′

)
dudu′
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Two Properties of GPs

Product with deterministic function
Product with a deterministic funciton leads to another GP,

f (t) ∼ N (0,Kff ) ,

and
g (t) = f (t) h (t)

where h (t) is a deterministic function then,

g (t) ∼ N (0,Kgg ) ,

where
kgg

(
t, t ′
)

= h (t) kff

(
t, t ′
)
h
(
t ′
)
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Covariance for Transcription Model

RBF covariance function for f (t)

xi (t) =
Bi

Di
+ Si exp (−Di t)

∫ t

0
f (u) exp (Diu) du.

Joint distribution
for x1 (t), x2 (t)
and f (t).

I Here:

D1 S1 D2 S2

5 5 0.5 0.5
f(t) x1(t) x2(t)

f(t)
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x2(t)
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Skip SIM Samples
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Joint Sampling of x (t) and f (t) from Covariance

gpsimTest
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Figure: Left: joint samples from the transcription covariance, blue: f (t), cyan:
x1 (t) and red : x2 (t). Right: numerical solution for f (t) of the differential
equation from x1 (t) and x2 (t) (blue and cyan). True f (t) included for
comparison.
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Covariance Function

Any linear opearation of a GP =⇒ Related GP

f (t) v GP
(
0, kff

(
t, t ′
))

=⇒ xj (t) v GP
(

Bj

Dj
, kxx

(
t, t ′
))

Hence, the cross-covariances between the genes is

kxi ,xj

(
t, t ′
)

= SiSj

∫ t

0

∫ t′

0
e−Di (t−u)−Dj (t′−u′)kf ,f

(
t, t ′
)
dudu′ .

Cross-covariances between xj (t) and f (t) is

kxj ,f

(
t, t ′
)

=

∫ t

0
e−Di (t−u)kf ,f

(
t, t ′
)
du .
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Prediction of the transcription factor concentration f (t)

Under the linear model, we have[
f
x

]
∼ N

([
0
B
D

]
,

[
Kff Kf x

Kxf Kxx

])
Standard GP Regression yields the mean and covariance function of the
predicted process as

〈f 〉post = Kf xK
−1
xx

(
x− B

D

)
Kpost

ff = Kff − Kf xK
−1
xx Kxf
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Artificial Example: Inferring f (t)
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Parameter Estimation for the Linear Model

A likelihood function for the model parameters θ = {Bj , Sj , Dj}N
j=1 and

GP length scale l is obtained by integrating out the latent function f (t)

L(θ, l) =

∫ ∏
j

p(xj |θ, f (t))

 p(f (t)|l) df (t)

Under the GP model, the log marginal likelihood is then given by

logL(θ, l) = −1

2
xT
(
K + σ2

nI
)−1

x − 1

2
log
∣∣K + σ2

nI
∣∣− n

2
log2π
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Cell Damage

Radiation damages molecules in the cell.

Most of this damage is quickly repaired — single strand breaks,
backbone break.

Double strand breaks are more serious — a complete disconnect along
the chromosome.

Cell cycle stages:

I G1: Cell is not dividing.
I G2: Cell is preparing for meitosis, chromosomes have divided.
I S: Cell is undergoing meitosis (DNA synthesis).

Main problem is in G1. In G2 there are two copies of the
chromosome. In G1 only one copy.
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p53 “Guardian of the Cell”

Responsible for Repairing DNA damage

Activates DNA Repair proteins

Pauses the Cell Cycle (prevents replication of damage DNA)

Initiates apoptosis (cell death) in the case where damage can’t be
repaired.

Large scale feeback loop with NF-κB.
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p53 DNA Damage Repair

Figure: p53. Left unbound, Right bound to DNA. Images by David S. Goodsell
from http://www.rcsb.org/ (see the “Molecule of the Month” feature).
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p53
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Some p53 Targets

DDB2 DNA Damage Specific DNA Binding Protein 2. (also
governed by C/ EBP-beta, E2F1, E2F3,...).

p21 Cycline-dependent kinase inhibitor 1A (CDKN1A). A
regulator of cell cycle progression. (also goverened by
SREBP-1a, Sp1, Sp3,... ).

hPA26/SESN1 sestrin 1 Cell Cycle arrest.

BIK: BCL2-interacting killer. Induces cell death (apoptosis)

TNFRSF10b: tumor necrosis factor receptor superfamily, member 10b. A
transducer of apoptosis signals.

Data from Barenco et al. (2006). Microarray time course measuring gene
expression after applying a dose of radiation to the system.
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p53 (RBF covariance)

Pei Gao
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Ranking with ERK Signalling

Target Ranking for Elk-1.
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Elk-1 (MLP covariance)

Jennifer Withers
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Elk-1 target selection

Fitted model used to rank potential targets of Elk-1
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Nonlinear Response Models

Consider the following modification to the model,

dxj (t)

dt
= Bj + Sjg (f (t))− Djxj (t) ,

where g (·) is a non-linear function. The differential equation can still be
solved,

xj (t) =
Bj

Dj
+ Sj

∫ t

0
e−Dj (t−u)gj (f (u)) du
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MAP-Laplace Approximation

Based on Laplace’s method,

p(f | x) = N(f̂ ,A−1) ∝ exp

(
−1

2

(
f − f̂

)T
A
(
f − f̂

))
where f̂ = argmaxp(f | x) and A = −∇∇ log p(f | y) |f =f̂ is the Hessian
of the negative posterior at that point.

To obtain f̂ and A, we define the following function ψ(f ) as:

log p(f |x) ∝ ψ(f ) = log p(x | f ) + log p(f )
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MAP-Laplace Approximation

Assigning a GP prior distribution to f (t), it then follows that

log p(f ) = −1

2
f T K−1f − 1

2
log |K | − n

2
log 2π

where K is the covariance matrix of f (t). Hence,

∇ψ(f ) = ∇ log p(x |f )− K−1f

∇∇ψ(f ) = ∇∇ log p(x |f )− K−1 = −W − K−1
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Estimation of ψ(f )

Newton’s method is applied to find the maximum of ψ(f ) as

f new = f − (∇∇ψ(f ))−1∇ψ(f )

= (W + K−1)−1 (Wf −∇ log p(x |f ))

In addition, A = −∇∇ψ(f̂ ) = W + K−1 where W is the negative Hessian
matrix. Hence, the Laplace approximation to the posterior is a Gaussian
with mean f̂ and covariance matrix A−1as

p(f | x) ' N(f̂ ,A−1) = N(f̂ , (W + K−1)−1)
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Model Parameter Estimation

The marginal likelihood is useful for estimating the model parameters θ
and covariance parameters l

p(x |θ, l) =

∫
p(x |f , θ, l)p(f )df =

∫
exp(ψ(f ))df

Using Taylor expansion of ψ(f ),

log p(x |θ, l) = log p(x |f̂ , θ, l)− 1

2
f T K−1f − 1

2
log |I + KW |

The parameters η = {θ, l} can be then estimated by using

∂ log p(x |η)

∂η
=
∂ log p(x |η)

∂η
|explicit +

∂ log p(x |η)

∂ f̂

∂ f̂

∂η

Neil D. Lawrence (Manchester) Inferring Functions with GPs 30th April 2008 39 / 81



Michaelis-Menten Kinetics

Pei Gao

The Michaelis-Menten activation model uses the following
non-linearity

gj (f (t)) =
ef (t)

γj + ef (t)
,

where we are using a GP f (t) to model the log of the TF activity.
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Repression Model

Pei Gao

We can use an analogous model of repression,

gj (f (t)) =
1

γj + ef (t)

In the case of repression we have to include the transient term,

xj (t) = αje
−Dj t +

Bj

Dj
+ Sj

∫ t

0
e−Dj (t−u)gj (f (u))du
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SOS Response

Post replication DNA system: allows DNA replication to bypass errors
in the DNA.

DNA damage may occur as a result of activity of antibiotics.

LexA is bound to the genome preventing transcription of the SOS
genes.

RecA protein is stimulated by single stranded DNA, inactivates the
LexA repessor.

This allows several of the LexA targets to transcribe.

The SOS pathway may be essential in antibiotic resistance Cirz et al.
(2005).

Aim is to target these proteins to produce drugs to increase efficacy
of antibiotics Lee et al. (2005).
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LexA Experimental Description

Data from Courcelle et al. (2001)

UV irradiation of E. coli. in both wild-type cells and lexA1 mutants,
which are unable to induce genes under LexA control.

Response measured with two color hybridization to cDNA arrays.
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Their Model

Given measurements of gene expression at N time points (t0, t1, . . . , tN−1),
the temporal profile of a gene k, µk(t), that solves the ODE in Eq. 1 can
be approximated by

where η̄j = (η(tj)+η(tj+1))
2 on each subinterval (tj , tj + 1) , j = 0, . . . ,N − 2.

This is under the simplifying assumption that η (t) is a piece-wise constant
function on each subinterval (tj , tj + 1). One can come up with linear
(or higher order) η (t) approximations on each subinterval. This will
introduce additional parameters, which will be impossible to infer
with any certainty given limited amount of data.

Khanin et al. (2006)
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Their Results

Figure: Fig. 2 from Khanin et al. (2006): Reconstructed activity level of master
repressor LexA, following a UV dose of 40 J/m2.
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Their Results

Figure: Fig. 3 from Khanin et al. (2006): Reconstructed profiles for four genes in
the LexA SIM.
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Results for the repressor LexA

Pei Gao
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MCMC for Non Linear Response

Michalis Titsias

The Metropolis-Hastings algorithm

Initialize f(0)

Form a Markov chain. Use a proposal distribution Q(f(t+1)|f(t)) and
accept with the M-H step

min

(
1,

p(y|f(t+1))p(f(t+1))

p(y|f(t))p(f(t))

Q(f(t)|f(t+1))

Q(f(t+1)|f(t))

)
f can be very high dimensional (hundreds of points)

How do we choose the proposal Q(f(t+1)|f(t))?

I Can we use the GP prior p(f) as the proposal?
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Sampling using control points

Separate the points in f into two groups:

I few control points fc

I and the large majority of the remaining points fρ = f \ fc

Sample the control points fc using a proposal q(f
(t+1)
c |f(t)

c )

Sample the remaining points fρ using the conditional GP prior

p(f
(t+1)
ρ |f(t+1)

c )

The whole proposal is

Q(f(t+1)|f(t)) = p(f(t+1)
ρ |f(t+1)

c )q(f
(t+1)
c |f(t)

c )

Its like sampling from the prior p(f) but imposing random walk
behaviour through the control points
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Sampling using control points: Regression-Examples

Sample 121 points using 10 control points
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Sampling using control points: Regression-Examples
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Sampling using control points

Few samples drawn during MCMC
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Sampling using control points: Adaption of the proposal

Issues that need to be resolved during the burn in MCMC phase

Number of control points

Which points should be used as control points

Improve the acceptance rate by

I Adapting the variance of q(f
(t+1)
c |f(t)

c ) during the burn in period
I Sampling the control points in a block-wise manner (keep some of

them fixed when you sample others)

For the transcription factor modelling application there are natural choices
for all the above issues. In the data we have considered so far we only

need to adapt the variances of q(f
(t+1)
c |f(t)

c )
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Transcriptional regulation using Gaussian processes

Solve the equation

xj (t) =
Bj

Dj
+ Aj exp(−Dj t) + Sj exp(−Dj t)

∫ t

0
g(f (u)) exp(Dju)du

Apply numerical integration using a very dense grid (ui )
P
i=1 and

f = (fi (ui ))P
i=1

xj (t) '
Bj

Dj
+ Aj exp(−Dj t) + Sj exp(−Dj t)

Pt∑
p=1

wpg(fp) exp(Djup)

Assuming Gaussian noise for the observed gene expressions {xjt}, the
ODE defines the likelihood p(x|f)

Bayesian inference: Assume a GP prior for the transcription factor f
and apply MCMC to infer (f, {Aj ,Bj ,Dj , Sj}N

j=1)

I f is inferred in a continuous manner (P � T )
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Results in E.coli data: Khanin et al. (2006)

One transcription factor (lexA) that acts as a repressor. We consider
the Michaelis-Menten kinetic equation

dxj (t)

dt
= Bj + Sj

1

exp(f (t)) + γj
− Djxj (t)

We have 14 genes (5 kinetic parameters each)

Gene expressions are available for T = 6 time slots

TF (f) is discretized using 121 points

MCMC details:

I 6 control points are used (placed in a equally spaced grid)
I Running time was 5 hours for 2 million sampling iterations plus burn in
I Acceptance rate for f after burn in was between 15%− 25%
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Results in E.coli data: Predicted gene expressions
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Results in E.coli data: Predicted gene expressions
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Results in E.coli data: Predicted gene expressions
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Results in E.coli data: Protein concentration
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Results in E.coli data: Kinetic parameters
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Results in E.coli data: Genes with low sensitivity value
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Results in E.coli data: Confidence intervals for the kinetic
parameters
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p53 System Again

One transcription factor (p53) that acts as an activator. We consider
the Michaelis-Menten kinetic equation

dxj (t)

dt
= Bj + Sj

exp(f (t))

exp(f (t)) + γj
− Djxj (t)

We have 5 genes

Gene expressions are available for T = 7 times and there are 3
replicas of the time series data

TF (f) is discretized using 121 points

MCMC details:

I 7 control points are used (placed in a equally spaced grid)
I Running time 4/5 hours for 2 million sampling iterations plus burn in
I Acceptance rate for f after burn in was between 15%− 25%
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Data used by Barenco et al. (2006): Predicted gene
expressions for the 1st replica
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Data used by Barenco et al. (2006): Protein concentrations
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p53 Data Kinetic parameters
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Cascaded Differential Equations

Antti Honkela

Transcription factor protein also has governing mRNA.

This mRNA can be measured.

In signalling systems this measurement can be misleading because it is
activated (phosphorylated) transcription factor that counts.

In development phosphorylation plays less of a role.
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Drosophila Mesoderm Development

Data from Furlong Lab in Heidelberg.

Describe mesoderm development.
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Cascaded Differential Equations

Antti Honkela

We take the production rate of active transcription factor to be given by

df (t)

dt
= σy (t)− δf (t)

dxj (t)

dt
= Bj + Sj f (t)− Djxj (t)

The solution for f (t), setting transient terms to zero, is

f (t) = σ

∫ t

0
y(v) eδ(v−t)dv .
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Results for Mef2 using the Cascade model
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Discussion and Future Work

Integration of probabilistic inference with mechanistic models.

These results are small simple systems.

Ongoing work:

I Scaling up to larger systems
I Applications to other types of system, e.g. non-steady-state

metabolomics, spatial systems etc.
I Improved approximations.
I Stochastic differential equations
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