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The Gaussian Density

Perhaps the most common probability density.

p(y |µ, σ2) =
1√

2πσ2
exp

(
−(y − µ)2

2σ2

)
= N

(
y |µ, σ2

)
The Gaussian density.
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Gaussian Density
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The Gaussian PDF with µ = 1.7 and variance σ2 = 0.0225. Mean shown
as red line. It could represent the heights of a population of students.
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Gaussian Density

N
(
y |µ, σ2

)
=

1√
2πσ2

exp

(
−(y − µ)

2

2σ2

)
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Two Important Gaussian Properties

1 Sum of Gaussian variables is also Gaussian.

yi ∼ N
(
µi , σ

2
i

)
n∑

i=1

yi ∼ N

(
n∑

i=1

µi ,

n∑
i=1

σ2
i

)
(Aside: As sum increases, sum of non-Gaussian, finite variance
variables is also Gaussian [central limit theorem].)

2 Scaling a Gaussian leads to a Gaussian.

y ∼ N
(
µ, σ2

)
wy ∼ N

(
wµ,w2σ2

)
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Two Simultaneous Equations

A system of two differential
equations with two unknowns.

y1 =mt1 + c

y2 =mt2 + c
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Two Simultaneous Equations

A system of two differential
equations with two unknowns.

m =
y2 − y1

t2 − t1

c = y1 −mt1
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y

t

c

y 1
−

y 2

t2 − t1

m =
y2−y1
t2−t1

Lawrence () Gaussian Processes BioPreDyn 9 / 49



Two Simultaneous Equations

How do we deal with three
simultaneous equations with only two
unknowns?

y1 =mt1 + c

y2 =mt2 + c

y3 =mt3 + c 0

1
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y
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c

y 1
−

y 2

t2 − t1

m =
y2−y1
t2−t1

Lawrence () Gaussian Processes BioPreDyn 9 / 49



Overdetermined System

With two unknowns and two observations:

y1 =mt1 + c

y2 =mt2 + c

Additional observation leads to overdetermined system.

y3 = mt3 + c

This problem is solved through a noise model ε ∼ N
(
0, σ2

)
y1 = mt1 + c + ε1

y2 = mt2 + c + ε2

y3 = mt3 + c + ε3
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Noise Models

We aren’t modeling entire system.

Noise model gives mismatch between model and data.

Gaussian model justified by appeal to central limit theorem.

Other models also possible (Student-t for heavy tails).

Maximum likelihood with Gaussian noise leads to least squares.
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Underdetermined System

What about two unknowns and one
observation?

y1 = mt1 + c
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Underdetermined System

Can compute m given c.

m =
y1 − c

t
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Underdetermined System

Can compute m given c.

c = 1.75 =⇒ m = 1.25
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Underdetermined System

Can compute m given c.

c = −0.777 =⇒ m = 3.78
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Underdetermined System

Can compute m given c.

c = −4.01 =⇒ m = 7.01
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Underdetermined System

Can compute m given c.

c = −0.718 =⇒ m = 3.72
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Underdetermined System

Can compute m given c.

c = 2.45 =⇒ m = 0.545
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Underdetermined System

Can compute m given c.

c = −0.657 =⇒ m = 3.66
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Underdetermined System

Can compute m given c.

c = −3.13 =⇒ m = 6.13
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Underdetermined System

Can compute m given c.

c = −1.47 =⇒ m = 4.47
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Underdetermined System

Can compute m given c.
Assume

c ∼ N (0, 4) ,

we find a distribution of solutions.
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Probability for Under- and Overdetermined

To deal with overdetermined introduced probability distribution for
‘variable’, εi .

For underdetermined system introduced probability distribution for
‘parameter’, c.

This is known as a Bayesian treatment.
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For general Bayesian inference need multivariate priors.

E.g. for multivariate linear regression:

yi =
∑
i

wj ti ,j + εi

(where we’ve dropped c for convenience), we need a prior over w.

This motivates a multivariate Gaussian density.

We will use the multivariate Gaussian to put a prior directly on the
function (a Gaussian process).
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Two Dimensional Gaussian

Consider height, h/m and weight, w/kg .

Could sample height from a distribution:

p(h) ∼ N (1.7, 0.0225)

And similarly weight:

p(w) ∼ N (75, 36)
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Height and Weight Models
p

(h
)

h/m

Marginal Distributions

p
(w

)
w/kg Gaussian

distributions for height and weight.
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Sampling Two Dimensional Variables
w
/k
g

h/m

Joint Distribution

p
(h

)

Marginal Distributions

p
(w

)

Sample height and weight one after the other and plot against each other.
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Independence Assumption

This assumes height and weight are independent.

p(h,w) = p(h)p(w)

In reality they are dependent (body mass index) = w
h2 .
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Independent Gaussians

p(w , h) = p(w)p(h)
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Independent Gaussians

p(w , h) =
1√

2πσ2
1

√
2πσ2

2

exp

(
−1

2

(
(w − µ1)2

σ2
1

+
(h − µ2)2

σ2
2

))
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Independent Gaussians

p(w , h) =
1

2π
√
σ2

1σ
2
2

exp

(
−1

2

([
w
h

]
−
[
µ1

µ2

])> [
σ2

1 0
0 σ2

2

]−1([
w
h

]
−
[
µ1

µ2

]))
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Independent Gaussians

p(y) =
1

2π |D|
exp

(
−1

2
(y − µ)>D−1(y − µ)

)
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Correlated Gaussian

Form correlated from original by rotating the data space using matrix R.

p(y) =
1

2π |D|
1
2

exp

(
−1

2
(y − µ)>D−1(y − µ)

)
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Correlated Gaussian

Form correlated from original by rotating the data space using matrix R.

p(y) =
1

2π |D|
1
2

exp

(
−1

2
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Correlated Gaussian

Form correlated from original by rotating the data space using matrix R.

p(y) =
1

2π |D|
1
2

exp

(
−1

2
(y − µ)>RD−1R>(y − µ)

)
this gives a covariance matrix:

C−1 = RD−1R>
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Correlated Gaussian

Form correlated from original by rotating the data space using matrix R.

p(y) =
1

2π |C|
1
2

exp

(
−1

2
(y − µ)>C−1(y − µ)

)
this gives a covariance matrix:

C = RDR>
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Recall Univariate Gaussian Properties

1 Sum of Gaussian variables is also Gaussian.

yi ∼ N
(
µi , σ

2
i

)
n∑

i=1

yi ∼ N

(
n∑

i=1

µi ,

n∑
i=1

σ2
i

)

2 Scaling a Gaussian leads to a Gaussian.

y ∼ N
(
µ, σ2

)
wy ∼ N

(
wµ,w2σ2

)
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Multivariate Consequence

If
t ∼ N (µ,Σ)

And
y = Wt

Then
y ∼ N

(
Wµ,WΣW>

)
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Sampling a Function

Multi-variate Gaussians

We will consider a Gaussian with a particular structure of covariance
matrix.

Generate a single sample from this 25 dimensional Gaussian
distribution, f = [f1, f2 . . . f25].

We will plot these points against their index.
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Gaussian Distribution Sample
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i(a) A 25 dimensional correlated random
variable (values ploted against index)
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0.9
1

(b) colormap showing correlations between
dimensions.

Figure: A sample from a 25 dimensional Gaussian distribution.
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Gaussian Distribution Sample
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i(a) A 25 dimensional correlated random
variable (values ploted against index)

1 0.96587

0.96587 1

(b) correlation between f1 and f2.

Figure: A sample from a 25 dimensional Gaussian distribution.
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Prediction of f2 from f1

-1

0

1

-1 0 1

f 1

f2

1 0.96587

0.96587 1

The single contour of the Gaussian density represents the joint
distribution, p(f1, f2).

We observe that f1 = −0.313.

Conditional density: p(f2|f1 = −0.313).
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Prediction with Correlated Gaussians

Prediction of f2 from f1 requires conditional density.

Conditional density is also Gaussian.

p(f2|f1) = N

(
f2|

k1,2

k1,1
f1, k2,2 −

k2
1,2

k1,1

)

where covariance of joint density is given by

K =

[
k1,1 k1,2

k2,1 k2,2

]
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Prediction of f5 from f1
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0

1

-1 0 1

f 1

f5
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0.57375 1

The single contour of the Gaussian density represents the joint
distribution, p(f1, f5).

We observe that f1 = −0.313.

Conditional density: p(f5|f1 = −0.313).
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Prediction with Correlated Gaussians

Prediction of f∗ from f requires multivariate conditional density.

Multivariate conditional density is also Gaussian.

p(f∗|f) = N
(
f∗|K∗,fK−1

f,f f,K∗,∗ −K∗,fK
−1
f,f Kf,∗

)

Here covariance of joint density is given by

K =

[
Kf,f K∗,f
Kf,∗ K∗,∗

]

Lawrence () Gaussian Processes BioPreDyn 29 / 49



Prediction with Correlated Gaussians

Prediction of f∗ from f requires multivariate conditional density.
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p(f∗|f) = N (f∗|µ,Σ)
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f,f f
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Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k
(
t, t ′
)

= α exp

(
−
‖t − t ′‖2

2

2`2

)

Covariance matrix is built
using the inputs to the
function t.

For the example above it
was based on Euclidean
distance.

The covariance function is
also know as a kernel.
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Covariance Functions
Where did this covariance matrix come from?

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3.0, t2 = 1.20, and t3 = 1.40 with ` = 2.00 and α = 1.00.

t1 = −3.0, t1 = −3.0

k1,1 = 1.00× exp
(
− (−3.0−−3.0)2

2×2.002

)
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Covariance Functions
Where did this covariance matrix come from?

1.00

0.110

k (ti , tj) = α exp
(
− ||ti−tj ||
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Covariance Functions
Where did this covariance matrix come from?
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Covariance Functions
Where did this covariance matrix come from?

1.00 0.110

0.110

k (ti , tj) = α exp
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2

2`2

)

t1 = −3.0, t2 = 1.20, and t3 = 1.40 with ` = 2.00 and α = 1.00.

t2 = 1.20, t2 = 1.20

k2,2 = 1.00× exp
(
− (1.20−1.20)2

2×2.002

)
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Covariance Functions
Where did this covariance matrix come from?

1.00 0.110

0.110 1.00

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3.0, t2 = 1.20, and t3 = 1.40 with ` = 2.00 and α = 1.00.

t2 = 1.20, t2 = 1.20

k2,2 = 1.00× exp
(
− (1.20−1.20)2

2×2.002

)
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Covariance Functions
Where did this covariance matrix come from?

1.00 0.110

0.110 1.00

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3.0, t2 = 1.20, and t3 = 1.40 with ` = 2.00 and α = 1.00.

t3 = 1.40, t1 = −3.0

k3,1 = 1.00× exp
(
− (1.40−1.40)2

2×2.002

)
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Covariance Functions
Where did this covariance matrix come from?

1.00 0.110

0.110 1.00

0.0889

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3.0, t2 = 1.20, and t3 = 1.40 with ` = 2.00 and α = 1.00.

t3 = 1.40, t1 = −3.0

k3,1 = 1.00× exp
(
− (1.40−1.40)2

2×2.002

)
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Covariance Functions
Where did this covariance matrix come from?
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Covariance Functions
Where did this covariance matrix come from?
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Covariance Functions
Where did this covariance matrix come from?

1.00 0.110 0.0889

0.110 1.00

0.0889 0.995

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3.0, t2 = 1.20, and t3 = 1.40 with ` = 2.00 and α = 1.00.

t3 = 1.40, t2 = 1.20

k3,2 = 1.00× exp
(
− (1.40−1.40)2

2×2.002

)
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Covariance Functions
Where did this covariance matrix come from?
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2`2
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Covariance Functions
Where did this covariance matrix come from?

1.00 0.110 0.0889

0.110 1.00 0.995

0.0889 0.995

k (ti , tj) = α exp
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− ||ti−tj ||

2

2`2

)

t1 = −3.0, t2 = 1.20, and t3 = 1.40 with ` = 2.00 and α = 1.00.
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2×2.002

)

Lawrence () Gaussian Processes BioPreDyn 31 / 49



Covariance Functions
Where did this covariance matrix come from?

1.00 0.110 0.0889

0.110 1.00 0.995

0.0889 0.995 1.00

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3.0, t2 = 1.20, and t3 = 1.40 with ` = 2.00 and α = 1.00.
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k3,3 = 1.00× exp
(
− (1.40−1.40)2

2×2.002

)
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Covariance Functions
Where did this covariance matrix come from?

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3.0, t2 = 1.20, and t3 = 1.40 with ` = 2.00 and α = 1.00.

t3 = 1.40, t3 = 1.40

k3,3 = 1.00× exp
(
− (1.40−1.40)2

2×2.002

)
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Covariance Functions
Where did this covariance matrix come from?

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3, t2 = 1.2, t3 = 1.4, and t4 = 2.0 with ` = 2.0 and α = 1.0.

t1 = −3, t1 = −3

k1,1 = 1.0× exp
(
− (−3−−3)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3, t2 = 1.2, t3 = 1.4, and t4 = 2.0 with ` = 2.0 and α = 1.0.

t1 = −3, t1 = −3

k1,1 = 1.0× exp
(
− (−3−−3)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3, t2 = 1.2, t3 = 1.4, and t4 = 2.0 with ` = 2.0 and α = 1.0.

t2 = 1.2, t1 = −3

k2,1 = 1.0× exp
(
− (1.2−1.2)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0

0.11

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3, t2 = 1.2, t3 = 1.4, and t4 = 2.0 with ` = 2.0 and α = 1.0.

t2 = 1.2, t1 = −3

k2,1 = 1.0× exp
(
− (1.2−1.2)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3, t2 = 1.2, t3 = 1.4, and t4 = 2.0 with ` = 2.0 and α = 1.0.

t2 = 1.2, t1 = −3

k2,1 = 1.0× exp
(
− (1.2−1.2)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3, t2 = 1.2, t3 = 1.4, and t4 = 2.0 with ` = 2.0 and α = 1.0.

t2 = 1.2, t2 = 1.2

k2,2 = 1.0× exp
(
− (1.2−1.2)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11 1.0

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3, t2 = 1.2, t3 = 1.4, and t4 = 2.0 with ` = 2.0 and α = 1.0.

t2 = 1.2, t2 = 1.2

k2,2 = 1.0× exp
(
− (1.2−1.2)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11 1.0

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3, t2 = 1.2, t3 = 1.4, and t4 = 2.0 with ` = 2.0 and α = 1.0.

t3 = 1.4, t1 = −3

k3,1 = 1.0× exp
(
− (1.4−1.4)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11 1.0

0.089

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3, t2 = 1.2, t3 = 1.4, and t4 = 2.0 with ` = 2.0 and α = 1.0.

t3 = 1.4, t1 = −3

k3,1 = 1.0× exp
(
− (1.4−1.4)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0

0.089

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3, t2 = 1.2, t3 = 1.4, and t4 = 2.0 with ` = 2.0 and α = 1.0.

t3 = 1.4, t1 = −3

k3,1 = 1.0× exp
(
− (1.4−1.4)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0

0.089

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3, t2 = 1.2, t3 = 1.4, and t4 = 2.0 with ` = 2.0 and α = 1.0.

t3 = 1.4, t2 = 1.2

k3,2 = 1.0× exp
(
− (1.4−1.4)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0

0.089 1.0

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3, t2 = 1.2, t3 = 1.4, and t4 = 2.0 with ` = 2.0 and α = 1.0.

t3 = 1.4, t2 = 1.2

k3,2 = 1.0× exp
(
− (1.4−1.4)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3, t2 = 1.2, t3 = 1.4, and t4 = 2.0 with ` = 2.0 and α = 1.0.

t3 = 1.4, t2 = 1.2

k3,2 = 1.0× exp
(
− (1.4−1.4)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3, t2 = 1.2, t3 = 1.4, and t4 = 2.0 with ` = 2.0 and α = 1.0.

t3 = 1.4, t3 = 1.4

k3,3 = 1.0× exp
(
− (1.4−1.4)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0 1.0

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3, t2 = 1.2, t3 = 1.4, and t4 = 2.0 with ` = 2.0 and α = 1.0.

t3 = 1.4, t3 = 1.4

k3,3 = 1.0× exp
(
− (1.4−1.4)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0 1.0

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3, t2 = 1.2, t3 = 1.4, and t4 = 2.0 with ` = 2.0 and α = 1.0.

t4 = 2.0, t1 = −3

k4,1 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0 1.0

0.044

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3, t2 = 1.2, t3 = 1.4, and t4 = 2.0 with ` = 2.0 and α = 1.0.

t4 = 2.0, t1 = −3

k4,1 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0

0.089 1.0 1.0

0.044

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3, t2 = 1.2, t3 = 1.4, and t4 = 2.0 with ` = 2.0 and α = 1.0.

t4 = 2.0, t1 = −3

k4,1 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0

0.089 1.0 1.0

0.044

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3, t2 = 1.2, t3 = 1.4, and t4 = 2.0 with ` = 2.0 and α = 1.0.

t4 = 2.0, t2 = 1.2

k4,2 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0

0.089 1.0 1.0

0.044 0.92

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3, t2 = 1.2, t3 = 1.4, and t4 = 2.0 with ` = 2.0 and α = 1.0.

t4 = 2.0, t2 = 1.2

k4,2 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0

0.044 0.92

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3, t2 = 1.2, t3 = 1.4, and t4 = 2.0 with ` = 2.0 and α = 1.0.

t4 = 2.0, t2 = 1.2

k4,2 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0

0.044 0.92

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3, t2 = 1.2, t3 = 1.4, and t4 = 2.0 with ` = 2.0 and α = 1.0.

t4 = 2.0, t3 = 1.4

k4,3 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0

0.044 0.92 0.96

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3, t2 = 1.2, t3 = 1.4, and t4 = 2.0 with ` = 2.0 and α = 1.0.

t4 = 2.0, t3 = 1.4

k4,3 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

0.044 0.92 0.96

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3, t2 = 1.2, t3 = 1.4, and t4 = 2.0 with ` = 2.0 and α = 1.0.

t4 = 2.0, t3 = 1.4

k4,3 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

0.044 0.92 0.96

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3, t2 = 1.2, t3 = 1.4, and t4 = 2.0 with ` = 2.0 and α = 1.0.

t4 = 2.0, t4 = 2.0

k4,4 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

0.044 0.92 0.96 1.0

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3, t2 = 1.2, t3 = 1.4, and t4 = 2.0 with ` = 2.0 and α = 1.0.

t4 = 2.0, t4 = 2.0

k4,4 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3, t2 = 1.2, t3 = 1.4, and t4 = 2.0 with ` = 2.0 and α = 1.0.

t4 = 2.0, t4 = 2.0

k4,4 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3.0, t2 = 1.20, and t3 = 1.40 with ` = 5.00 and α = 4.00.

t1 = −3.0, t1 = −3.0

k1,1 = 4.00× exp
(
− (−3.0−−3.0)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3.0, t2 = 1.20, and t3 = 1.40 with ` = 5.00 and α = 4.00.

t1 = −3.0, t1 = −3.0

k1,1 = 4.00× exp
(
− (−3.0−−3.0)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3.0, t2 = 1.20, and t3 = 1.40 with ` = 5.00 and α = 4.00.

t2 = 1.20, t1 = −3.0

k2,1 = 4.00× exp
(
− (1.20−1.20)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00

2.81

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3.0, t2 = 1.20, and t3 = 1.40 with ` = 5.00 and α = 4.00.

t2 = 1.20, t1 = −3.0

k2,1 = 4.00× exp
(
− (1.20−1.20)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3.0, t2 = 1.20, and t3 = 1.40 with ` = 5.00 and α = 4.00.

t2 = 1.20, t1 = −3.0

k2,1 = 4.00× exp
(
− (1.20−1.20)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3.0, t2 = 1.20, and t3 = 1.40 with ` = 5.00 and α = 4.00.

t2 = 1.20, t2 = 1.20

k2,2 = 4.00× exp
(
− (1.20−1.20)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81 4.00

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3.0, t2 = 1.20, and t3 = 1.40 with ` = 5.00 and α = 4.00.

t2 = 1.20, t2 = 1.20

k2,2 = 4.00× exp
(
− (1.20−1.20)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81 4.00

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3.0, t2 = 1.20, and t3 = 1.40 with ` = 5.00 and α = 4.00.

t3 = 1.40, t1 = −3.0

k3,1 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81 4.00

2.72

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3.0, t2 = 1.20, and t3 = 1.40 with ` = 5.00 and α = 4.00.

t3 = 1.40, t1 = −3.0

k3,1 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00

2.72

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3.0, t2 = 1.20, and t3 = 1.40 with ` = 5.00 and α = 4.00.

t3 = 1.40, t1 = −3.0

k3,1 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00

2.72

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3.0, t2 = 1.20, and t3 = 1.40 with ` = 5.00 and α = 4.00.

t3 = 1.40, t2 = 1.20

k3,2 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00

2.72 4.00

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3.0, t2 = 1.20, and t3 = 1.40 with ` = 5.00 and α = 4.00.

t3 = 1.40, t2 = 1.20

k3,2 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00 4.00

2.72 4.00

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3.0, t2 = 1.20, and t3 = 1.40 with ` = 5.00 and α = 4.00.

t3 = 1.40, t2 = 1.20

k3,2 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00 4.00

2.72 4.00

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3.0, t2 = 1.20, and t3 = 1.40 with ` = 5.00 and α = 4.00.

t3 = 1.40, t3 = 1.40

k3,3 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00 4.00

2.72 4.00 4.00

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3.0, t2 = 1.20, and t3 = 1.40 with ` = 5.00 and α = 4.00.

t3 = 1.40, t3 = 1.40

k3,3 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

k (ti , tj) = α exp
(
− ||ti−tj ||

2

2`2

)

t1 = −3.0, t2 = 1.20, and t3 = 1.40 with ` = 5.00 and α = 4.00.

t3 = 1.40, t3 = 1.40

k3,3 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)
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Gaussian Process Interpolation
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Figure: Real example: BACCO (see e.g. (?)). Interpolation through outputs from
slow computer simulations (e.g. atmospheric carbon levels).
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Gaussian Process Interpolation
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Noise Models

Graph of a GP

Relates input variables, T,
to vector, y, through f
given kernel parameters θ.

Plate notation indicates
independence of yi |fi .
Noise model, p (yi |fi ) can
take several forms.

Simplest is Gaussian
noise.

yi

T

fi

θ

i = 1 . . . n

Figure: The Gaussian process
depicted graphically.
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Gaussian Noise

Gaussian noise model,

p (yi |fi ) = N
(
yi |fi , σ2

)
where σ2 is the variance of the noise.

Equivalent to a covariance function of the form

k(ti , tj) = δi ,jσ
2

where δi ,j is the Kronecker delta function.

Additive nature of Gaussians means we can simply add this term to
existing covariance matrices.
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Gaussian Process Regression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

N (y|0,K) =
1

(2π)
n
2 |K|

exp

(
−y
>K−1y

2

)
The parameters are inside the covariance function

(matrix).

ki ,j = k(ti , tj ;θ)
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Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

N (y|0,K) =
1

(2π)
n
2 |K|

exp

(
−y
>K−1y

2

)
The parameters are inside the covariance function

(matrix).

ki ,j = k(ti , tj ;θ)
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Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

logN (y|0,K) = −n
2
log 2π−1

2
log |K|−y

>K−1y

2

The parameters are inside the covariance function
(matrix).

ki ,j = k(ti , tj ;θ)
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Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

E (θ) =
1

2
log |K| + y>K−1y

2

The parameters are inside the covariance function
(matrix).

ki ,j = k(ti , tj ;θ)
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Eigendecomposition of Covariance

K = RΛ2R>

λ1

λ2

where Λ is a diagonal matrix and R>R = I.

Useful representation since |K| =
∣∣Λ2
∣∣ = |Λ|2.
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Capacity control: log |K|

λ1 0

0 λ2

λ1

Λ =
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Capacity control: log |K|

|Λ| = λ1λ2λ3
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Capacity control: log |K|
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Capacity control: log |K|

|RΛ| = λ1λ2

w1,1 w1,2

w2,1 w2,2

λ1

λ2

|Λ|
RΛ =
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Data Fit: y−1K−1y
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Data Fit: y−1K−1y
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Learning Covariance Parameters
Can we determine length scales and noise levels from the data?
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Gene Expression Example

Global expression estimation with l = 30

Global expression estimation with l = 15.6

Data from ?. Figure from ?.
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Limitations of Gaussian Processes

Inference is O(n3) due to matrix inverse (in practice use Cholesky).

Gaussian processes don’t deal well with discontinuities (financial
crises, phosphorylation, collisions, edges in images).

Widely used exponentiated quadratic covariance (RBF) can be too
smooth in practice (but there are many alternatives!!).
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Gene Expression Example

RESEARCH ARTICLE Open Access

A Simple Approach to Ranking Differentially
Expressed Gene Expression Time Courses through
Gaussian Process Regression
Alfredo A Kalaitzis* and Neil D Lawrence*

Abstract

Background: The analysis of gene expression from time series underpins many biological studies. Two basic forms
of analysis recur for data of this type: removing inactive (quiet) genes from the study and determining which
genes are differentially expressed. Often these analysis stages are applied disregarding the fact that the data is
drawn from a time series. In this paper we propose a simple model for accounting for the underlying temporal
nature of the data based on a Gaussian process.

Results: We review Gaussian process (GP) regression for estimating the continuous trajectories underlying in gene
expression time-series. We present a simple approach which can be used to filter quiet genes, or for the case of
time series in the form of expression ratios, quantify differential expression. We assess via ROC curves the rankings
produced by our regression framework and compare them to a recently proposed hierarchical Bayesian model for
the analysis of gene expression time-series (BATS). We compare on both simulated and experimental data showing
that the proposed approach considerably outperforms the current state of the art.

Conclusions: Gaussian processes offer an attractive trade-off between efficiency and usability for the analysis of
microarray time series. The Gaussian process framework offers a natural way of handling biological replicates and
missing values and provides confidence intervals along the estimated curves of gene expression. Therefore, we
believe Gaussian processes should be a standard tool in the analysis of gene expression time series.

Background
Gene expression profiles give a snapshot of mRNA con-
centration levels as encoded by the genes of an organ-
ism under given experimental conditions. Early studies
of this data often focused on a single point in time
which biologists assumed to be critical along the gene
regulation process after the perturbation. However, the
static nature of such experiments severely restricts the
inferences that can be made about the underlying dyna-
mical system.
With the decreasing cost of gene expression microar-

rays time series experiments have become commonplace
giving a far broader picture of the gene regulation pro-
cess. Such time series are often irregularly sampled and
may involve differing numbers of replicates at each time
point [1]. The experimental conditions under which

gene expression measurements are taken cannot be per-
fectly controlled leading the signals of interest to be cor-
rupted by noise, either of biological origin or arising
through the measurement process.
Primary analysis of gene expression profiles is often

dominated by methods targeted at static experiments, i.
e. gene expression measured on a single time-point, that
treat time as an additional experimental factor [1-6].
However, were possible, it would seem sensible to con-
sider methods that can account for the special nature of
time course data. Such methods can take advantage of
the particular statistical constraints that are imposed on
data that is naturally ordered [7-12].
The analysis of gene expression microarray time-series

has been a stepping stone to important problems in sys-
tems biology such as the genome-wide identification of
direct targets of transcription factors [13,14] and the full
reconstruction of gene regulatory networks [15,16]. A
more comprehensive review on the motivations and

* Correspondence: A.Kalaitzis@sheffield.ac.uk; N.Lawrence@dcs.shef.ac.uk
The Sheffield Institute for Translational Neuroscience, 385A Glossop Road,
Sheffield, S10 2HQ, UK

Kalaitzis and Lawrence BMC Bioinformatics 2011, 12:180
http://www.biomedcentral.com/1471-2105/12/180

© 2011 Kalaitzis and Lawrence; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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Gene Expression Example

Detect ‘quiet genes’ in time series.

http://www.bioconductor.org/packages/release/bioc/html/

gprege.html (Alfredo Kalaitzis is the maintainer).
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Gene Expression Example

Global expression estimation with l = 30

Global expression estimation with l = 15.6

Data from ?. Figure from ?.
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Summary

Flexible method for probability densities over functions.

Covariance function is key: defines how different data interrelate.

Problems occur if there are discontinuities in the function.
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