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Outline

@ The Gaussian Density
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The Gaussian Density

@ Perhaps the most common probability density.

Py, 0?) = — exp(_M>

202

@ The Gaussian density.
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Gaussian Density

p(hlp,o?)

0 | \
0 1 2

h, height/m

The Gaussian PDF with ;o = 1.7 and variance 02 = 0.0225. Mean shown
as red line. It could represent the heights of a population of students.
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Gaussian Density
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Two Important Gaussian Properties

@ Sum of Gaussian variables is also Gaussian.

Yi NN(N’I"O-iz)
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Two Important Gaussian Properties

@ Sum of Gaussian variables is also Gaussian.

Yir~ N (:u’l"o-l?)

n n n
Sy~ N (Zuf,20?>
i=1 i=1 i=1
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Two Important Gaussian Properties

@ Sum of Gaussian variables is also Gaussian.

yi ~ N (i, 07)

n n n
Sy~ N (Zuf,20?>
i=1 i=1 i=1

(Aside: As sum increases, sum of non-Gaussian, finite variance
variables is also Gaussian [central limit theorem].)
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Two Important Gaussian Properties

@ Sum of Gaussian variables is also Gaussian.

yi ~ N (i, 07)

n n n
Sy~ N (Zuf,20?>
i=1 i=1 i=1

(Aside: As sum increases, sum of non-Gaussian, finite variance
variables is also Gaussian [central limit theorem].)

@ Scaling a Gaussian leads to a Gaussian.

y ~ N (n,07)

wy ~ N (wp, w?o?)
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Two Simultaneous Equations

A system of two differential
equations with two unknowns.

yi=mt; +c¢
Yo =mty + ¢
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Two Simultaneous Equations

A system of two differential
equations with two unknowns.

y1—y2 =m(t; — t2)
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A system of two differential
equations with two unknowns.
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Two Simultaneous Equations

A system of two differential
equations with two unknowns.

>
Yo—N
m =
th — t1
C=y1—mt
0 \ \
0 1 2 3
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Two Simultaneous Equations

How do we deal with three
simultaneous equations with only two
unknowns?

>
y1 =mt; +c¢
Yo =mtyr + ¢
y3 =mt3 + ¢ 0 ‘ ‘
0 1 2 3
t
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Overdetermined System

@ With two unknowns and two observations:

yi=mti +c¢
Yo=mts+ ¢
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Overdetermined System

@ With two unknowns and two observations:

yi=mti +c¢
Yo=mts+ ¢

o Additional observation leads to overdetermined system.

y3=mt3+ ¢
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Overdetermined System

@ With two unknowns and two observations:

yi=mti +c¢
Yo=mts+ ¢

o Additional observation leads to overdetermined system.

y3=mt3+ ¢

e This problem is solved through a noise model e ~ A (0, 0?)

yi=mti+c+e
Yo =mtr+Cc+ e
y3 = mt3 + Cc + €3
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Noise Models

We aren’'t modeling entire system.

Noise model gives mismatch between model and data.
Gaussian model justified by appeal to central limit theorem.
Other models also possible (Student-t for heavy tails).

Maximum likelihood with Gaussian noise leads to least squares.
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Underdetermined System

5
4 I i
What about two unknowns and one
observation? 3+ x i
>
_ 2 B
yi=mt; +c¢
1L N
0 \ \
0 1 2 3
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Underdetermined System

5
: 4 -
Can compute m given c.
3 x -
_»n—-c >

m= ; 5 |
1 _

0 | |
0 1 2 3
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Underdetermined System

Can compute m given c.

c=17= m=1.25 >
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Underdetermined System

Can compute m given c.

c=—-0777T—= m=3.78 >
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Underdetermined System

Can compute m given c.

c=—-401=m=7.01 >
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Underdetermined System

Can compute m given c.

c=-0718=— m=23.72 >
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Underdetermined System

Can compute m given c.

c=245= m=0.545 >
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Underdetermined System

Can compute m given c.

¢ =—-0.657 —= m=3.66 >
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Underdetermined System

Can compute m given c.

c=-313— m=26.13 >
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Underdetermined System

Can compute m given c.

c=—147 = m=4.47 >
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Underdetermined System

Can compute m given c.
Assume

c~N(0,4),

we find a distribution of solutions.
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Probability for Under- and Overdetermined

@ To deal with overdetermined introduced probability distribution for
‘variable’, ¢;.

@ For underdetermined system introduced probability distribution for
‘parameter’, c.

@ This is known as a Bayesian treatment.
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@ For general Bayesian inference need multivariate priors.

o E.g. for multivariate linear regression:

yi = E wjtij + €
i
(where we've dropped c for convenience), we need a prior over w.

@ This motivates a multivariate Gaussian density.

@ We will use the multivariate Gaussian to put a prior directly on the
function (a Gaussian process).
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Two Dimensional Gaussian

o Consider height, h/m and weight, w/kg.

@ Could sample height from a distribution:
p(h) ~ N (1.7,0.0225)
@ And similarly weight:

p(w) ~ N (75, 36)
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Height and Weight Models

Marginal Distributions

FANRVAN

w/kg Gaussian

distributions for height and weight.
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Sampling Two Dimensional Variables
Marginal Distributions

Joint Distribution

S
Q
»
~
2
3
Q

h/m

Sample height and weight one after the other and plot against each other.
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Sampling Two Dimensional Variables
Marginal Distributions

Joint Distribution

x X% x

e

w/kg

h/m x% %

Sample height and weight one after the other and plot against each other.
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Marginal Distributions

Joint Distribution

x X MR XX

*  x
x
x

w/kg

h/m X006 %

Sample height and weight one after the other and plot against each other.

Lawrence () Gaussian Processes BioPreDyn 17 / 49



Independence Assumption

@ This assumes height and weight are independent.

p(h, w) = p(h)p(w)

@ In reality they are dependent (body mass index) =

w

h?*
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Independent Gaussians

p(w, h) = p(w)p(h)
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Independent Gaussians

P S (_1 ((w NG -52)2»

27‘(’0‘%\ / 2%0% 2 o1 92
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Independent Gaussians
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Independent Gaussians

) = 51520 (30~ WD - )
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Correlated Gaussian

Form correlated from original by rotating the data space using matrix R.

b (2t Dy —
p(y)—2ﬂ|D’% p( 5(y—m) Dy u))
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Correlated Gaussian

Form correlated from original by rotating the data space using matrix R.

ply) = !

1 _
= ——exp (—E(RTy —R'p)'DHRTy - RTu))
27 |D|2
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Correlated Gaussian

Form correlated from original by rotating the data space using matrix R.
1

Y) = 1

27 |D|2

this gives a covariance matrix:

exp (—%(y —p) 'RD'R(y — u))

C!1=RDIRT
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Correlated Gaussian

Form correlated from original by rotating the data space using matrix R.

1 1 _
y) = — 1 exp (—E(y —p) CHy - u))
27 |C|2
this gives a covariance matrix:

C = RDR'
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Recall Univariate Gaussian Properties

@ Sum of Gaussian variables is also Gaussian.

Yi NN(,U’I"O-iz)
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Yi NN(/J’I'vo-iz)

n n n
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Multivariate Consequence

o If
t~N(p, %)
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Multivariate Consequence

o If
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y =Wt
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Multivariate Consequence

o If
t~ N(H, E)
e And
y =Wt
@ Then

y~N (wu, wsz)
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Sampling a Function

Multi-variate Gaussians

@ We will consider a Gaussian with a particular structure of covariance
matrix.

@ Generate a single sample from this 25 dimensional Gaussian
distribution, f = [f1, ... fa5].

@ We will plot these points against their index.
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Gaussian Distribution Sample

1
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(a) A 25 dimensiona) correlated random (b) colormap shawing correlations between
variable (values ploted against index) dimensions.
Figure: A sample from a 25 dimensional Gaussian distribution.
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Prediction of , from f;

f2

1

0.96587

0.96587

1

@ The single contour of the Gaussian density represents the joint

distribution, p(f1, ).
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Prediction with Correlated Gaussians

@ Prediction of f, from f; requires conditional density.

o Conditional density is also Gaussian.
B k1,2 12,2
p(f2|f1)—_/\/' f2|mfl,k272—

where covariance of joint density is given by

ki1 kip
K=

ko1 koo
Lawrence () Gaussian Processes

BioPreDyn
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Prediction of f5 from f;

/ /7 1 0.57375
0
1 C// 0.57375 1

fs
@ The single contour of the Gaussian density represents the joint
distribution, p(f1, f5).
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Prediction of f5 from f;

I
1 L _
/ /7 1 0.57375

0

/ /
L L// | 0.57375 1

| |

1 0 1 . _
fs

@ The single contour of the Gaussian density represents the joint
distribution, p(f1, f5).

@ We observe that /1 = —0.313.
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Prediction of f5 from f;

[
]_ _
1/7 1 0.57375

0

/ T
L L_// | 0.57375 1

| |

1 0 1 | _

@ The single contour of the Gaussian density represents the joint
distribution, p(f1, f5).

@ We observe that 1 = —0.313.
e Conditional density: p(f5|f; = —0.313).
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Prediction of f5 from f;

[
]_ _
1/7 1 0.57375

0

/ T~
L L_// | 0.57375 1

| |

1 0 1 | _

@ The single contour of the Gaussian density represents the joint
distribution, p(f1, f5).

@ We observe that 1 = —0.313.
e Conditional density: p(f5|f; = —0.313).
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Prediction with Correlated Gaussians

@ Prediction of f, from f requires multivariate conditional density.

@ Multivariate conditional density is also Gaussian.

p(FIF) = NV (F|K. K, K, — K KK )

@ Here covariance of joint density is given by

_ | Kes K
K= |:Kf,* K*,*:|
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Prediction with Correlated Gaussians

@ Prediction of f, from f requires multivariate conditional density.

@ Multivariate conditional density is also Gaussian.
p(FIf) = N (f.|p, X)
m= K*7fo_7f1f
Y = K*,* - K*,fKEfle,*

@ Here covariance of joint density is given by

_ | Kes K
K= |:Kf,* K*,*:|
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Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

2
AN 7Ht_tl||2
k(t,t)-aexp( o

@ Covariance matrix is built
using the inputs to the
function t.

@ For the example above it
was based on Euclidean
distance.

@ The covariance function is
also know as a kernel.

Lawrence () Gaussian Processes BioPreDyn 30/ 49



Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

2
AN 7“1'_1',”2
k(t,t)-aexp( o

@ Covariance matrix is built
using the inputs to the
function t.

@ For the example above it
was based on Euclidean
distance.

@ The covariance function is
also know as a kernel.

Lawrence () Gaussian Processes BioPreDyn
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Covariance Functions

Where did this covariance matrix come from?

CE) — _ =gl
k(t,,t]) a exp T

t; =-3.0, t; = -3.0

— N 2
kip = 1.00 x exp (_%)

t1 = —3.0, t» = 1.20, and t3 = 1.40 with / = 2.00 and « = 1.00.
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Covariance Functions

Where did this covariance matrix come from?

t; =-3.0, t; = -3.0

— N 2
kip = 1.00 x exp (_%)

lti—t1]?

(t0) = e (~Li50°

2/

)

1.00

t1 = —3.0, t» = 1.20, and t3 = 1.40 with / = 2.00 and « = 1.00.

Lawrence ()

Gaussian Processes

BioPreDyn
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Covariance Functions

Where did this covariance matrix come from?

k(t t:) = _ -yl
(ti, 7)) = cvexp (=57

1.00
t, =1.20, t; = —3.0

_ 2
ko1 = 1.00 x exp (—%)

t1 = —3.0, t» = 1.20, and t3 = 1.40 with / = 2.00 and « = 1.00.

Lawrence () Gaussian Processes

BioPreDyn
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Covariance Functions

Where did this covariance matrix come from?

k(t t:) = _ -yl
(ti, 7)) = cvexp (=57

1.00

t, =1.20, t; = —3.0
0.110

_ 2
ko1 = 1.00 x exp (—%)

t1 = —3.0, t» = 1.20, and t3 = 1.40 with / = 2.00 and « = 1.00.

Lawrence () Gaussian Processes

BioPreDyn
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Covariance Functions

Where did this covariance matrix come from?

CE) — _ =gl
k(ti,tj) = aexp (=7 -
1.00 0.110

t, =1.20, t; = —3.0
0.110

_ 2
ko1 = 1.00 x exp (—%)

t1 = —3.0, t» = 1.20, and t3 = 1.40 with / = 2.00 and « = 1.00.

Lawrence () Gaussian Processes

BioPreDyn
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Covariance Functions

Where did this covariance matrix come from?

CE) — _ =gl
k(ti,tj) = aexp (=7 -
1.00 0.110

th =120, tp =1.20
0.110

_ 2
ko = 1.00 x exp (—%)

t1 = —3.0, t» = 1.20, and t3 = 1.40 with / = 2.00 and « = 1.00.

Lawrence () Gaussian Processes

BioPreDyn
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Covariance Functions

Where did this covariance matrix come from?

k(t t:) = _ -yl
(ti, 7)) = cvexp (=57

1.00 0.110

th =120, tp =1.20
0.110 | 1.00

_ 2
ko = 1.00 x exp (—%)

t1 = —3.0, t» = 1.20, and t3 = 1.40 with / = 2.00 and « = 1.00.

Lawrence () Gaussian Processes

BioPreDyn
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Covariance Functions

Where did this covariance matrix come from?

CE) — _ =gl
k(ti,tj) = aexp (=7 -
1.00 0.110

tz =1.40, t; = —3.0
0.110 1.00

— 2
k31 = 1.00 x exp (_%>

t1 = —3.0, t» = 1.20, and t3 = 1.40 with / = 2.00 and « = 1.00.

Lawrence () Gaussian Processes

BioPreDyn
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Covariance Functions

Where did this covariance matrix come from?

k(t t:) = _ -yl
(ti, 7)) = cvexp (=57

100 0.110
tz =1.40, t; = —3.0
0.110 1.0
ko = 1.00 x exp (— 132500 ) 0.0889

t1 = —3.0, t» = 1.20, and t3 = 1.40 with / = 2.00 and « = 1.00.

Lawrence () Gaussian Processes BioPreDyn 31/ 49



Covariance Functions

Where did this covariance matrix come from?

k (ti,tj) = aexp (

tz =1.40, t; = —3.0

— 2
k31 = 1.00 x exp (_%>

_lla—g11?

fleil)

1.00 0.110 0.0889

0.110 1.00

0.0889

t1 = —3.0, t» = 1.20, and t3 = 1.40 with / = 2.00 and « = 1.00.

Lawrence ()

Gaussian Processes

BioPreDyn
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Covariance Functions

Where did this covariance matrix come from?

k (ti,tj) = aexp (

t3 = 1.40, t, = 1.20

— 2
ks> = 1.00 x exp (_%>

_lla—g11?

fleil)

1.00 0.110 0.0889

0.110 1.00

0.0889

t1 = —3.0, t» = 1.20, and t3 = 1.40 with / = 2.00 and « = 1.00.

Lawrence ()

Gaussian Processes

BioPreDyn
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Covariance Functions

Where did this covariance matrix come from?

k (ti,tj) = aexp (

t3 = 1.40, t, = 1.20

— 2
ks> = 1.00 x exp (_%>

_lla—g11?

fleil)

1.00 0.110 0.0889

0.110 1.00

0.0889| 0.995

t1 = —3.0, t» = 1.20, and t3 = 1.40 with / = 2.00 and « = 1.00.

Lawrence ()

Gaussian Processes

BioPreDyn
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Covariance Functions

Where did this covariance matrix come from?

k (ti,tj) = aexp (

t3 = 1.40, t, = 1.20

— 2
ks> = 1.00 x exp (_%>

_lla—g11?

fleil)

1.00 0.110 0.0889

0.110 1.00 0.995

0.0889 0.995

t1 = —3.0, t» = 1.20, and t3 = 1.40 with / = 2.00 and « = 1.00.

Lawrence ()

Gaussian Processes

BioPreDyn
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Covariance Functions

Where did this covariance matrix come from?

k (ti,tj) = aexp (

t3 = 1.40, t3 = 1.40

— 2
k3 = 1.00 x exp (_%>

_lla—g11?

fleil)

1.00 0.110 0.0889

0.110 1.00 0.995

0.0889 0.995

t1 = —3.0, t» = 1.20, and t3 = 1.40 with / = 2.00 and « = 1.00.

Lawrence ()

Gaussian Processes

BioPreDyn
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Covariance Functions

Where did this covariance matrix come from?

k (ti,tj) = aexp (

t3 = 1.40, t3 = 1.40

— 2
k3 = 1.00 x exp (_%>

_lla—g11?

fleil)

1.00 0.110 0.0889

0.110 1.00 0.995

0.0889 0.995

1.00

t1 = —3.0, t» = 1.20, and t3 = 1.40 with / = 2.00 and « = 1.00.

Lawrence ()

Gaussian Processes

BioPreDyn
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Covariance Functions

Where did this covariance matrix come from?

12
k (ti,tj) = aexp <_7Ht’2g§]|‘ )

t3 = 1.40, t3 = 1.40

2x2.002

k3,3 = 1.00 x exp <_w)

t;y = —3.0, t, = 1.20, and t3 = 1.40 with ¢ = 2.00 and a = 1.00.

Lawrence () Gaussian Processes BioPreDyn
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Covariance Functions

Where did this covariance matrix come from?
t—t;]|?
k (ti,tj) = aexp (——r” 2/” )
t1=-3,t1=-3

_2__2)\
kl,l =1.0 % exp (—%)

ti =-3, tb=12 t3=1.4,and t; = 2.0 with / =2.0 and = 1.0.

Lawrence () Gaussian Processes BioPreDyn 31/ 49



Covariance Functio

ns

Where did this covariance matrix come from?

tp=-3, 1t

kl,l =1.0 % exp (

k (ti,tj) = aexp (

_lla—g11?

2/

1.0

=-3

_(—3——3)2)
2x2.02

ti =-3, tb=12 t3=1.4,and t; = 2.0 with / =2.0 and = 1.0.

Lawrence ()

Gaussian Processes

BioPreDyn
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Covariance Functions

Where did this covariance matrix come from?
t—t;]|?
k (ti,tj) = aexp (—ﬁ—” 2/” )
1.0

th=12 t, =-3

— 2
k2,1 = 1.0 X exp <_%)

ti =-3, tb=12 t3=1.4,and t; = 2.0 with / =2.0 and = 1.0.

Lawrence () Gaussian Processes BioPreDyn 31/ 49



Covariance Functions

Where did this covariance matrix come from?

k(t t:) = _ -yl
(ti, 7)) = cvexp (=57

1.0

ty =12t = -3 0.11

— 2
k2,1 = 1.0 X exp <_%)

ti =-3, tb=12 t3=1.4,and t; = 2.0 with / =2.0 and = 1.0.

Lawrence () Gaussian Processes BioPreDyn 31/ 49



Covariance Functions

Where did this covariance matrix come from?

k(t t:) = _ -yl
(ti, 7)) = cvexp (=57

1.0 0.11

ty =12t = -3 0.11

— 2
k2,1 = 1.0 X exp <_%)

ti =-3, tb=12 t3=1.4,and t; = 2.0 with / =2.0 and = 1.0.

Lawrence () Gaussian Processes BioPreDyn 31/ 49



Covariance Functions

Where did this covariance matrix come from?

k(t t:) = _ -yl
(ti, 7)) = cvexp (=57

1.0 0.11

th=12t, =12 0.11

— 2
k2,2 = 1.0 X exp <_%)

ti =-3, tb=12 t3=1.4,and t; = 2.0 with / =2.0 and = 1.0.

Lawrence () Gaussian Processes BioPreDyn 31/ 49



Covariance Functions

Where did this covariance matrix come from?

k(t t:) = _ -yl
(ti, 7)) = cvexp (=57

1.0 0.11

th=12t, =12 0.11| 1.0

— 2
k2,2 = 1.0 X exp <_%)

ti =-3, tb=12 t3=1.4,and t; = 2.0 with / =2.0 and = 1.0.

Lawrence () Gaussian Processes BioPreDyn 31/ 49



Covariance Functions

Where did this covariance matrix come from?

k(t t:) = _ -yl
(ti, 7)) = cvexp (=57

1.0 0.11

t3=14,t =-3 0.11 1.0

— 2
k31 = 1.0 x exp <_%)

ti =-3, tb=12 t3=1.4,and t; = 2.0 with / =2.0 and = 1.0.

Lawrence () Gaussian Processes BioPreDyn 31/ 49



Covariance Functions

Where did this covariance matrix come from?

k(t t:) = _ -yl
(ti, 7)) = cvexp (=57

1.0 0.11
t3=14,t =-3 0.11 1.0
0.089

— 2
k31 = 1.0 x exp <_%)

ti =-3, tb=12 t3=1.4,and t; = 2.0 with / =2.0 and = 1.0.

Lawrence () Gaussian Processes BioPreDyn 31/ 49



Covariance Functio

ns

Where did this covariance matrix come from?

t3=14 t;

k3’1 =1.0 x exp <

k(t t:) = _ -yl
(ti, 7)) = cvexp (=57

=-3
_ (1.4—1.4)2)
2x2.07

1.0 0.11 0.089
0.11 1.0
0.089

ti =-3, tb=12 t3=1.4,and t; = 2.0 with / =2.0 and = 1.0.

Lawrence ()

Gaussian Processes

BioPreDyn
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Covariance Functio

ns

Where did this covariance matrix come from?

t3=14, b

k3’2 =1.0 x exp <

k(t t:) = _ -yl
(ti, 7)) = cvexp (=57

=12
_ (1.4—1.4)2)
2x2.07

1.0 0.11 0.089
0.11 1.0
0.089

ti =-3, tb=12 t3=1.4,and t; = 2.0 with / =2.0 and = 1.0.

Lawrence ()

Gaussian Processes

BioPreDyn
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Covariance Functio

ns

Where did this covariance matrix come from?

t3=14, b

k3’2 =1.0 x exp <

k(t t:) = _ -yl
(ti, 7)) = cvexp (=57

=12
_ (1.4—1.4)2)
2x2.07

1.0 0.11 0.089
0.11 1.0
0.089| 1.0

ti =-3, tb=12 t3=1.4,and t; = 2.0 with / =2.0 and = 1.0.

Lawrence ()

Gaussian Processes

BioPreDyn
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Covariance Functio

ns

Where did this covariance matrix come from?

t3=14, b

k3’2 =1.0 x exp <

k(t t:) = _ -yl
(ti, 7)) = cvexp (=57

=12
_ (1.4—1.4)2)
2x2.07

1.0 0.11 0.089
011 10 1.0
0.089 1.0

ti =-3, tb=12 t3=1.4,and t; = 2.0 with / =2.0 and = 1.0.

Lawrence ()

Gaussian Processes

BioPreDyn
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Covariance Functio

ns

Where did this covariance matrix come from?

t3=1.4, t3

k3’3 =1.0 x exp <

k(t t:) = _ -yl
(ti, 7)) = cvexp (=57

=14
_ (1.4—1.4)2)
2x2.07

1.0 0.11 0.089
011 10 1.0
0.089 1.0

ti =-3, tb=12 t3=1.4,and t; = 2.0 with / =2.0 and = 1.0.

Lawrence ()

Gaussian Processes

BioPreDyn
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Covariance Functio

ns

Where did this covariance matrix come from?

t3=1.4, t3

k3’3 =1.0 x exp <

k(t t:) = _ -yl
(ti, 7)) = cvexp (=57

=14
_ (1.4—1.4)2)
2x2.07

1.0 0.11 0.089
011 10 1.0
0.089 1.0 | 1.0

ti =-3, tb=12 t3=1.4,and t; = 2.0 with / =2.0 and = 1.0.

Lawrence ()

Gaussian Processes

BioPreDyn
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Covariance Functio

ns

Where did this covariance matrix come from?

ty =20, t

k4’1 =1.0 x exp <

k(t t:) = _ -yl
(ti, 7)) = cvexp (=57

=-3
_ (2.0-2.0)? )
2x2.02

1.0 0.11 0.089
011 10 1.0
0.089 1.0 1.0

ti =-3, tb=12 t3=1.4,and t; = 2.0 with / =2.0 and = 1.0.

Lawrence ()

Gaussian Processes

BioPreDyn
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Covariance Functio

ns

Where did this covariance matrix come from?

ty =20, t

k4’1 =1.0 x exp <

_ lti—|°
k (ti,tj) = aexp (_T>
1.0 0.11 0.089
=_-3 0.11 1.0 1.0
0.089 1.0 1.0
(2.0-2.0)2
T T2x2.0? 0.044

ti =-3, tb=12 t3=1.4,and t; = 2.0 with / =2.0 and = 1.0.

Lawrence ()

Gaussian Processes

BioPreDyn
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Covariance Functions

Where did this covariance matrix come from?

k(t t:) = _ -yl
(ti, 7)) = cvexp (=57

1.0 0.11 0.0890.044

t, =20, t1 = -3 0.11 1.0 1.0
0.089 1.0 1.0
o2
ko= 1.0 x exp <——(2é0xfég) ) 0.044

ti =-3, tb=12 t3=1.4,and t; = 2.0 with / =2.0 and = 1.0.

Lawrence () Gaussian Processes BioPreDyn 31/ 49



Covariance Functions

Where did this covariance matrix come from?

k(t t:) = _ -yl
(ti, 7)) = cvexp (=57

1.0 0.11 0.0890.044

t, =20, tpb =12 0.11 1.0 1.0
0.089 1.0 1.0
o2
ka2 = 1.0 x exp <——(2é0xfég) ) 0.044

ti =-3, tb=12 t3=1.4,and t; = 2.0 with / =2.0 and = 1.0.

Lawrence () Gaussian Processes BioPreDyn 31/ 49



Covariance Functio

ns

Where did this covariance matrix come from?

t, =2.0, b

k4’2 =1.0 x exp <

k (ti,tj) = aexp (

=12

_ (2.0-2.0)?
2x2.02

_lla—g11?

2/

1.0 0.11 0.0890.044

0.11

0.089

0.044

)

1.0

1.0

0.92

1.0

1.0

ti =-3, tb=12 t3=1.4,and t; = 2.0 with / =2.0 and = 1.0.

Lawrence ()

Gaussian Processes

BioPreDyn
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Covariance Functions

Where did this covariance matrix come from?

k(t t:) = _ -yl
(ti, 7)) = cvexp (=57

1.0 0.11 0.0890.044

t, =20, tpb =12 0.11 1.0 1.0 0.92
0.089 1.0 1.0
_ (2.0—-2.0)2
ka2 =1.0 x exp <_ 2x2.07 ) 0.044 0.92

ti =-3, tb=12 t3=1.4,and t; = 2.0 with / =2.0 and = 1.0.

Lawrence () Gaussian Processes BioPreDyn 31/ 49



Covariance Functions

Where did this covariance matrix come from?

k(t t:) = _ -yl
(ti, 7)) = cvexp (=57

1.0 0.11 0.0890.044

t, =20, t3=14 0.11 1.0 1.0 0.92
0.089 1.0 1.0
_ (2.0—-2.0)2
ka3 =1.0 x exp <_ 2x2.07 ) 0.044 0.92

ti =-3, tb=12 t3=1.4,and t; = 2.0 with / =2.0 and = 1.0.

Lawrence () Gaussian Processes BioPreDyn 31/ 49



Covariance Functions

Where did this covariance matrix come from?

k(t t:) = _ -yl
(ti, 7)) = cvexp (=57

1.0 0.11 0.0890.044

t, =20, t3=14 0.11 1.0 1.0 0.92
0.089 1.0 1.0
_ (2.0—-2.0)2
ki = 1.0 x exp <_—2><2‘02 ) 0.044 0.92 | 0.96

ti =-3, tb=12 t3=1.4,and t; = 2.0 with / =2.0 and = 1.0.

Lawrence () Gaussian Processes BioPreDyn 31/ 49



Covariance Functions

Where did this covariance matrix come from?

k(t t:) = _ -yl
(ti, 7)) = cvexp (=57

1.0 0.11 0.0890.044
t, =20, t3=14 0.11 1.0 1.0 0.92
0.089 1.0 1.0 0.96

. (2.0—-2.0)°
ka3 = 1.0 x exp (—W) 0.044 0.92 0.96

ti =-3, tb=12 t3=1.4,and t; = 2.0 with / =2.0 and = 1.0.

Lawrence () Gaussian Processes BioPreDyn 31/ 49



Covariance Functions

Where did this covariance matrix come from?

k(t t:) = _ -yl
(ti, 7)) = cvexp (=57

1.0 0.11 0.0890.044
t, =20, t, =20 0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

_ (2.0—-2.0)2
ka4 = 1.0 x exp (- 232,07 ) 0.044 0.92 0.96

ti =-3, tb=12 t3=1.4,and t; = 2.0 with / =2.0 and = 1.0.

Lawrence () Gaussian Processes BioPreDyn 31/ 49



Covariance Functions

Where did this covariance matrix come from?

k(t t:) = _ -yl
(ti, 7)) = cvexp (=57

1.0 0.11 0.0890.044
t, =20, t, =20 0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

_ (2.0—-2.0)2
ka4 = 1.0 x exp (- 2%2.02 ) 0.044 0.92 0.96| 1.0

ti =-3, tb=12 t3=1.4,and t; = 2.0 with / =2.0 and = 1.0.

Lawrence () Gaussian Processes BioPreDyn 31/ 49



Covariance Functions

Where did this covariance matrix come from?
ti—t;|?

k(ti7 tj) = aexp <_ I 2@2JH )

t, =20, t, =20

5 )2
k4,4 =10x exp <—%)

t =-3, tb=12, t3=1.4, and t; = 2.0 with / = 2.0 and o = 1.0.

Lawrence () Gaussian Processes BioPreDyn 31/ 49



Covariance Functions

Where did this covariance matrix come from?

CE) — _ =gl
k(t,,t]) a exp T

t; =-3.0, t; = -3.0

— N 2
ki = 4.00 x exp (_%)

t;p = —3.0, tp = 1.20, and t3 = 1.40 with £ =5.00 and a = 4.00.

Lawrence () Gaussian Processes

BioPreDyn
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Covariance Functions

Where did this covariance matrix come from?

t; =-3.0, t; = -3.0

— N 2
ki = 4.00 x exp (_%)

lti—t1]?

(t0) = e (~Li50°

2/

)

4.00

t1 = —3.0, t, = 1.20, and t3 = 1.40 with / = 5.00 and o = 4.00.

Lawrence ()

Gaussian Processes

BioPreDyn
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Covariance Functions

Where did this covariance matrix come from?

k(t t:) = _ -yl
(ti, 7)) = cvexp (=57

4.00
t, =1.20, t; = —3.0

— 2
ko1 = 4.00 x exp (_%>
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Covariance Functions
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Covariance Functions

Where did this covariance matrix come from?

12
k (ti,tj) = aexp <_7Ht’2g§]|‘ )

t3 = 1.40, t3 = 1.40

2x5.002

k3,3 = 4.00 x exp <_M)

t1 = —3.0, t, = 1.20, and t3 = 1.40 with / = 5.00 and o = 4.00.
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Gaussian Process Interpolation

3

2 L |

1L . 1
= o0l |
-
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3 \ \ |

2 1 0 1 2

Figure: Real example: BACCO (see e.g. (?)). Interpolation through outputs from
slow computer simulations (e.g. atmospheric carbon levels).
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slow computer simulations (e.g. atmospheric carbon levels).
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Noise Models

Graph of a GP

@ Relates input variables, T, ” *

to vector, y, through f e

given kernel parameters 6.

@ Plate notation indicates
independence of y;|f;.

@ Noise model, p(y;|f;) can i—1...n
take several forms. N 4

@ Simplest is Gaussian

noise. Figure: The Gaussian process
depicted graphically.
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Gaussian Noise

@ Gaussian noise model,
2
p(yilf) = N (yilfi, %)
where o2 is the variance of the noise.

@ Equivalent to a covariance function of the form

k(t,', tj) = 5,'JO'2

where 0; ; is the Kronecker delta function.

@ Additive nature of Gaussians means we can simply add this term to
existing covariance matrices.
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Gaussian Process Regression

Figure: Examples include WiFi localization, C14 callibration curve.
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Figure: Examples include WiFi localization, C14 callibration curve.
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

1 y' Kly

N(Y\O; K) = WGXP T,

The parameters are inside the covariance function
(matrix).

k,',j = k(t,', tj; 9)
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

1 TK!
—g log 2m—— log \K\—%

log MV (y|0, K) = 5

The parameters are inside the covariance function
(matrix).

k,',j = k(t,', tj; 9)
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

1 Tw-1

y Ky
E()=-log|K|+21 — 7
(6) = 5 log K| +>—

The parameters are inside the covariance function
(matrix).

k,',j = k(t,', tj; 9)

Lawrence () Gaussian Processes BioPreDyn 36 / 49



Eigendecomposition of Covariance

K = RA°RT

where A is a diagonal matrix and R'TR = 1.
Useful representation since |K| = |A2] = |A[*.
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Capacity control: log|K]

A 0

A1
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Capacity control: log|K]
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Capacity control: log|K]

A

A1
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0 0 X X

|A| = A A2A3
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Capacity control: log|K]
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

20

15
10

o
¢

107t 10°
t length scale, ¢

1 TK1
EO) =5 K|+ 52
2 2
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?
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N/

Learning Covariance Parameters

Can we determine length scales and noise levels from the data?
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Gene Expression Example
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Outline

© GP Limitations
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Limitations of Gaussian Processes

o Inference is O(n3) due to matrix inverse (in practice use Cholesky).

e Gaussian processes don't deal well with discontinuities (financial
crises, phosphorylation, collisions, edges in images).

@ Widely used exponentiated quadratic covariance (RBF) can be too
smooth in practice (but there are many alternatives!!).
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Gene Expression Example

Kalaitzis and Lawrence BMC Bioinformatics 2011, 12:180
http://www.biomedcentral.com/1471-2105/12/180

BMC
Bioinformatics

RESEARCH ARTICLE Open Access

A Simple Approach to Ranking Differentially
Expressed Gene Expression Time Courses through
Gaussian Process Regression

Alfredo A Kalaitzis™ and Neil D Lawrence”
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Gene Expression Example

@ Detect ‘quiet genes’ in time series.

@ http://www.bioconductor.org/packages/release/bioc/html/
gprege.html (Alfredo Kalaitzis is the maintainer).
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Summary

@ Flexible method for probability densities over functions.
@ Covariance function is key: defines how different data interrelate.

@ Problems occur if there are discontinuities in the function.
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