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Simple Markov Chain

Assume 1-d latent state, a vector over time, x = [x1 . . . xT ].

Markov property,

xi =xi−1 + εi ,

εi ∼N (0, α)

=⇒ xi ∼N (xi−1, α)

Initial state,
x0 ∼ N (0, α0)

If x0 ∼ N (0, α) we have a Markov chain for the latent states.

Markov chain it is specified by an initial distribution (Gaussian) and a
transition distribution (Gaussian).
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Gauss Markov Chain
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Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x3 = −1.6, ε4 = −0.292

x4 = −1.6− 0.292 = −1.89

Lawrence () Multioutput BioPreDyn 6 / 75



Gauss Markov Chain
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Gauss Markov Chain
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Gauss Markov Chain
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Gauss Markov Chain
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Gauss Markov Chain
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Multivariate Gaussian Properties: Reminder

If
z ∼ N (µ,C)

and
x = Wz + b

then
x ∼ N

(
Wµ + b,WCW>

)
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Multivariate Gaussian Properties: Reminder

Simplified: If
z ∼ N

(
0, σ2I

)
and

x = Wz

then
x ∼ N

(
0, σ2WW>

)
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Matrix Representation of Latent Variables
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Matrix Representation of Latent Variables

x εL1 ×=
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Multivariate Process

Since x is linearly related to ε we know x is a Gaussian process.

Trick: we only need to compute the mean and covariance of x to
determine that Gaussian.

Lawrence () Multioutput BioPreDyn 10 / 75



Latent Process Mean

x = L1ε
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Latent Process Mean

〈x〉 = L1 〈ε〉

ε ∼ N (0, αI)
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Latent Process Mean

〈x〉 = L10
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Latent Process Mean

〈x〉 = 0
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Latent Process Covariance

xx> = L1εε
>L>1

x> = ε>L>
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Latent Process Covariance

〈
xx>
〉
= αL1L>1
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Latent Process

x = L1ε

Lawrence () Multioutput BioPreDyn 13 / 75



Latent Process

x = L1ε

ε ∼ N (0, αI)
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Latent Process
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Latent Process

x = L1ε

ε ∼ N (0, αI)

=⇒
x ∼ N

(
0, αL1L>1

)
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Covariance for Latent Process II

Given
ε ∼ N (0, αI) =⇒ ε ∼ N

(
0, αL1L>1

)
.

Then
ε ∼ N (0,∆tαI) =⇒ ε ∼ N

(
0,∆tαL1L>1

)
.

where ∆t is the time interval between observations.
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Covariance for Latent Process II

ε ∼ N (0, α∆tI) , x ∼ N
(

0, α∆tL1L>1

)
K = α∆tL1L>1

ki ,j = α∆tl>:,i l:,j

where l:,k is a vector from the kth row of L1: the first k elements are one,
the next T − k are zero.

ki ,j = α∆t min(i , j)

define ∆ti = ti so

ki ,j = αmin(ti , tj) = k(ti , tj)
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Covariance Functions
Where did this covariance matrix come from?

Markov Process

k
(
t, t ′
)

= αmin(t, t ′)

Covariance matrix is built
using the inputs to the
function t.
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Can a Biologist Fix a Radio? ?
The Case for Systems Biology

“It is difficult to find a black cat in a dark room, especially if
there is no cat.”

Biological systems are immensely complicated.

? argues the need for models that are quantitative.
I Such models should be predictive of biological behaviour.
I Such models need to be combined with biological data.

Systems biology:
I Build mechanistic models (based on biochemical knowledge) of the

system.
I Identify modules, submodules, and parameterize the models.
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Coregulation of Gene Expression
The Case for Computational Biology

Gene Expression to Transcriptional Regulation.

A“data exploration”problem (computational biology/bioinformatics):
I Use gene expression data to speculate on coregulated genes.
I Traditionally use clustering of gene expression profiles.

Contrast with (computational) systems biology approach:
I Detailed mechanistic model of the system is created.
I Fit parameters of the model to data.
I Problematic for large data (genome wide).
I Need to deal with unobserved biochemical species (TFs).
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Computational Biology vs Computational Systems Biology
Broadly Speaking: Two approaches to modeling

data-modeling mechanistic-modeling

let the data “speak” impose physical laws

computational models systems models

adaptive models differential equations
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Figure: Computational biology vs systems biology.Lawrence () Multioutput BioPreDyn 19 / 75



Computational Biology vs Computational Systems Biology
Broadly Speaking: Two approaches to modeling

data-modeling mechanistic-modeling

let the data “speak”

impose physical laws

computational models systems models

adaptive models differential equations

PCA, clustering SDE, ODE models
W

ea
kl

y
M

ec
han

ist
ic

Str
ongly

M
ec

han
ist

ic

Figure: Computational biology vs systems biology.Lawrence () Multioutput BioPreDyn 19 / 75



Computational Biology vs Computational Systems Biology
Broadly Speaking: Two approaches to modeling

data-modeling mechanistic-modeling

let the data “speak” impose physical laws

computational models systems models

adaptive models differential equations

PCA, clustering SDE, ODE models
W

ea
kl

y
M

ec
han

ist
ic

Str
ongly

M
ec

han
ist

ic

Figure: Computational biology vs systems biology.Lawrence () Multioutput BioPreDyn 19 / 75



Computational Biology vs Computational Systems Biology
Broadly Speaking: Two approaches to modeling

data-modeling mechanistic-modeling

let the data “speak” impose physical laws

computational models

systems models

adaptive models differential equations

PCA, clustering SDE, ODE models
W

ea
kl

y
M

ec
han

ist
ic

Str
ongly

M
ec

han
ist

ic

Figure: Computational biology vs systems biology.Lawrence () Multioutput BioPreDyn 19 / 75



Computational Biology vs Computational Systems Biology
Broadly Speaking: Two approaches to modeling

data-modeling mechanistic-modeling

let the data “speak” impose physical laws

computational models systems models

adaptive models differential equations

PCA, clustering SDE, ODE models
W

ea
kl

y
M

ec
han

ist
ic

Str
ongly

M
ec

han
ist

ic

Figure: Computational biology vs systems biology.Lawrence () Multioutput BioPreDyn 19 / 75



Computational Biology vs Computational Systems Biology
Broadly Speaking: Two approaches to modeling

data-modeling mechanistic-modeling

let the data “speak” impose physical laws

computational models systems models

adaptive models

differential equations

PCA, clustering SDE, ODE models
W

ea
kl

y
M

ec
han

ist
ic

Str
ongly

M
ec

han
ist

ic

Figure: Computational biology vs systems biology.Lawrence () Multioutput BioPreDyn 19 / 75



Computational Biology vs Computational Systems Biology
Broadly Speaking: Two approaches to modeling

data-modeling mechanistic-modeling

let the data “speak” impose physical laws

computational models systems models

adaptive models differential equations

PCA, clustering SDE, ODE models
W

ea
kl

y
M

ec
han

ist
ic

Str
ongly

M
ec

han
ist

ic

Figure: Computational biology vs systems biology.Lawrence () Multioutput BioPreDyn 19 / 75



Computational Biology vs Computational Systems Biology
Broadly Speaking: Two approaches to modeling

data-modeling mechanistic-modeling

let the data “speak” impose physical laws

computational models systems models

adaptive models differential equations

PCA, clustering

SDE, ODE models
W

ea
kl

y
M

ec
han

ist
ic

Str
ongly

M
ec

han
ist

ic

Figure: Computational biology vs systems biology.Lawrence () Multioutput BioPreDyn 19 / 75



Computational Biology vs Computational Systems Biology
Broadly Speaking: Two approaches to modeling

data-modeling mechanistic-modeling

let the data “speak” impose physical laws

computational models systems models

adaptive models differential equations

PCA, clustering SDE, ODE models

W
ea

kl
y

M
ec

han
ist

ic

Str
ongly

M
ec

han
ist

ic

Figure: Computational biology vs systems biology.Lawrence () Multioutput BioPreDyn 19 / 75



Computational Biology vs Computational Systems Biology
Broadly Speaking: Two approaches to modeling

data-modeling mechanistic-modeling

let the data “speak” impose physical laws

computational models systems models

adaptive models differential equations

PCA, clustering SDE, ODE models
W

ea
kl

y
M

ec
han

ist
ic

Str
ongly

M
ec

han
ist

ic

Figure: Computational biology vs systems biology.Lawrence () Multioutput BioPreDyn 19 / 75



Computational Biology vs Computational Systems Biology
Broadly Speaking: Two approaches to modeling

data-modeling mechanistic-modeling

let the data “speak” impose physical laws

computational models systems models

adaptive models differential equations

PCA, clustering SDE, ODE models
W

ea
kl

y
M

ec
han

ist
ic

Str
ongly

M
ec

han
ist

ic

Figure: Computational biology vs systems biology.Lawrence () Multioutput BioPreDyn 19 / 75



A Hybrid Approach
Introduce aspects of systems biology to computational models

We advocate an approach between systems and computational
biology.

Introduce aspects of systems biology to the computational approach.
I There is a computational penalty, but it may be worth paying.
I Ideally there should be a smooth transition from pure computational

(PCA, clustering, SVM classification) to systems (non-linear
(stochastic) differential equations).

I This work is one part of that transition.
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Radiation Damage in the Cell

Radiation can damages molecules including DNA.

Most DNA damage is quickly repaired—single strand breaks,
backbone break.

Double strand breaks are more serious—a complete disconnect along
the chromosome.

Cell cycle stages:

I G1: Cell is not dividing.
I G2: Cell is preparing for meitosis, chromosomes have divided.
I S: Cell is undergoing meitosis (DNA synthesis).

Main problem is in G1. In G2 there are two copies of the chromosome.
In G1 only one copy.
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p53 “Guardian of the Cell”

Responsible for Repairing DNA damage

Activates DNA Repair proteins

Pauses the Cell Cycle (prevents replication of damage DNA)

Initiates apoptosis (cell death) in the case where damage can’t be
repaired.

Large scale feeback loop with NF-κB.
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p53 DNA Damage Repair

Figure: p53. Left unbound, Right bound to DNA. Images by David S. Goodsell
from http://www.rcsb.org/ (see the“Molecule of the Month” feature).
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p53

Figure: Repair of DNA damage by p53. Image from ?.
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Some p53 Targets

DDB2 DNA Damage Specific DNA Binding Protein 2. (also
governed by C/ EBP-beta, E2F1, E2F3,...).

p21 Cycline-dependent kinase inhibitor 1A (CDKN1A). A
regulator of cell cycle progression. (also governed by
SREBP-1a, Sp1, Sp3,... ).

hPA26/SESN1 sestrin 1 Cell Cycle arrest.

BIK BCL2-interacting killer. Induces cell death (apoptosis)

TNFRSF10b tumor necrosis factor receptor superfamily, member 10b. A
transducer of apoptosis signals.
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Modelling Assumption

Assume p53 affects targets as a single input module network motif
(SIM).

p53

p21

DDB2

PA26

BIK

TNFRSF10b

Figure: p53 SIM network motif as modelled by ?.
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Standard Approach
Clustering of Gene Expression Profiles

Assume that coregulated genes will cluster in the same groups.

Perform clustering, and look for clusters containing target genes.

These are candidates, look for confirmation in the literature etc.
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Mathematical Model

Genome Biology 2006, 7:R25
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p53 target prediction<p>Hidden Variable Dynamic Modelling is a new approach to microarray analysis that quantitatively predicts the regulation of gene activ-ity.</p>

Abstract

Full exploitation of microarray data requires hidden information that cannot be extracted using
current analysis methodologies. We present a new approach, hidden variable dynamic modeling
(HVDM), which derives the hidden profile of a transcription factor from time series microarray
data, and generates a ranked list of predicted targets. We applied HVDM to the p53 network,
validating predictions experimentally using small interfering RNA. HVDM can be applied in many
systems biology contexts to predict regulation of gene activity quantitatively.

Background
In order to understand how gene networks function, it is nec-
essary to identify their components and to quantitatively
describe how they relate to one another [1-3]. Subsequent
prediction of gene network behavior requires identification of
important parameters and variables, and estimation or meas-
urement of their values during a response [4-6].

Experimental approaches can be applied to identify network
components. For example, protein binding arrays and chro-
mosome immunoprecipitation can be applied to identify
transcription factor (TF)-binding sites and therefore infer TF
targets [7-10]. However, these approaches give a static view of
the system. Binding sites identified in vitro may not be avail-
able in vivo, and different regulators may be active in differ-
ent cellular systems. Furthermore, purely experimental
approaches cannot predict in a quantitative manner, and with
statistical confidence, the dynamics of network activity with-

out making an impractical number of experimental observa-
tions [11].

Insight into the dynamic relationships present in a transcrip-
tional response can be gained by running time series of
microarrays [3,11,12]. Currently, analysis of this type of
datum chiefly relies on clustering or correlation methods. The
assumption is that groups of genes with similar expression
profiles over time are likely to be regulated by the same TF.
Although clustering approaches have been applied with some
success, they are limited and inaccurate. Genes with different
profiles may still be regulated by the same TF, and many
genes included in clusters may be regulated by other factors.
Clustering approaches typically do not generate confidence
statistics about the validity of individual predictions, and
therefore they can neither rank candidates nor distinguish
between true and false targets.
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Mathematical Model

Differential equation model of system.

dmj (t)

dt
= bj + sjp (t)− djmj (t)

djmj (t) +
dmj (t)

dt
= bj + sjp (t)

rate of mRNA transcription, baseline transcription rate, transcription
factor activity, mRNA decay

We have observations of mj (t) from gene expression.

Reorder differential equation.

An estimate of
dmj (t)

dt is obtained through fitting polynomials.

Jointly estimate p (t) at observations of time points along with
{bj , dj , sj}gj=1.

Fit parameters by maximum likelihood or MCMC sampling.
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Mathematical Model

Clustering model is equivalent to assuming dj , bj , and sj are v. large.

dmj (t)

dt
= bj + sjp (t)− djmj (t)

djmj (t) ≈ bj + sjp (t)

rate of mRNA transcription, baseline transcription rate, transcription
factor activity, mRNA decay

We have observations of mj (t) from gene expression.

Reorder differential equation and ignore gradient term.

This suggests genes are scaled and offset versions of the TF.

By normalizing data and clustering we hope to find those TFs.
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Response of p53

Figure: Results from ?. Top is parameter estimates. Bottom is inferred profile.
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Response to p53 ...

Figure: Results from ?. Activity profile of p53 was measured by Western blot to
determine the levels of ser-15 phosphorylated p53 (ser15P-p53).
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Example: Transcriptional Regulation

First Order Differential Equation

dmj (t)

dt
= bj + sjp (t)− djmj (t)

It turns out that our Gaussian process assumption for p(t), implies
m(t) is also a Gaussian process.

The new Gaussian process is over p(t) and all its targets:
m1(t),m2(t), ... etc.

Our new covariance matrix gives correlations between all these
functions.

This gives us a probabilistic model for transcriptional regulation.
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Covariance for Transcription Model
RBF covariance function for p (t)

mi (t) =
bi
di

+ si exp (−di t)

∫ t

0
p (u) exp (diu) du.

Joint distribution
for m1 (t), m2 (t),
m3 (t), and p (t).

Here:
d1 s1 d2 s2 d3 s3

5 5 1 1 0.5 0.5

p(t) m1(t) m2(t) m3(t)

p(t)

m1(t)

m2(t)

m3(t)
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Joint Sampling of f (t) and x (t)

simSample
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Figure: Joint samples from the ODE covariance, black: p (t), red: m1 (t)
(high decay/sensitivity), green: m2 (t) (medium decay/sensitivity) and blue:
m3 (t) (low decay/sensitivity).
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Artificial Example: Inferring p(t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
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4
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8

True “gene profiles” and noisy
observations.

0 5 10 15
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−1
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1
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3

4

Inferred transcription factor
activity.
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Gene Expression Example

TIGRE Bioconductor package.

http://www.bioconductor.org/packages/2.6/bioc/html/

tigre.html (Antti Honkela is the maintainer).
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Gaussian process modelling of latent chemical species:
applications to inferring transcription factor activities
Pei Gao1, Antti Honkela2, Magnus Rattray1 and Neil D. Lawrence1,∗
1School of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manchester, M13 9PL and
2Adaptive Informatics Research Centre, Helsinki University of Technology, PO Box 5400, FI-02015 TKK, Finland

ABSTRACT

Motivation: Inference of latent chemical species in biochemical
interaction networks is a key problem in estimation of the structure
and parameters of the genetic, metabolic and protein interaction
networks that underpin all biological processes. We present a
framework for Bayesian marginalization of these latent chemical
species through Gaussian process priors.
Results: We demonstrate our general approach on three different
biological examples of single input motifs, including both activation
and repression of transcription. We focus in particular on the problem
of inferring transcription factor activity when the concentration
of active protein cannot easily be measured. We show how the
uncertainty in the inferred transcription factor activity can be
integrated out in order to derive a likelihood function that can
be used for the estimation of regulatory model parameters. An
advantage of our approach is that we avoid the use of a coarse-
grained discretization of continuous time functions, which would lead
to a large number of additional parameters to be estimated. We
develop exact (for linear regulation) and approximate (for non-linear
regulation) inference schemes, which are much more efficient than
competing sampling-based schemes and therefore provide us with
a practical toolkit for model-based inference.
Availability: The software and data for recreating all the experiments
in this paper is available in MATLAB from http://www.cs.man.
ac.uk/∼neill/gpsim.
Contact: neill@cs.man.ac.uk

1 INTRODUCTION
Ordinary differential equations (ODEs) are the most common
framework in use for modelling biological sub-systems (Alon,
2006). Well established methodologies have been developed for
estimating the parameters of these equations in the context of a
particular experiment or set of experiments, using e.g. least squares
and maximum likelihood combined with an appropriate optimization
algorithm (Mendes and Kell, 1998). More recently, significant
progress has been made on Bayesian parameter estimation in the
context of ODEs (Coleman and Block, 2006). Through the use
of advanced Monte Carlo techniques it is even possible to, given
a specific data set, rank model structures through the use of
Bayes factors (Vyshemirsky and Girolami, 2008). This shows the
potential for ODE models to be closely integrated with biological
investigations, informing the process of biological experimental
design.

∗
To whom correspondence should be addressed.

A challenging problem for parameter estimation in ODE models
occurs where one or more chemical species influencing the dynamics
are controlled outside of the sub-system being modelled. For
example, a signalling pathway can be triggered by a signal external
to the pathway itself. In a regulatory sub-system, one or more
transcription factors (TFs) may influence the expression of a
set of target genes, but these TFs may not be regulated at the
transcriptional level, instead being activated by another sub-system
such as a signalling pathway. Similarly, in a metabolic pathway
external metabolites and enzymes will influence the dynamics of
the pathway. If these external chemical species have a constant
influence, e.g. as in the case of steady state behaviour of a
metabolic pathway, then they can simply be treated as additional
parameters of the model and their effect can be estimated along
with the other model parameters. However, more often these
external factors are time-varying quantities. In this case, they are
functional parameters and cannot be estimated by the standard
methods discussed above. One approach for dealing with this is to
discretize in time, treating the time-varying function as a sequence of
discrete parameters. However, this leaves the problem of choosing
the correct granularity for the discretization and either ignoring
temporal continuity, or assuming a simple Markovian relationship
and thereby introducing further parameters and assumptions. Here,
we propose an alternative approach. We deal with these parameters
as continuous functions of time, avoiding the need for arbitrary
discretization.

To further compound the problem of dealing with the time-varying
effects of these chemical species, their concentration is often not
directly observable and their dynamics must therefore be inferred
indirectly according to their influence on measured elements of the
system. This is a common problem and it is a natural consequence
of the fact that some quantities are relatively easy to measure
in a high throughput manner (e.g. mRNA concentrations with a
microarray), whereas others are much more difficult to measure
(e.g. the concentration of TFs located in the nucleus). In this article,
we advocate the use of Gaussian processes (GPs) to define prior
distributions over these latent chemical species. This allows us to
marginalize their contributions in the interaction network of interest.
We present a basic toolkit of algorithms based on GPs which allow
us to consider different response models (Michaelis Menten kinetics,
repression responses) and cascades of interactions in which chemical
species of interest are missing. The application domain we consider
is inference of TF activity in both developmental and signalling
networks.

Inference of TF activity in a given network is a well studied
problem with both genome wide approaches (Liao et al., 2003;
Sanguinetti et al., 2006a,b) and algorithms designed for a subset
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p53 Results with GP
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Ranking with ERK Signalling

Target Ranking for Elk-1.

Elk-1 is phosphorylated by ERK from the EGF signalling pathway.

Predict concentration of Elk-1 from known targets.

Rank other targets of Elk-1.
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Elk-1 (MLP covariance)
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Elk-1 target selection

Fitted model used to rank potential targets of Elk-1
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Outline

1 Markov Process

2 Cascade Differential Equations

3 Multiple Transcription Factors

4 Discussion and Future Work
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Cascaded Differential Equations

Model-based method for transcription factor
target identification with limited data
Antti Honkelaa,1, Charles Girardotb, E. Hilary Gustafsonb, Ya-Hsin Liub, Eileen E. M. Furlongb,
Neil D. Lawrencec,1, and Magnus Rattrayc,1

aDepartment of Information and Computer Science, Aalto University School of Science and Technology, Helsinki, Finland; bGenome Biology Unit,
European Molecular Biology Laboratory, Heidelberg, Germany; and cSchool of Computer Science, University of Manchester, Manchester, United Kingdom

Edited by David Baker, University of Washington, Seattle, WA, and approved March 3, 2010 (received for review December 10, 2009)

We present a computational method for identifying potential tar-
gets of a transcription factor (TF) using wild-type gene expression
time series data. For each putative target gene we fit a simple dif-
ferential equation model of transcriptional regulation, and the
model likelihood serves as a score to rank targets. The expression
profile of the TF is modeled as a sample from a Gaussian process
prior distribution that is integrated out using a nonparametric
Bayesian procedure. This results in a parsimonious model with re-
latively few parameters that can be applied to short time series da-
tasets without noticeable overfitting. We assess our method using
genome-wide chromatin immunoprecipitation (ChIP-chip) and loss-
of-function mutant expression data for two TFs, Twist, and Mef2,
controlling mesoderm development in Drosophila. Lists of top-
ranked genes identified by our method are significantly enriched
for genes close to bound regions identified in the ChIP-chip data
and for genes that are differentially expressed in loss-of-function
mutants. Targets of Twist display diverse expression profiles, and in
this case a model-based approach performs significantly better
than scoring based on correlation with TF expression. Our ap-
proach is found to be comparable or superior to ranking based on
mutant differential expression scores. Also, we show how integrat-
ing complementary wild-type spatial expression data can further
improve target ranking performance.

Bayesian inference ∣ Gaussian process inference ∣ gene regulation ∣
gene regulatory network ∣ systems biology

Transcription factors are key nodes in the gene regulatory net-
works that determine the function and fate of cells. An impor-

tant first step in uncovering a gene regulatory network is the
identification of target genes regulated by a specific transcription
factor (TF). A common approach to this problem is to experi-
mentally locate physical binding of TF proteins to the DNA
sequence in vivo using a genome-wide chromatin immunopreci-
pitation (ChIP) experiment (1, 2). However, recent studies sug-
gest that many observed binding events are neutral and do not
regulate transcription, while regulatory binding events often oc-
cur at enhancers that are not proximal to the target gene that they
control (3, 4). Therefore, the task of identifying transcriptional
targets requires the integration of ChIP binding predictions with
evidence from expression data to help associate binding events
with target gene regulation. If there is access to expression data
from a mutant in which the TF has been knocked out or overex-
pressed, then differential expression of genes between wild type
and mutant is indicative of a potential regulatory interaction (5,
6). Available spatial expression data for the TF and the putative
target can also provide support for a hypothesized regulatory link.

A problem with the above approach is that the creation of mu-
tant strains is challenging or impossible for many TFs of interest.
Even when available, mutants may provide very limited informa-
tion because of redundancy or due to the confounding of signal
from indirect regulatory feedback (7). For these reasons it is use-
ful to seek other sources of evidence to complement ChIP bind-
ing predictions. In this contribution we demonstrate how a
dynamical model of wild-type transcriptional regulation can be

used for genome-wide scoring of putative target genes. All that
is required to apply our method is wild-type time series data col-
lected over a period where TF activity is changing. Our approach
allows for complementary evidence from expression data to be
integrated with ChIP binding data for a specific TF without carry-
ing out TF perturbations.

To score putative targets we use the data likelihood under a
simple cascaded differential equation model of transcriptional
regulation. The regulation model we apply is “open” in the sense
that we do not explicitly model regulation of the TF itself. To deal
with this technical issue we use a recently developed nonpara-
metric probabilistic inference methodology to effectively deal
with open differential equation systems (8). We model the TF
concentration as a function drawn from a Gaussian process prior
distribution (9, 10). This functional prior can either be placed on
the TF mRNA, for TFs primarily under transcriptional regula-
tion, or the TF protein, for TFs activated posttranslationally.
In the application considered here the TFs are transcriptionally
regulated, and we take the former approach. We use Bayesian
marginalization (also known as Bayesian model averaging) to
integrate out these functional degrees of freedom. This greatly
reduces the number of parameters required to model the data,
making a likelihood-based approach feasible even for short
time series.

There are many existing approaches to inferring gene regula-
tory networks from time series expression data, including dy-
namic Bayesian networks, information theoretic approaches,
and differential equation approaches (reviewed in ref. 11). These
methods typically require many more data from a greater diver-
sity of experimental conditions than are available from the short
unperturbed wild-type time series that we consider. Indeed, most
real gene expression time course data are short relative to the
simulated data used to assess computational methods for network
inference (12). However, our goal is more limited in scope since
we are primarily interested in providing additional support for
hypothesized targets of a specific TF. Again, most approaches
to this problem are designed for data containing large numbers
of diverse conditions, as exemplified by the DREAM 2 (Dialogue
for Reverse Engineering Assessments and Methods 2) target
identification challenge 1 (13). Others have addressed this target
identification problem using time series data with a regulation
model (14, 15). However, these approaches either require a
known target set for training (14) or they require measured TF
protein data (15). In addition to these differences in the assumed
prior knowledge and available data, it is also difficult to validate

Author contributions: A.H., E.E.M.F., N.D.L., and M.R. designed research; A.H., C.G.,
E.H.G., and Y.-H.L. performed research; A.H. contributed new reagents/analytic tools;
A.H., N.D.L., and M.R. analyzed data; and A.H. and M.R. wrote the paper.

The authors declare no conflict of interest.
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1To whom correspondencemay be addressed. E-mail: antti.honkela@tkk.fi, neil.lawrence@
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0914285107/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.0914285107 PNAS Early Edition ∣ 1 of 6

CO
M
PU

TE
R
SC

IE
N
CE

S
CE

LL
BI
O
LO

G
Y

Lawrence () Multioutput BioPreDyn 44 / 75



Cascaded Differential Equations

(?)

Transcription factor protein also has governing mRNA.

This mRNA can be measured.

In signalling systems this measurement can be misleading because it is
activated (phosphorylated) transcription factor that counts.

In development phosphorylation plays less of a role.
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Drosophila Mesoderm Development

Collaboration with Furlong Lab in EMBL Heidelberg.

Mesoderm development in Drosophila melanogaster (fruit fly).

Mesoderm forms in triplobastic animals (along with ectoderm and
endoderm). Mesoderm develops into muscles, and circulatory system.

The transcription factor Twist initiates Drosophila mesoderm
development, resulting in the formation of heart, somatic muscle, and
other cell types.

Wildtype microarray experiments publicly available.

Can we use the cascade model to predict viable targets of Twist?
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Cascaded Differential Equations

(?)

We take the production rate of active transcription factor to be given by

dp (t)

dt
= σf (t)− δp (t)

dmj (t)

dt
= bj + sjp (t)− djmj (t)

The solution for p(t), setting transient terms to zero, is

p(t) = σ exp (−δt)

∫ t

0
f (u) exp (δu) du .

Lawrence () Multioutput BioPreDyn 47 / 75



Covariance for Translation/Transcription Model
RBF covariance function for f (t)

p (t) = σ exp (−δt)

∫ t

0

f (u) exp (δu) du

mi (t) =
bi
di

+ si exp (−di t)

∫ t

0

p (u) exp (diu) du.

Joint distribution
for m1 (t), m2 (t),
p (t) and f (t).

Here:
δ d1 s1 d2 s2

1 5 5 0.5 0.5

f (t) p(t) m1(t) m2(t)

f (t)

p(t)

m1(t)

m2(t)

Lawrence () Multioutput BioPreDyn 48 / 75



Joint Sampling of f (t), p (t), and m (t)
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Figure: Joint samples from the ODE covariance, blue: f (t) (mRNA of TF),
black: p (t) (TF concentration), red: m1 (t) (high decay target) and green:
m2 (t) (low decay target)
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Twist Results

Use mRNA of Twist as driving input.

For each gene build a cascade model that forces Twist to be the only
TF.

Compare fit of this model to a baseline (e.g. similar model but
sensitivity zero).

Rank according to the likelihood above the baseline.

Compare with correlation, knockouts and time series network
identification (TSNI) (?).
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Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn0002526.
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Results for Twi using the Cascade model

2 4 6 8 10 12
−1

0

1

2

3

4

5

6
Inferred twi protein

2 4 6 8 10 12
−1

0

1

2

3

4
Driving Input

2 4 6 8 10 12
−1

0

1

2

3

4
FBgn0011206

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

delta 0.0543985
sigma 1

D 0.0502381
S 0.0823117
B 0.000447727

Figure: Model for flybase gene identity FBgn0011206.
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Evaluation methods

Evaluate the ranking methods by taking a number of top-ranked
targets and record the number of “positives” (?):

I targets with ChIP-chip binding sites within 2 kb of gene
I (targets differentially expressed in TF knock-outs)

Compare against
I Ranking by correlation of expression profiles
I Ranking by q-value of differential expression in knock-outs

Optionally focus on genes with annotated expression in tissues of
interest
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Results
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Summary

Cascade models allow genomewide analysis of potential targets given
only expression data.

Once a set of potential candidate targets have been identified, they
can be modelled in a more complex manner.

We don’t have ground truth, but evidence indicates that the approach
can perform as well as knockouts.
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A “middle-out” approach for inferring regulatory networks

Task: find targets of a small number of co-regulating transcription factors
(TFs) from time-series expression data:

Stage 1: Sub-network training (∼100 targets):

I Fit regulation model on sub-network of known structure
I Infer TF protein concentration functions

Stage 2: Genome-wide scanning:

I Fit alternative regulation models to all potential targets
I Score models and identify well supported TF-target links

Challenges:

I Fitting and scoring >10000 models
I Not all regulation is modelled: an open system
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A “middle-out” approach for inferring regulatory networks
Training stage: Parameter estimation on known network

mRNA (observed with noise)

(a): Training phase

TF protein (unobserved)

Translation

Transcriptional regulation

(b): Prediction phase

Scanning stage: Bayesian evidence model scoring for target inference
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A “middle-out” approach for inferring regulatory networks

Training stage with post-translational modification

mRNA – observed with noise

TF protein ‐ unobserved

Transcriptional regulation

Scanning stage: Bayesian evidence model scoring for target inference
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Model of transcriptional regulation

Transcription

dmj(t)

dt
= F (p1(t), . . . , pK (t);θj)− djmj(t)

mj(t) – target gene j mRNA concentration function
pi (t) – transcription factor i protein concentration function
F (p;θj) – regulation model, dj – mRNA decay rate

Translation (optional)

dpi (t)

dt
= fi (t)− δipi (t)

fi (t) – transcription factor i mRNA concentration function
δi – protein decay rate
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Gaussian process inference over latent functions

Transcription factors considered inputs to the system

Modelled as samples from a Gaussian process prior distribution

Equations linear in m(t) can be solved as a function of p(t)
so no need for numerical ODE solver to compute likelihood

Useful way to close an open system

Can ignore TF mRNA data and treat p(t) as latent function

Bayesian MCMC used to infer p(t) and all model parameters

????
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Artificial data: one experimental condition

Ground Truth TFs
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Artificial data: two experimental conditions

True TFs condition 1 True TFs condition 2
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Artificial data: two experimental conditions
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Artificial data: scanning performance for each TF
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Artificial data: scanning performance for all TFs

0 0.5 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Any

 

 

Cond 1
AUC=0.60
Cond 2
AUC=0.66
Cond 1 & 2
AUC=0.77

Lawrence () Multioutput BioPreDyn 66 / 75



Drosophila training

Sub-network of 96 genes targeted by 5 TFs during Drosophila
mesoderm development (?).

Data: wild-type times series, 3 replicates (?).
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Drosophila scanning: model ranking

Rank target gene regulation models by their posterior probability
across all 25 = 32 possible models

Validate predicted links by enrichment for genes within 2kb of
ChIP-chip TF binding predictions from ?.
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Coregulated Target Example
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A highly ranked putative joint target of BAP amd MEF2. The candidate
gene is confirmed as a joint target by independent ChIP-chip studies ?.
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Drosophila scanning: link ranking

TF-target link and link-pair ranking according to posterior probability
of particular single TF or double TF regulations

Validate predicted links by enrichment for genes within 2kb of
ChIP-chip TF binding predictions from ?.
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Summary and Conclusion

Middle-out approach: sub-network training followed by genome-wide
scanning

Training: Bayesian inference of regulation model parameters and TF
protein concentration functions

Scanning: Bayesian model scoring for inferring TF-target link
probabilities

More informative conditions → better performance

Robust to existence of some unknown regulating TFs

Significant enrichment of inferred TF-target links for nearby
ChIP-chip binding in drosophila development example
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Discussion and Future Work

Integration of probabilistic inference with mechanistic models.

Software available through bioconductor (TIGRE Package) http:

//bioconductor.org/packages/2.6/bioc/html/tigre.html.

Applications in modeling gene expression.

Cascade model introduces model of translation.

Ongoing/other work:
I Non linear response and non linear differential equations.
I Improving computational complexity.
I Stochastic differential equations.
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