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Simple Markov Chain

@ Assume 1-d latent state, a vector over time, x = [x1 ... xT].
o Markov property,

Xi =Xj-1 + €,

ei ~N (0, )

= x; ~N (xi—1, @)
@ Initial state,
Xp ~~ N (0, ao)

e If xg ~ N (0,a) we have a Markov chain for the latent states.
@ Markov chain it is specified by an initial distribution (Gaussian) and a

transition distribution (Gaussian).
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Gauss Markov Chain

X():O, G/NN(O,].)

xo = 0.000, ¢ = —2.24
x1 = 0.000 — 2.24 = —2.24
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Gauss Markov Chain

X():O, G/NN(O,].)

X1 = —2.24, € = 0.457
xp = —2.24 + 0.457 = —1.78
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Gauss Markov Chain

X():O, G/NN(O,].)

Xp = —1.78, €3 = 0.178
x3=—178+0.178 = —1.6
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Gauss Markov Chain

X():O, G/NN(O,].)

x3=—16, e =—0.292
xs = —1.6—0.292 = —1.89
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Gauss Markov Chain

X():O, G/NN(O,].)

X4 = —1.89, €5 = —0.501
x5 = —1.89 — 0.501 = —2.39
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Gauss Markov Chain

X():O, G/NN(O,].)

xs = —2.39, € =132
X6 = —2.39 +1.32 = —1.08
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Gauss Markov Chain

X():O, G/NN(O,].)

X6 — —1.08, €7 = 0.989
x7 = —1.08 + 0.989 = —0.0881
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Gauss Markov Chain

X():O, G/NN(O,].)

X7 = —00881, €g — —0.842
xg = —0.0881 — 0.842 = —0.93
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Gauss Markov Chain

X():O, G/NN(O,].)

xg = —0.93, €9 = —0.41
xo = —0.93 — 0.410 = —1.34
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Multivariate Gaussian Properties: Reminder

If
z NN(”vc)
and
x=Wz+b
then
x ~ N (wu + b,wch)
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Multivariate Gaussian Properties: Reminder

Simplified: If

z ~ N (0,0°1)
and
x =Wz
then
x ~ N (0, 0—2wa)
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Matrix Representation of Latent Variables
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Matrix Representation of Latent Variables

X1
X3
X

X5
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Matrix Representation of Latent Variables

X1
X2
X

X5
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Matrix Representation of Latent Variables

X1
X2
X3

X5
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Matrix Representation of Latent Variables

X1
X2
X3

X

Lawrence ()

I i
= = = O
== = o o

== O O O

O O O O

€2
€3
€4

€5

X5 = €1 + €0+ €3+ €4 + €5

Multioutput

BioPreDyn

9/75



Matrix Representation of Latent Variables
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Multivariate Process

@ Since x is linearly related to € we know x is a Gaussian process.

@ Trick: we only need to compute the mean and covariance of x to
determine that Gaussian.

Lawrence () Multioutput BioPreDyn 10 / 75



Latent Process Mean

X=L1€
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Latent Process Mean

<X> = |.10
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Latent Process Mean
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Latent Process Covariance

xx' = Ljee'L;

x =e'L’
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Latent Process Covariance

<xxT> = <LleeTL1T>
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Latent Process Covariance

<xxT> =L <eeT> L,
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Latent Process Covariance

<xxT> =L <eeT> L,

e ~N(0,al)
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Latent Process Covariance

<xxT> = alL;
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Latent Process

x = L€
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Latent Process

X=|.1€

e ~ N (0,al)
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Latent Process

x = L€

e ~ N (0,al)
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Latent Process

x = Lje
e ~ N (0,al)
—
x ~ N (0,aLily)
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Covariance for Latent Process ||

e Given

e~N(0,al) = e~N (O,aLlLI) .
Then

e~ N(0,Atal) = e~ N (0, AtaL1L1T> .

where At is the time interval between observations.
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Covariance for Latent Process Il

e~ N(0,altl), x~N (o, aAtLlLlT)
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Covariance for Latent Process Il

e~ N(0,altl), x~N (o, aAtLlLlT)

K = aAtL L]
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Covariance for Latent Process ||

€ ~ N (0,artl), x~N (0, aAtLlLI)

K = aAtL L]
kij = altll). ;

where 1., is a vector from the kth row of Ly: the first k elements are one,
the next T — k are zero.
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Covariance for Latent Process ||

€ ~ N (0,artl), x~N (0, aAtLlLI)

K = aAtL L]

T
k,',j = OéAﬂ:’,-';,j

where 1., is a vector from the kth row of Ly: the first k elements are one,
the next T — k are zero.

define Ati = t; so
kij = amin(t;, tj) = k(t;, tj)
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Covariance Functions

Where did this covariance matrix come from?

Markov Process

k (t,t') = amin(t, t)

@ Covariance matrix is built
using the inputs to the
function t.
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Covariance Functions

Where did this covariance matrix come from?

Markov Process

k (t,t') = amin(t, t)

@ Covariance matrix is built
using the inputs to the
function t.
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Can a Biologist Fix a Radio? ?
The Case for Systems Biology

“It is difficult to find a black cat in a dark room, especially if
there is no cat.”
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Can a Biologist Fix a Radio? ?
The Case for Systems Biology

“It is difficult to find a black cat in a dark room, especially if
there is no cat.”

@ Biological systems are immensely complicated.
@ ? argues the need for models that are quantitative.
» Such models should be predictive of biological behaviour.
» Such models need to be combined with biological data.
@ Systems biology:
» Build mechanistic models (based on biochemical knowledge) of the

system.
> l|dentify modules, submodules, and parameterize the models.
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Coregulation of Gene Expression
The Case for Computational Biology

@ Gene Expression to Transcriptional Regulation.
@ A "data exploration” problem (computational biology/bioinformatics):
» Use gene expression data to speculate on coregulated genes.
» Traditionally use clustering of gene expression profiles.
e Contrast with (computational) systems biology approach:
» Detailed mechanistic model of the system is created.
» Fit parameters of the model to data.
> Problematic for large data (genome wide).
> Need to deal with unobserved biochemical species (TFs).
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Computational Biology vs Computational Systems Biology
Broadly Speaking: Two approaches to modeling

data-modeling mechanistic-modeling
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Computational Biology vs Computational Systems Biology
Broadly Speaking: Two approaches to modeling

data-modeling

let the data “speak”
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Computational Biology vs Computational Systems Biology
Broadly Speaking: Two approaches to modeling

data-modeling

let the data “speak”
computational models
adaptive models
PCA, clustering

mechanistic-modeling

impose physical laws
systems models
differential equations
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Computational Biology vs Computational Systems Biology
Broadly Speaking: Two approaches to modeling

data-modeling

let the data “speak”
computational models
adaptive models
PCA, clustering

mechanistic-modeling

impose physical laws
systems models

differential equations

SDE, ODE models
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Computational Biology vs Computational Systems Biology
Broadly Speaking: Two approaches to modeling

data-modeling mechanistic-modeling
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Computational Biology vs Computational Systems Biology
Broadly Speaking: Two approaches to modeling

data-modeling mechan/stlc—modelmg
& ’0
let the dat@s’f"speak impose phﬂx&al laws
comput b‘OnaI models syst  models
ad@\p ive models dlfFe@%tlaI equations
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A Hybrid Approach

Introduce aspects of systems biology to computational models

@ We advocate an approach between systems and computational
biology.
@ Introduce aspects of systems biology to the computational approach.

» There is a computational penalty, but it may be worth paying.

> Ideally there should be a smooth transition from pure computational
(PCA, clustering, SVM classification) to systems (non-linear
(stochastic) differential equations).

» This work is one part of that transition.
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Radiation Damage in the Cell

Radiation can damages molecules including DNA.

Most DNA damage is quickly repaired—single strand breaks,
backbone break.

@ Double strand breaks are more serious—a complete disconnect along
the chromosome.

Cell cycle stages:

» Gi: Cell is not dividing.
» Gy: Cell is preparing for meitosis, chromosomes have divided.
» S: Cell is undergoing meitosis (DNA synthesis).

Main problem is in G;. In G, there are two copies of the chromosome.
In G; only one copy.
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p53 “Guardian of the Cell”

Responsible for Repairing DNA damage

°

o Activates DNA Repair proteins

@ Pauses the Cell Cycle (prevents replication of damage DNA)
°

Initiates apoptosis (cell death) in the case where damage can't be
repaired.

Large scale feeback loop with NF-xB.
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p53 DNA Damage Repair

Figure: p53. Left unbound, Right bound to DNA. Images by David S. Goodsell
from http://www.rcsb.org/ (see the'Molecule of the Month” feature).
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http://www.rcsb.org/

p53

Figure: Repair of DNA damage by p53. Image from ?.
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Some p53 Targets

DDB2 DNA Damage Specific DNA Binding Protein 2. (also
governed by C/ EBP-beta, E2F1, E2F3,...).

p21 Cycline-dependent kinase inhibitor 1A (CDKN1A). A
regulator of cell cycle progression. (also governed by
SREBP-1a, Sp1, Sp3,... ).

hPA26/SESN1 sestrin 1 Cell Cycle arrest.
BIK BCL2-interacting killer. Induces cell death (apoptosis)

TNFRSF10b tumor necrosis factor receptor superfamily, member 10b. A
transducer of apoptosis signals.
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Modelling Assumption

@ Assume pb3 affects targets as a single input module network motif

(SIM).

TNFRSF10b

PA26

Figure: p53 SIM network motif as modelled by ?.
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Standard Approach

Clustering of Gene Expression Profiles

@ Assume that coregulated genes will cluster in the same groups.

@ Perform clustering, and look for clusters containing target genes.

@ These are candidates, look for confirmation in the literature etc.
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Mathematical Model

Ranked prediction of p53 targets using hidden variable dynamic
modeling
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Mathematical Model
o Differential equation model of system.

dm; (t)
dt

= b+ 50 (1) — dim; (1)

rate of mRNA transcription, baseline transcription rate, transcription
factor activity, mRNA decay

@ We have observations of m; (t) from gene expression.
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Mathematical Model

o Differential equation model of system.

dm; (t
c;t( ) = bj + s;p (t) — dijmj (t)
dm; (t
gm;(0)+ 5 bt (0)

rate of mRNA transcription, baseline transcription rate, transcription
factor activity, mRNA decay

@ We have observations of m; (t) from gene expression.
@ Reorder differential equation.

@ An estimate of d":ft(t) is obtained through fitting polynomials.

e Jointly estimate p () at observations of time points along with
{bj, dj, s}
o Fit parameters by maximum likelihood or MCMC sampling.
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Mathematical Model

@ Clustering model is equivalent to assuming d;, b;, and s; are v. large.

dmj (t)
dt

= bj + s;p(t) — djmj (t)

rate of mRNA transcription, baseline transcription rate, transcription
factor activity, mRNA decay

@ We have observations of m; (t) from gene expression.
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Mathematical Model

@ Clustering model is equivalent to assuming d;, b;, and s; are v. large.

rate of mRNA transcription, baseline transcription rate, transcription
factor activity, mRNA decay

@ We have observations of m; (t) from gene expression.
@ Reorder differential equation and ignore gradient term.
@ This suggests genes are scaled and offset versions of the TF.

@ By normalizing data and clustering we hope to find those TFs.
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Response of p53

(a)
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Replicate 1
Replicate 2
Replicate 3

Predicted activity

Degredation rate

A 3
RN RN
20 By
R
%

Figure: Results from ?.

Top is parameter estim
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Response to p53 ...

5GyIR(h) 0 2 4 6 8 10 12
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Figure: Results from ?. Activity profile of p53 was measured by Western blot to
determine the levels of ser-15 phosphorylated p53 (serl5P-p53).
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Example: Transcriptional Regulation

o First Order Differential Equation

dmj (t)
dt

= bj +5jp (1) — djm; (t)
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Example: Transcriptional Regulation

@ First Order Differential Equation

dmj (t)
dt

= b+ 5 (1) — dim; (2)

@ It turns out that our Gaussian process assumption for p(t), implies
m(t) is also a Gaussian process.
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Example: Transcriptional Regulation

o First Order Differential Equation
dmj (t)
S5 — by 5p () = dimy (1)
@ It turns out that our Gaussian process assumption for p(t), implies

m(t) is also a Gaussian process.

@ The new Gaussian process is over p(t) and all its targets:
my(t), mo(t), ... etc.

Our new covariance matrix gives correlations between all these
functions.
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Example: Transcriptional Regulation

o First Order Differential Equation

dmj (t)
dt

= b+ 5 (1) — dim; (2)

@ It turns out that our Gaussian process assumption for p(t), implies
m(t) is also a Gaussian process.

@ The new Gaussian process is over p(t) and all its targets:
my(t), mo(t), ... etc.

@ Our new covariance matrix gives correlations between all these
functions.

@ This gives us a probabilistic model for transcriptional regulation.
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Covariance for Transcription Model
RBF covariance function for p(t)

t
m; (t) = j +si exp(—d,-t)/0 p (u) exp (diju) du.

@ Joint distribution

N\ N\
R N N\
o Here: my(t) \

\

([ [ ][] d [ s |
[5 [ 5 1 [1]05]05]

m3(t)

p(t) m(t)  mo(t) ms(t)
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Covariance for Transcription Model
RBF covariance function for p(t)

m=b/d+> e/p p~N(0,5;) > m~N (b/d, Ze,Tz,-e,->

@ Joint distribution

N N
O NG N\

N

S

@ Here:

([ [d ][] d[s |
[5 [ 5] 1] 1]o05]05]
m3t)

p(t)  mi(t)  ma(t)  ms(t)
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Joint Sampling of f (t) and x (t)

@ simSample

14

1.2r

1tF

0.8f

0.61

0.4f

0.2r

0

-0.2 L L L L
0 1 2 3 4 5

Figure: Joint samples from the ODE covariance, black: p(t), red: my (t)
(high decay/sensitivity), green: mo (t) (medium decay/sensitivity) and blue:
ms (t) (low decay/sensitivity).
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Figure: Joint samples from the ODE covariance, black: p(t), red: my (t)
(high decay/sensitivity), green: mo (t) (medium decay/sensitivity) and blue:
ms (t) (low decay/sensitivity).
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Joint Sampling of f (t) and x (t)

@ simSample
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Figure: Joint samples from the ODE covariance, black: p(t), red: my (t)
(high decay/sensitivity), green: mo (t) (medium decay/sensitivity) and blue:
ms (t) (low decay/sensitivity).
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Artificial Example: Inferring p(t)

Inferring TF activity from artificially sampled genes.
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Gene Expression Example

o TIGRE Bioconductor package.

@ http://www.bioconductor.org/packages/2.6/bioc/html/
tigre.html (Antti Honkela is the maintainer).
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p53 Results with GP

Vol. 24 ECCB 2008, pages i70-i75
doi:10.1093/bioinformatics/btn278

Gaussian process modelling of latent chemical species:
applications to inferring transcription factor activities

Pei Gao', Antti Honkela?, Magnus Rattray' and Neil D. Lawrence™-*

1School of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manchester, M13 9PL and
2Adaptive Informatics Research Centre, Helsinki University of Technology, PO Box 5400, FI-02015 TKK, Finland

ABSTRACT A challenging problem for parameter estimation in ODE models
Motivation: Inference of latent chemical species in biochemical occurs where one or more chemical species influencing the dynamics
interaction networks is a key problem in estimation of the structure are controlled outside of the sub-system being modelled. For
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p53 Results with GP

Inferred p53 protein 4 gene TNFRSF20b mRNA gene DDB2 MRNA
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Ranking with ERK Signalling

o Target Ranking for Elk-1.

o Elk-1 is phosphorylated by ERK from the EGF signalling pathway.
@ Predict concentration of Elk-1 from known targets.

@ Rank other targets of Elk-1.
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Elk-1 (MLP covariance)
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Elk-1 target selection

Fitted model used to rank potential targets

Predicted target gene

Predicted non-target gene
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4
time (h)
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Cascaded Differential Equations

Model-based method for transcription factor
target identification with limited data

Antti Honkela*', Charles Girardot®, E. Hilary Gustafson®, Ya-Hsin Liu®, Eileen E. M. Furlong®,
Neil D. Lawrence®', and Magnus Rattray“'

“Department of Information and Computer Science, Aalto University School of Science and Technology, Helsinki, Finland; *"Genome Biology U
European Molecular Biology Laboratory, Heidelberg, Germany; and ‘School of Computer Science, University of Manchester, Manchester, Unitc

Edited by David Baker, University of Washington, Seattle, WA, and approved March 3, 2010 (received for review December 10, 2009)

We present a computational method for identifying potential tar-  used for genome-wide scoring of putative target gen
gets of a transcription factor (TF) using wild-type gene expression  is required to apply our method is wild-type time serit
time series data. For each putative target gene we fit a simple dif-  lected over a period where TF activity is changing. Ou
ferential equation model of transcriptional regulation, and the allows for complementary evidence from expression

BioPreDyn 44 /75
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Cascaded Differential Equations

(?)

@ Transcription factor protein also has governing mRNA.
@ This mRNA can be measured.

@ In signalling systems this measurement can be misleading because it is
activated (phosphorylated) transcription factor that counts.

@ In development phosphorylation plays less of a role.
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Drosophila Mesoderm Development

Collaboration with Furlong Lab in EMBL Heidelberg.

Mesoderm development in Drosophila melanogaster (fruit fly).

Mesoderm forms in triplobastic animals (along with ectoderm and
endoderm). Mesoderm develops into muscles, and circulatory system.

The transcription factor Twist initiates Drosophila mesoderm
development, resulting in the formation of heart, somatic muscle, and
other cell types.

Wildtype microarray experiments publicly available.
Can we use the cascade model to predict viable targets of Twist?
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Cascaded Differential Equations

()

We take the production rate of active transcription factor to be given by

P _ ot (1)~ op (1)

dm; (t)
dt

= bj+spp(t) — djm; (t)

The solution for p(t), setting transient terms to zero, is

p(t) = oexp(—t) /Ot f(u)exp(du)du .
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Covariance for Translation/Transcription Model
RBF covariance function for f (t)
p(£) = o exp (—ot) /t F(u) exp (5u1) du
0

. t
m; (t) = %: +si exp(—d,-t)/o p(u)exp (diu)du.

e Joint distribution f(t) \ \ \

for my (t), ma (t),

p(t) and £ (2). o0 M Ny N
@ Here:
ClarsaTaTs] " e S N

115 |5 |05]|05
s [slos[os]

f(t)  p(t) m(t)
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Joint Sampling of f (t), p(t), and m(t)

@ disimSample

1.2

L L L L
1 2 3 4 5

Figure: Joint samples from the ODE covariance, blue: f (t) (mRNA of TF),
black: p(t) (TF concentration), red: my (t) (high decay target) and green:
my (t) (low decay target)
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Joint Sampling of f (t), p(t), and m(t)
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Twist Results

@ Use mRNA of Twist as driving input.

@ For each gene build a cascade model that forces Twist to be the only
TF.

e Compare fit of this model to a baseline (e.g. similar model but
sensitivity zero).
@ Rank according to the likelihood above the baseline.

o Compare with correlation, knockouts and time series network
identification (TSNI) (?).
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Results for Twi using the Cascade model

Inferred twi protein
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Figure: Model for flybase gene identity FBgn0002526.
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Results for Twi using the Cascade model

x107° Inferred twi protein
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Figure: Model for flybase gene identity FBgn0003486.
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Results for Twi using the Cascade model

Inferred twi protein
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Figure: Model for flybase gene identity FBgn0011206.
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Results for Twi using the Cascade model

Inferred twi protein
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Figure: Model for flybase gene identity FBgn00309055.
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Results for Twi using the Cascade model

Inferred twi protein
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Figure: Model for flybase gene identity FBgn0031907.
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Results for Twi using the Cascade model

Inferred twi protein
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Figure: Model for flybase gene identity FBgn0035257.

Lawrence () Multioutput

BioPreDyn

51 /75



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0039286.
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Evaluation methods

@ Evaluate the ranking methods by taking a number of top-ranked
targets and record the number of “positives” (?):

> targets with ChlIP-chip binding sites within 2 kb of gene
» (targets differentially expressed in TF knock-outs)
@ Compare against
» Ranking by correlation of expression profiles
» Ranking by g-value of differential expression in knock-outs
@ Optionally focus on genes with annotated expression in tissues of
interest
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Results

Relative enrichment (%)
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Summary

o Cascade models allow genomewide analysis of potential targets given
only expression data.

@ Once a set of potential candidate targets have been identified, they
can be modelled in a more complex manner.

@ We don't have ground truth, but evidence indicates that the approach
can perform as well as knockouts.
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Multiple Transcription Factors
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A “middle-out” approach for inferring regulatory networks

Task: find targets of a small number of co-regulating transcription factors
(TFs) from time-series expression data:
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Task: find targets of a small number of co-regulating transcription factors
(TFs) from time-series expression data:

@ Stage 1: Sub-network training (~100 targets):

> Fit regulation model on sub-network of known structure
» Infer TF protein concentration functions
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A “middle-out” approach for inferring regulatory networks

Task: find targets of a small number of co-regulating transcription factors
(TFs) from time-series expression data:
@ Stage 1: Sub-network training (~100 targets):

> Fit regulation model on sub-network of known structure
» Infer TF protein concentration functions

@ Stage 2: Genome-wide scanning:

» Fit alternative regulation models to all potential targets
» Score models and identify well supported TF-target links

@ Challenges:

» Fitting and scoring >10000 models
> Not all regulation is modelled: an open system
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A “middle-out” approach for inferring regulatory networks
@ Training stage: Parameter estimation on known network

(a): Training phase
@ mRNA (observed with noise)

@ TF protein (unobserved)

—3) Translation
—> Transcriptional regulation

(b): Prediction phase

NARARVARY
cop ege e e
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A “middle-out” approach for inferring regulatory networks
@ Training stage: Parameter estimation on known network

(a): Training phase
@ mRNA (observed with noise)

@ TF protein (unobserved)

—3) Translation
—> Transcriptional regulation

(b): Prediction phase
Q I ) [ ] I o \:/ \I ]
[ [ I J e 00

@ Scanning stage: Bayesian evidence model scoring for target inference

e e e
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A “middle-out” approach for inferring regulatory networks

@ Training stage with post-translational modification

@ mRNA - observed with noise
. TF protein - unobserved

—> Transcriptional regulation

@ Scanning stage: Bayesian evidence model scoring for target inference

VoV VN
TN T
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Model of transcriptional regulation

@ Transcription

dm;(t)

i = F(p(®), - pc(2); ;) — djmy(2)

mj(t) — target gene j mRNA concentration function

pi(t) — transcription factor i protein concentration function
F(p; 8;) — regulation model, di — mRNA decay rate
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Model of transcriptional regulation

@ Transcription

dm;(t)
dt

= F(pu(t), ..., px(t);6;) — dim;(t)

mj(t) — target gene j mRNA concentration function
pi(t) — transcription factor i protein concentration function
F(p; 8;) — regulation model, di — mRNA decay rate

e Translation (optional)

dpi(t)
dt

= fi(t) — 0ipi(t)

fi(t) — transcription factor i mRNA concentration function
&; — protein decay rate
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Gaussian process inference over latent functions

@ Transcription factors considered inputs to the system

@ Modelled as samples from a Gaussian process prior distribution

7N
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Gaussian process inference over latent functions

@ Transcription factors considered inputs to the system
@ Modelled as samples from a Gaussian process prior distribution

e Equations linear in m(t) can be solved as a function of p(t)
so no need for numerical ODE solver to compute likelihood

@ Useful way to close an open system
e Can ignore TF mRNA data and treat p(t) as latent function
e Bayesian MCMC used to infer p(t) and all model parameters

7N
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Artificial data: one experimental condition

Ground Truth TFs

Inferred TF concentrations after training stage

o

0 10 0 10 0 10
time time time
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Artificial data: two experimental conditions

True TFs condition 1 True TFs condition 2

Inferred TF concentrations for condition 1

0 10 0 10 0 10
time time time
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Artificial data: two experimental conditions

True TFs condition 1 True TFs condition 2

Inferred TF concentrations for condition 2

0 10 0 10 0 10
time time time
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Artificial data:

True positive rate
o o o
S [ ©

o
N

10
time

scanning performance for each TF
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False positive rate
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Artificial data: scanning performance for all TFs
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Drosophila training

@ Sub-network of 96 genes targeted by 5 TFs during Drosophila

mesoderm development (?).

e Data: wild-type times series, 3 replicates (?).
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Mef2

|

2 4 6 8 10 12
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Drosophila scanning: model ranking

@ Rank target gene regulation models by their posterior probability
across all 2° = 32 possible models

o Validate predicted links by enrichment for genes within 2kb of
ChIP-chip TF binding predictions from ?.

80 100
I VIAP-32 I MAP-32
[ ML-Baseline 80 [ Baseline
__ 60 | [ Regression _ I Regression
2 I (nferelator (only for 6003 genes) 2 Uniform prior
€ Uniform prior z 60
[} [}
E 4 * * E * * M
kel PR I x S 40 [T
S ¥x Ex « H < x X x x = s
: EEE OB i * B O S
20 I 5 B o 20 xR
| | .
200 400 800 1600 3200 6003 200 400 800 1600 3200 6000
# of global top genes # of global top genes
“ T . . . .
All “non-quiet” genes All targets with in situ evidence
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Coregulated Target Example

2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12
time (h) time (h) time (h) time (h)
Tkt AA)‘N ﬂ

2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12
time (h) time (h) time (h)

(a) Only BAP (b) Only MEF2 (c) BAP & MEF2

A highly ranked putative joint target of BAP amd MEF2. The candidate
gene is confirmed as a joint target by independent ChlP-chip studies ?.
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Drosophila scanning: link ranking

@ TF-target link and link-pair ranking according to posterior probability
of particular single TF or double TF regulations

o Validate predicted links by enrichment for genes within 2kb of
ChIP-chip TF binding predictions from ?.

100 100
I Fosterior-32 I Posterior-32
80 [ Posterior-2 80 [ Posterior-4
. I Bascline . I Bascline
B Uniform prior 2 Uniform prior
= 60 x = 60
@ *X xX @
£ X xx X €
< | * X xx <
S 40 i S 40
& & PE IS - S S
PEoOGRr My fhe oE, 1
20 20 IH I H I x *Hg i Lh
hE
0 0

100 200 400 800 1600 3200 100 200 400 800 1600 3200

# of top predictions # of top predictions

TF regulation TF pair regulation
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Summary and Conclusion

o Middle-out approach: sub-network training followed by genome-wide
scanning
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Summary and Conclusion

@ Middle-out approach: sub-network training followed by genome-wide
scanning

@ Training: Bayesian inference of regulation model parameters and TF
protein concentration functions

@ Scanning: Bayesian model scoring for inferring TF-target link
probabilities

@ More informative conditions — better performance
@ Robust to existence of some unknown regulating TFs

@ Significant enrichment of inferred TF-target links for nearby
ChIP-chip binding in drosophila development example
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Outline

@ Discussion and Future Work
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Discussion and Future Work

Integration of probabilistic inference with mechanistic models.

Software available through bioconductor (TIGRE Package) http:
//bioconductor.org/packages/2.6/bioc/html/tigre.html.

Applications in modeling gene expression.
Cascade model introduces model of translation.

Ongoing/other work:

» Non linear response and non linear differential equations.
» Improving computational complexity.
» Stochastic differential equations.
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