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Can a Biologist Fix a Radio? Lazebnik (2002)

The Case for Systems Biology

“It is difficult to find a black cat in a dark room,
especially if there is no cat.”

» Biological systems are immensely complicated.
» Lazebnik argues the need for models that are quantitative.
» Such models should be predictive of biological behaviour.
» Such models need to be combined with biological data.
» Systems biology:
» Build mechanistic models (based on biochemical knowledge) of
the system.
» Identify modules, submodules, and parameterize the models.



Coregulation of Gene Expression

The Case for Computational Biology

» Gene Expression to Transcriptional Regulation.
» A “data exploration” problem (computational
biology /bioinformatics):

» Use gene expression data to speculate on coregulated genes.

» Traditionally use clustering of gene expression profiles.
» Contrast with (computational) systems biology approach:

» Detailed mechanistic model of the system is created.

Fit parameters of the model to data.

>
» Problematic for large data (genome wide).
> Need to deal with unobserved biochemical species (TFs).
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General Approach

Broadly Speaking: Two approaches to modeling

data modeling

let the data “speak”
computational models
adaptive models
PCA, clustering

mechanistic modeling

impose physical laws
systems models
differential equations
SDE, ODE models




A Hybrid Approach

Introduce aspects of systems biology to computational models

» We advocate an approach between systems and
computational biology.

» Introduce aspects of systems biology to the computational
approach.
» There is a computational penalty, but it may be worth paying.
> ldeally there should be a smooth transition from pure
computational (PCA, clustering, SVM classification) to
systems (non-linear (stochastic) differential equations).
» This work is one part of that transition.



Radiation Damage in the Cell

» Radiation can damages molecules including DNA.

» Most DNA damage is quickly repaired—single strand breaks,
backbone break.

» Double strand breaks are more serious—a complete disconnect
along the chromosome.

> Cell cycle stages:

» Gy: Cell is not dividing.
» Gy: Cell is preparing for meitosis, chromosomes have divided.
» S: Cell is undergoing meitosis (DNA synthesis).

» Main problem is in G1. In Gy there are two copies of the
chromosome. In G; only one copy.



p53 “Guardian of the Cell”

v

Responsible for Repairing DNA damage

v

Activates DNA Repair proteins

v

Pauses the Cell Cycle (prevents replication of damage DNA)

v

Initiates apoptosis (cell death) in the case where damage can't
be repaired.

v

Large scale feeback loop with NF-xB.



p53 DNA Damage Repair

Figure: p53. Left unbound, Right bound to DNA. Images by David S.
Goodsell from http://www.rcsb.org/ (see the'Molecule of the Month”
feature).


http://www.rcsb.org/

Figure: Repair of DNA damage by p53. Image from Goodsell (1999).



Some p53 Targets

DDB2 DNA Damage Specific DNA Binding Protein 2. (also
governed by C/ EBP-beta, E2F1, E2F3,...).

p21 Cycline-dependent kinase inhibitor 1A (CDKN1A). A
regulator of cell cycle progression. (also governed by
SREBP-1a, Spl, Sp3,... ).
hPA26/SESNI sestrin 1 Cell Cycle arrest.
BIK BCL2-interacting killer. Induces cell death
(apoptosis)
TNFRSF10b tumor necrosis factor receptor superfamily, member
10b. A transducer of apoptosis signals.



Modelling Assumption

> Assume pb3 affects targets as a single input module network
motif (SIM).

Figure: p53 SIM network motif as modelled by Barenco et al. 2006.



Standard Approach

Clustering of Gene Expression Profiles

> Assume that coregulated genes will cluster in the same groups.

> Perform clustering, and look for clusters containing target
genes.

» These are candidates, look for confirmation in the literature
etc.



Differential Equations



Differential Equation Overview

» What is a differential equation?
» A way of relating quantities that are rates of each other:
> X, is position.
> v, velocity is rate of change of position.
> a, acceleration is rate of change of velocity.
» Given Newton's laws (a mechanistic model) we can use
differential equations to compute, for example that:

v(0) = \/2gAx

where we neglect air resistance.

» Where Ax is the height | throw a ball. g =9.81 is the
acceleration of the earth due to gravity. v(0) is it's initial
velocity.



Ce,‘\‘ \\"\j
T\ Ball hay \ﬁ be

A.\' (\”k b\lrc-

Ul o o Difraia Gyt 7
F> Mma _ q'”
A ” JEJ’EE

' l\u.’J , alenhin

.
¥ . Mogre DL Fud




Differential Equations

» Velocity, Acceleration and Position

_dx dv  d?x

YTar T ar T ae

> All of these are functions of time. Our previous experiment
found the initial condition, v(0).

» The differential equation gives us the entire trajectory.



Entire Trajectory
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Figure: Theoretical trajectory for the ball given an initial speed of v(0).




Entire Trajectory

Figure: Actual trajectory for a motorcyclist with constant forward
motion. Photo by Geraint Warlow. Available under Creative Commons,

http://www.flickr.com/photos/gpwarlow/850611221/.
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Entire Trajectory

Ax/m

Figure: Actual trajectory for a motorcyclist with constant forward
motion. Photo by Geraint Warlow. Available under Creative Commons,

http://www.flickr.com/photos/gpwarlow/850611221/.


http://www.flickr.com/photos/gpwarlow/850611221/

» Empirically showed
objects fell in a
parabola.

» Overthrew
Aristotlean view of
motion.

Figure: Galileo Galilei in 1636



» Developed calculus

(alongside Leibniz).

» Laid the
foundations of
mechanistic
modelling with
description of
gravity.

Figure: Isaac Newton in 1689



Biological Systems

> In biological systems:

1. x(t) is now concentration of gene j, mj(t).

2. v(t) is now rate of production of gene j, dm; (t).



Biological Systems

» Instead of masses of planets and force of gravity, we now
have:

1.

concentration of governing TF, p(1),

2. decay rate of an mRNA, d,
3.
4. base rate of transcription, b;.

sensitivity to governing TF, s;,



Mathematical Model

> Differential equation model of system.

dm; (t)
dt

= bj + Sjp(t) — djmj (t)

rate of mRNA transcription, baseline transcription rate,
transcription factor activity, mRNA decay

» We have observations of mj (t) from gene expression.



Fitting Models to Data



Fitting Observations to Data

v

Back to example:
v(0) = \/2gdx
Make observation of dx.
Compute v(0).
But what if | give you two observations of dx?

v

v

v

v

Were there two different values v(0)?



Theory of Error

» This was a problem also
for celestial mechanics.

» If you have more
observations than
unknowns, which are the
right observations?

» Both Laplace and Gauss
worked on this.

Figure: Pierre Simon Laplace
1749-1827



Theory of Error

» This was a problem also
for celestial mechanics.

» If you have more
observations than
unknowns, which are the
right observations?

» Both Laplace and Gauss

y

worked on this. N

Figure: Carl Friedrich Gauss
1777-1855
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Theory of Error: Generative Model of System

» Back to example:

» This rearrangement reflects the fact that height is a result of
velocity not the other way around.

» Now add errors ...

where €; represents the error in the ith measurement of height.



» Now we have a single velocity, but need to deal with all these
errors.

2
Axj = v(0) + €
2g

» Need to introduce a probability distribution for errors.

p(xi|v(0))




Noise Model

Relates observation to actual value.

v

v

Idea: we observe a corrupted version of the truth.

v

For Laplace and Gauss a corrupted version of a planets actual
position.

v

For us a corrupted version of the balls maximum height.

v

The object that defines this relationship is a noise model.



Gaussian Density
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Figure: Gaussian density. p(e) = \/#7 exp (—%)



Gaussian Density
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Figure: Gaussian density. p(€) = \/#7 exp (—%) 20 Samples from
the Density.



The Likelihood

» This model of the error gives us a probabilistic relationship
between the velocity and the position.

» Because the position is

- vy

Xi

+ €;.

» We know that




The Likelihood I

» This allows us to go from

1 € 2
A = orgr (—(2—)>

» To the likelihood:

_v()?
o 1 (X’ 2g )
p(xilv(0)) = WGXP BT

» Which can also be written

plslv(0) = 7 (510 o?)

X[ V(0)2 ~ N ("(0)2 , 02)

or

2g



Maximum Likelihood

» Maximize the probability of the observations:

L(v(0)) = log ] [ p(i|v(0)?)

i=1

gives




Bayesian Updates

» Bayesian approach is slightly different.
» Consider product rule of probability:

p(x, v(0)?) =p(x[v(0)*)p(v(0)*)
p(v(0)%,x) =p(v(0)*|x)p(x) = p(x, v(0)?)

» Reorganize to obtain Bayes’ rule:

21y _ P(x|v(0)*)p(v(0)?)
p(V(O) |X) - ,D(X)




Bayesian Updates

» Bayesian approach is slightly different.
» Consider product rule of probability:

p(x, v(0)?) =p(x|v(0)*)p(v(0)?)
p(v(0)%,x) =p(v(0)*[x)p(x) = p(x, v(0)?)
> Reorganize to obtain Bayes’ rule:

likelihood prior

——
p(x[v(0)*)p(v(0)*)
p(x)

—~—

marginal likelihood

posterior

—
p(v(0)*|x) =




Simple Bayesian Inference

likelihood x prior

osterior = . —
P marginal likelihood

» Four components:

1.

2.

Prior distribution: represents “belief” about parameter (velocity
squared) before seeing data heights.

Likelihood: gives relation between parameter (velocity squared)
and data (heights).

Posterior distribution: represents updated belief about
parameters after data is observed.

. Marginal likelihood: represents assessment of the quality of the

model. Ratios of marginal likelihoods are known as Bayes
factors.



Example System: Update our Velocity Belief

» Our initial belief about robot position is given by p(v(0)?) this
is the prior.

> Our belief about height readings given the squared velocity is
p(xi|v(0)?).

» We combine this likelihood with our prior belief to get the
posterior: p(v(0)?|x;).

» For several position observations {x;}7_; we can apply the
formula iteratively.



Gaussian Noise
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Figure: A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.
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Figure: A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.



Gaussian Noise

0.4 - p(v(d)2|xl) .
03 | |
T 02 ]
0.1 |- |
0 ‘ !
0 5 10 15 20

v(0)?

Figure: A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.



Gaussian Noise
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Figure: A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.



Gaussian Noise
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Figure: A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.
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Figure: A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.
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Gaussian posterior.



Gaussian Noise
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Figure: A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.



Posterior Distribution Progression
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Figure: Progression of our belief about the squared velocity.



Inference in ODEs



Mathematical Model

» Differential equation model of system.

dm; (t)
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Mathematical Model

» Differential equation model of system.

dm; (t
cjt( ) - bj + sip (t) — djm; (t)
dm; (t
im; () + S5 gy 4o (0

rate of mRNA transcription, baseline transcription rate,
transcription factor activity, mRNA decay

» We have observations of mj (t) from gene expression.
» Reorder differential equation.
> An estimate of % is obtained through fitting polynomials.
» Jointly estimate p () at observations of time points along
i o\
with {bjadjasj}j:y
» Fit parameters by maximum likelihood or MCMC sampling.



Mathematical Model

» Clustering model is equivalent to assuming d;, b;, and s; are
v. large.
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Mathematical Model

» Clustering model is equivalent to assuming d;, b;, and s; are
v. large.

dm; (t)

dt
dimj (t) = bj + s;p (1)

= bj +5p(t) — djm; (t)

rate of mRNA transcription, baseline transcription rate,
transcription factor activity, mRNA decay

» We have observations of mj (t) from gene expression.
» Reorder differential equation and ignore gradient term.
» This suggests genes are scaled and offset versions of the TF.

» By normalizing data and clustering we hope to find those TFs.



Mathematical Model

Method

Ranked prediction of p53 targets using hidden variable dynamic
modeling

Martino Barenco™, Daniela Tomescu®, Daniel Brewer™, Robin Callard™,
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Response of p53
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Figure: Results from Barenco et al. (2006). Top is parameter estimates.
Bottom is inferred profile.



Respose to p53 ...
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Figure: Results from Barenco et al. (2006). Activity profile of p53 was
measured by Western blot to determine the levels of ser-15
phosphorylated p53 (serl5P-p53).



Probabilistic Model for p(t)



Two Dimensional Gaussian

v

Probability distributions can be higher dimensional.

v

Consider height, h/m and weight, w/kg.

v

Could sample height from a distribution:

p(h) ~ N (1.7,0.0225)

v

And similarly weight:

p(w) ~ N (75,36)



Height and Weight Models
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Independence Assumption

» This assumes height and weight are independent.

p(h,w) = p(h)p(w)

> In reality they are dependent (body mass index) =

w

h?"
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Correlated Gaussian

» Second Gaussian correlated.

» Form from original Gaussian by elongating one direction and
rotating.

> For rotation matrix R and scaling matrix

|4 0
=[5 2]
this gives a covariance matrix:

K = RL°RT



Gaussian Distribution

Zero mean Gaussian distribution

» A multi-variate Gaussian distribution is defined by a mean and
a covariance matrix.

N (plu, K) =

(_ (p—p) K1(p- u))
exp > .

» We will consider the special case where the mean is zero,

e ()
— 0 1Pl
(2m)2 K] 2

(27)? K|

N (p|0,K) =



Sampling a Function

Multi-variate Gaussians

» We will consider a Gaussian with a particular structure of
covariance matrix.

» Generate a single sample from this 25 dimensional Gaussian
distribution, p = [p1,p2 ... p2s].
> We will plot these points against their index.



Gaussian Distribution Sample

5 10 15 20 25

-1

(a) A 25 dimensional correlated ran- (b) colormap showing correlations
dom variable (values ploted against between dimensions
index)

Figure: A sample from a 25 dimensional Gaussian distribution.
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Covariance Function

The covariance matrix

>

Covariance matrix shows correlation between points p; and p;
if i is near to j.

Less correlation if / is distant from j.

Our ordering of points means that the function appears
smooth.

Let's focus on the joint distribution of two points from the 25.
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Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

2
N =
k(t,t)-aexp( Tz

» Covariance matrix is built
using the inputs to the
function t.

» For the example above it
was based on Euclidean
distance.

» The covariance function is
also know as a kernel.




Covariance Samples

demCovFuncSample

Figure: Exponentiated quadratic kernel with / = 0.3, « =1



Covariance Samples

demCovFuncSample
a4
o
—_— ——— ]
_2,3 %
_al ]
i’:"1 —0‘.5 O O‘.S 1

Figure: Exponentiated quadratic kernel with / =1, a =1



Covariance Samples

demCovFuncSample

Figure:  Exponentiated quadratic kernel with ¢ =0.3, a = 4



Covariance Samples

demCovFuncSample
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Figure: Linear covariance function, o = 16.



Covariance Samples

demCovFuncSample

Figure: MLP covariance function, o2 = 100, 02 = 100, « = 8.



Covariance Samples

demCovFuncSample
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Figure: MLP covariance function, o2 = 100, 02 =0, a = 8.



Covariance Samples

demCovFuncSample

-1 -0.5 0 0.5 1

Figure: Bias term, o = 4



Covariance Samples

demCovFuncSample

Figure: Exponentiated quadratic £ = 0.3, a = 1 plus bias term
with « = 1 plus white noise with o = 0.01.



Covariance Samples

demCovFuncSample

Figure: Ornstein-Uhlenbeck (stationary Gauss-Markov)
covariance function ¢ =1, oo = 4.



Gaussian Process Interpolation

demInterpolation

-2 -1 1 2
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Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).
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Gaussian Process Interpolation

demInterpolation
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Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).



Noise Models

Graph of a GP

> Relates input variables, t, ( “
to vector, m, through p Q

given kernel parameters 6.

» Plate notation indicates
independence of m;|p;.

> Noise model, p (mj|p;) i—1 n
can take several forms. N 4

» Simplest is Gaussian
noise. Figure: The Gaussian process
depicted graphically.



Gaussian Noise

» Gaussian noise model,
p(milpi) = N (mi|pi,o?)

where o2 is the variance of the noise.

» Equivalent to a covariance function of the form
2
k(t,', tJ) = 5,‘JO‘

where §; ; is the Kronecker delta function.

» Additive nature of Gaussians means we can simply add this
term to existing covariance matrices.



Gaussian Process Regression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression

Figure: Examples include WiFi localization, C14 callibration curve.
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?

N
]
o

log-likelihood
n

10°
length scale

1 TK—l
log AV (m|0, K) = —g log 21 — 5 log |K| — %



Learning Kernel Parameters

Can we determine length scales and noise levels from the data?

N
]
o

|
‘
.
A
log-likelihood
(4,
1
|
4.
\
\
b\
\
\
L4
K

. Q
-15+
_15
10" 10° 10
-2- length scale

1 TK—l
log AV (m|0, K) = —g log 21 — 5 log |K| — %



Example: Transcriptional Regulation

» First Order Differential Equation

dm; (t)
dt

= bj +5;p(t) — djm; (t)



Example: Transcriptional Regulation

» First Order Differential Equation

» It turns out that our Gaussian process assumption for p(t),
implies m(t) is also a Gaussian process.



Example: Transcriptional Regulation

» First Order Differential Equation

» It turns out that our Gaussian process assumption for p(t),
implies m(t) is also a Gaussian process.

» The new Gaussian process is over p(t) and all its targets:
ml(t), m2(t), ... etc.



Example: Transcriptional Regulation

» First Order Differential Equation
dmj (t)
(it = bj+5p (1) — djm; (1)

» It turns out that our Gaussian process assumption for p(t),
implies m(t) is also a Gaussian process.

» The new Gaussian process is over p(t) and all its targets:
ml(t), m2(t), ... etc.

» Qur new covariance matrix gives correlations between all these
functions.



Example: Transcriptional Regulation

» First Order Differential Equation
dmj (t)
c{t = bj+5p (1) — djm; (1)

» It turns out that our Gaussian process assumption for p(t),
implies m(t) is also a Gaussian process.

» The new Gaussian process is over p(t) and all its targets:
my(t), mo(t), ... etc.

» Qur new covariance matrix gives correlations between all these
functions.

» This gives us a probabilistic model for transcriptional
regulation.



Covariance for Transcription Model

RBF covariance function for p(t)

) t
m; (t) = g +si exp(—d,-t)/0 p(u)exp(dju)du

» Joint distribution p(t) \\\ \

mmOm 0 NGNN

gl d|3|m2<f>\\ N N
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Covariance for Transcription Model

RBF covariance function for p(t)

m = b/d—i—Ze,-Tp p~N(0,%) = x~N (b/d,Ze,TZ,-e,-)

» Joint distribution

nw "N
N
N

> Here: my(t)




Covariance for Transcription Model

RBF covariance function for p(t)

) t
m; (t) = g +si exp(—d,-t)/0 p(u)exp(dju)du

» Joint distribution p(t) \\\ \

mmOm 0 NGNN

gl d|3|m2<f>\\ N N
\,,(t) A AN

[ & | 2 ]
[ 515 [t ]1]o5]05]




Joint Sampling of f (t) and x (t)

> simSample

0.8

0.6

0.4

0.2

0

-0.2
0

1 2 3 4 5

Figure: Joint samples from the ODE covariance, black: p(t), red:
myq (t) (high decay/sensitivity), green: ms (t) (medium
decay/sensitivity) and blue: ms (t) (low decay/sensitivity).
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p53 Results with GP
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Gaussian process modelling of latent chemical species:
applications to inferring transcription factor activities
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ABSTRACT A challenging problem for p imation in ODE models
Motivation: Inference of latent chemical species in biochemical ~ occurs where one or more ical species i ing the dy
interaction networks is a key problem in estimation of the structure are controlled outside of the sub-system being modelled. For




p53 Results with GP

(Gao et al., 2008)

Inferred p53 protein gene TNFRSF20b mRNA gene DDB2 mMRNA

o 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12
gene BIK mRNA gene hPA26 mRNA
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Ranking with ERK Signalling

v

Target Ranking for Elk-1.

Elk-1 is phosphorylated by ERK from the EGF signalling
pathway.

v

v

Predict concentration of Elk-1 from known targets.
Rank other targets of Elk-1.

v
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Elk-1 target selection

Fitted model used to rank potential targets of Elk-1

Predicted target gene Predicted non-target gene

0 1 2 3 4 5 6 7 8 i 0 1 2 3 4 5 6 7 8
time (h) time (h)



Cascade Differential Equations



Cascaded Differential Equations

Model-based method for transcription factor
target identification with limited data

Antti Honkela>', Charles Girardot®, E. Hilary Gustafson®, Ya-Hsin Liu®, Eileen E. M. Furlong®,
Neil D. Lawrence*', and Magnus Rattray“'
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European Molecular Biology Laboratory, Heidelberg, Germany; and ‘School of Computer Science, University of Manchester, Manchester, Unite
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We present a computational method for identifying potential tar-  used for genome-wide scoring of putative target gen
gets of a transcription factor (TF) using wild-type gene expression  is required to apply our method is wild-type time seri
time series data. For each putative target gene we fit a simple dif-  lected over a period where TF activity is changing. Ou
ferential equation model of transcriptional regulation, and the allows for complementary evidence from expression




Cascaded Differential Equations

(Honkela et al., 2010)

v

Transcription factor protein also has governing mRNA.
This mRNA can be measured.
In signalling systems this measurement can be misleading

because it is activated (phosphorylated) transcription factor
that counts.

v

v

v

In development phosphorylation plays less of a role.



Drosophila Mesoderm Development

Collaboration with Furlong Lab in EMBL Heidelberg.
» Mesoderm development in Drosophila melanogaster (fruit fly).

» Mesoderm forms in triplobastic animals (along with ectoderm
and endoderm). Mesoderm develops into muscles, and
circulatory system.

» The transcription factor Twist initiates Drosophila mesoderm
development, resulting in the formation of heart, somatic
muscle, and other cell types.

» Wildtype microarray experiments publicly available.

» Can we use the cascade model to predict viable targets of
Twist?



Cascaded Differential Equations

(Honkela et al., 2010)

We take the production rate of active transcription factor to be

given by
L) oy () p (1)
WD byt sp(6) — dym (1)

The solution for p(t), setting transient terms to zero, is

p(t) = oexp(—it) /Oty(u) exp (du)du .



Covariance for Translation/Transcription Model

RBF covariance function for y (t)

p(t) = oexp(—dt) /Oty(u) exp (du)du

t
mi (1) = —l—s,-exp(—d,-t)/o p () exp (diu) du.

» Joint distribution y(8) \\ \
for my (t), my (t),
p (1) and ¥ (0). (1) \ NN
» Here:
ClarareaT=] "™ ™ N

[1]5][5]05]05]




Joint Sampling of y (t), p(t), and m(t)
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Figure: Joint samples from the ODE covariance, blue: y (t) (mRNA
of TF), black: p(t) (TF concentration), red: my (t) (high decay
target) and green: ms (t) (low decay target)
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Joint Sampling of y (t), p(t), and m(t)
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Figure: Joint samples from the ODE covariance, blue: y (t) (mRNA
of TF), black: p(t) (TF concentration), red: my (t) (high decay
target) and green: ms (t) (low decay target)



Twist Results

> Use mRNA of Twist as driving input.

» For each gene build a cascade model that forces Twist to be
the only TF.

» Compare fit of this model to a baseline (e.g. similar model
but sensitivity zero).

» Rank according to the likelihood above the baseline.

» Compare with correlation, knockouts and time series network
identification (TSNI) (Della Gatta et al., 2008).



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0002526.



Results for Twi using the Cascade model

x107° Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0003486.



Results for Twi using the Cascade model

Inferred twi protein
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Figure: Model for flybase gene identity FBgn0011206.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn00309055.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0031907.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0035257.



Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn0039286.



Evaluation methods

» Evaluate the ranking methods by taking a number of
top-ranked targets and record the number of
“positives” (Zinzen et al., 2009):

» targets with ChlIP-chip binding sites within 2 kb of gene
> (targets differentially expressed in TF knock-outs)
» Compare against
» Ranking by correlation of expression profiles
» Ranking by g-value of differential expression in knock-outs
» Optionally focus on genes with annotated expression in tissues
of interest



Relative enrichment (%)
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» Cascade models allow genomewide analysis of potential
targets given only expression data.

> Once a set of potential candidate targets have been identified,
they can be modelled in a more complex manner.

» We don't have ground truth, but evidence indicates that the
approach can perform as well as knockouts.



Discussion



Discussion and Future Work

v

Integration of probabilistic inference and mechanistic models
for ranking by likelihood.

v

Applications in modeling gene expression.

Cascade model introduces model of translation.

v

v

Challenges:
> Non linear response and non linear differential equations.
» Scaling up to larger systems.
» Stochastic differential equations.
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tigre — Transcription factor Inference through
Gaussian process Reconstruction of Expression

Now available in Bioconductor and the basis of your Lab Session.
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