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Outline

The Gaussian Density



The Gaussian Density

» Perhaps the most common probability density.

o 1 -
p(y“lla)_ Wexp 202
= N (yl, %)

» The Gaussian density.



Gaussian Density

p(hly, o?)
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h, height/m

The Gaussian PDF with u = 1.7 and variance 6> = 0.0225. Mean
shown as red line. It could represent the heights of a
population of students.



Gaussian Density

1 (y — w)?
b el 452)

o2 is the variance of the density and u is
the mean.



Two Important Gaussian Properties

Sum of Gaussians

» Sum of Gaussian variables is also Gaussian.

vi~ N (i, 0?)
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Sum of Gaussians
» Sum of Gaussian variables is also Gaussian.

i~ N (i, )

And the sum is distributed as

i]/i NN{iHh " 012]
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i=1



Two Important Gaussian Properties

Sum of Gaussians

» Sum of Gaussian variables is also Gaussian.
yi~N (IJi/ 01-2)
And the sum is distributed as
n n n
YL Lo
i=1 i=1 i=1

(Aside: As sum increases, sum of non-Gaussian, finite
variance variables is also Gaussian [central limit theorem].)
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Two Important Gaussian Properties

Scaling a Gaussian

» Scaling a Gaussian leads to a Gaussian.



Two Important Gaussian Properties

Scaling a Gaussian

» Scaling a Gaussian leads to a Gaussian.

y~N(u0?)



Two Important Gaussian Properties

Scaling a Gaussian
» Scaling a Gaussian leads to a Gaussian.
y~N(p0?)
And the scaled density is distributed as

wy ~ N(wy, wzoz)



Linear Function

2 L data points ~ x
best fit line
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x, weight in kg
A linear regression between height and weight.



Regression Examples

\4

Predict a real value, y; given some inputs x;.

\4

Predict quality of meat given spectral measurements
(Tecator data).

Radiocarbon dating, the C14 calibration curve: predict age
given quantity of C14 isotope.

v

v

Predict quality of different Go or Backgammon moves
given expert rated training data.



y=mx+c
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i y=mx+c







y = mx +c
pointl: x=1,y=3
3=m+c
point2: x =3,y =1
1=3m+c
point3: x =2,y =25
25=2m+c



y=mx+c+e

pointl: x=1,y=3
3=m+c+ €

point2: x =3,y =1
1=3m+c+e

point3: x =2,y =25

25=2m+c+e€3



Underdetermined System

What about two unknowns and
one observation?

Y1 =mxy+¢

N W &= O




Underdetermined System

Can compute m given c.

_hn-¢c
x

m

N W &= O




Underdetermined System

Can compute m given c.

c=175=m=1.25




Underdetermined System

Can compute m given c.

c=-0.777 = m = 3.78




Underdetermined System

Can compute m given c.

c=-401=m=7.01




Underdetermined System

Can compute m given c.

c=-0718 = m =372




Underdetermined System

Can compute m given c.

c =245 = m = 0.545




Underdetermined System

Can compute m given c.

c=-0.657 = m = 3.66




Underdetermined System

Can compute m given c.

c=-313—=m =6.13




Underdetermined System

Can compute m given c.

c=-147 = m =447




Underdetermined System

Can compute m given c.
Assume

c~N(0,4),

we find a distribution of solu-
tions.




Probability for Under- and Overdetermined

» To deal with overdetermined introduced probability
distribution for ‘variable’, €;.

» For underdetermined system introduced probability
distribution for “‘parameter’, c.

» This is known as a Bayesian treatment.



Multivariate Prior Distributions

v

For general Bayesian inference need multivariate priors.

v

E.g. for multivariate linear regression:

Yyi = Z WX, + €;
i

(where we’ve dropped ¢ for convenience), we need a prior
over w.

\4

This motivates a multivariate Gaussian density.

\4

We will use the multivariate Gaussian to put a prior directly
on the function (a Gaussian process).



Multivariate Prior Distributions

v

For general Bayesian inference need multivariate priors.

v

E.g. for multivariate linear regression:

Vi=W'X, +6€

(where we’ve dropped ¢ for convenience), we need a prior
over w.

\4

This motivates a multivariate Gaussian density.

\4

We will use the multivariate Gaussian to put a prior directly
on the function (a Gaussian process).



Prior Distribution

» Bayesian inference requires a prior on the parameters.
» The prior represents your belief before you see the data of
the likely value of the parameters.

» For linear regression, consider a Gaussian prior on the
intercept:
c~N(O,a1)



Gaussian Noise

2 - p(c) = N (clo, ar)

0 | | | | J
-3 2 -1 0 1 2 3 4
Figure: A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.




Gaussian Noise

2 - p(c) = N (clo, ar)

p(ylm,c, x, 0%) = N(ylmx +c, 02)

0 | | | | J
-3 2 -1 0 1 2 3 4
Figure: A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.



Gaussian Noise

2 - p(c) = N (clo, ar)

p(ylm,c, x, 0%) = N(ylmx +c, 02)

Lr p(cly, m,x,0%) =
N(clli;gzl, (072 + a{l)’])
0 ‘ \ | | |

-3 2 -1 0 1 2 3 4
Figure: A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.



Stages to Derivation of the Posterior

» Multiply likelihood by prior
» they are “exponentiated quadratics”, the answer is always
also an exponentiated quadratic because
exp(a?) exp(b?) = exp(a® + b?).
» Complete the square to get the resulting density in the
form of a Gaussian.

» Recognise the mean and (co)variance of the Gaussian. This
is the estimate of the posterior.



Multivariate Regression Likelihood

» Noise corrupted data point

Yy = WTXZ',; +€;



Multivariate Regression Likelihood

» Noise corrupted data point

Vi=W'X;; +6€

» Multivariate regression likelihood:

1 1 ¢« 2
p(ylX,w) = ———exp|-=— Yi— WX,
@roty? | 207 £ (v ‘)



Multivariate Regression Likelihood

» Noise corrupted data point

Yi= WX, + €

» Multivariate regression likelihood:

n

i=1

1 1
pylX, w) = o2y P [—@ 2 (i

» Now use a multivariate Gaussian prior:

1
p(w) = exp (——wTw
(27wz)g 2a



Two Dimensional Gaussian

» Consider height, h/m and weight, w/kg.

» Could sample height from a distribution:
p(h) ~ N (1.7,0.0225)
» And similarly weight:

p(w) ~ N (75, 36)



Height and Weight Models

p(h)
p(w)

h/m w/kg

Gaussian distributions for height and weight.



Sampling Two Dimensional Variables

Marginal Distributions

Joint Distribution
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Independence Assumption

» This assumes height and weight are independent.

p(h, w) = p(h)p(w)

> In reality they are dependent (body mass index) = ;5.
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Independent Gaussians

p(w, h) = p(w)p(h)



Independent Gaussians

p(w, h) = S S exp (—1 [(w ~ )’ + (h — p2)? )]
)= 2
2710% A\ /2710% 2 o} o

1 2



Independent Gaussians




Independent Gaussians

1 1 e
PY) = 5 P (-5 - 0Dy - )



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

p(y) = exp (—%(y —p)' DNy - y))

2r|DJ2



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

py) = — T exp (—1(RTy -R"w) D'RTy - RT#))
21 |D|? 2



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

p(y) = exp (—%(y - RD'R"(y - #))

2 |DJz

this gives a covariance matrix:

C!1=RDIR”



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

ply) = exp (—%(y —wTC iy - P))

27 |Cl2

this gives a covariance matrix:

C=RDR'



Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.

vi ~ N (i, 07)
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Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.
vi~ N (ui07)

iyi~N[iHh ” ‘712]
i=1

i=1 i=1

2. Scaling a Gaussian leads to a Gaussian.
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Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.
vi~ N (ui07)

iyi NN[in’f ” ‘712]
i=1 i=1 i=1

2. Scaling a Gaussian leads to a Gaussian.

y~N (g, 0%)

wy ~ N(wy, wzoz)



Multivariate Consequence

> If
x~N(y,Z)



Multivariate Consequence

> If

» And



Multivariate Consequence

> If
x~N(y,Z)

» And
y = Wx

» Then
y~ N (W, WEWT)



Sampling a Function

Multi-variate Gaussians

» We will consider a Gaussian with a particular structure of
covariance matrix.

» Generate a single sample from this 25 dimensional
Gaussian distribution, f = [f1, f2. .. f2s5].

» We will plot these points against their index.



Gaussian Distribution Sample
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(a) A 25 dimensior}al correlated ran-  (b) colormap ishowing correlations
dom variable (values ploted against between dimensions.
index)

Figure: A sample from a 25 dimensional Gaussian distribution.
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Gaussian Distribution Sample
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Figure: A sample from a 25 dimensional Gaussian distribution.
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Gaussian Distribution Sample
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Figure: A sample from a 25 dimensional Gaussian distribution.



J 4

Prediction of f, from f;

1 L
1 0.96587
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f

» The single contour of the Gaussian density represents the
joint distribution, p(fi, f2).
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joint distribution, p(fi, f2).

» We observe that
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» The single contour of the Gaussian density represents the
joint distribution, p(fi, f2).
» We observe that
» Conditional density: p(fa| f1 -0.313).
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Prediction of f, from f;
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» The single contour of the Gaussian density represents the
joint distribution, p(fi, f2).

» We observe that
» Conditional density: p(fa| f1 -0.313).




Prediction with Correlated Gaussians

» Prediction of f, from fi requires conditional density.

» Conditional density is also Gaussian.

K,
p(falfi) = N [le f1,k22 kll]

where covariance of joint density is given by

kip ki
K= b
[kZ,l kz,z]
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Prediction of f5 from f;
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» The single contour of the Gaussian density represents the
joint distribution, p(fi, f5).
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Prediction of f5 from f;
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» The single contour of the Gaussian density represents the
joint distribution, p(fi, f5).

» We observe that
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Prediction of f5 from f;
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» The single contour of the Gaussian density represents the
joint distribution, p(fi, f5).

» We observe that
» Conditional density: p(fs| f1 -0.313).
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Prediction of f5 from f;
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» The single contour of the Gaussian density represents the
joint distribution, p(fi, f5).
» We observe that
» Conditional density: p(fs| f1 -0.313).




Prediction with Correlated Gaussians

» Prediction of f. from f requires multivariate conditional
density.

» Multivariate conditional density is also Gaussian.

P(EIE) = N (LK, KL, K. — KK 1K

» Here covariance of joint density is given by

[ Kee Kig
K= [Kf * Ka(-,*]



Prediction with Correlated Gaussians

» Prediction of f. from f requires multivariate conditional
density.

» Multivariate conditional density is also Gaussian.

p(Elf) = N (£, E)
p =K K i f
L =K., - K KK,

» Here covariance of joint density is given by

[ Kee Kig
K= [Kf % Ka(-,*]



Covariance Functions

Exponentiated Quadratic Kernel Function (RBE Squared
Exponential, Gaussian)

2
lIx —X'Il;
22

k(x,x') = aexp [—

» Covariance matrix is
built using the inputs to
the function x.

» For the example above it
was based on Euclidean
distance.

» The covariance function
is also know as a kernel.
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Covariance Functions

k (xi, xj) =aexp (— _||x,»2—;,||2 )

x1 =-3.0,x; =-3.0
ki1 =1.00 x exp (_M)

2x2.002

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions
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Covariance Functions
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Covariance Functions

k (xi, x]-) = aexp (—

Xy = 120, X1 = -3.0

— 2
kp1 =1.00 x exp (—%)

[l

)

1.00 0.110

0.110

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

2
k(xi,xj) = aexp (——”x;;/” )
1.00 0.110

x2 =1.20,x, =1.20
0.110

ko = 1.00 X exp (_%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.
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Covariance Functions
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Covariance Functions
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0.110 1.00

0.0889
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Covariance Functions
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)
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k(xi,xj) = aexp (——HXZ;JH )
1.00 0.110 0.0889

x3 =1.40,x3 =1.40
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_ 2
ks = 1.00 x exp (~ L4&140%) 0.0889 0.995 | 1.00

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.
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k (xi, xj) =aexp (— _HXZ;AF )

x3 = 140, x3 = 1.40

k33 = 1.00 X exp (_%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.
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Covariance Functions

k (xi, xj) =aexp (— _HXZ;AF )
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Xp = 12, X1 = -3 0.11
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Covariance Functions

k (xi, x]-) = aexp (_ _||xi2*€9;/||2 )

1.0 0.11
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koo =1.0 % exp( 5007
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Covariance Functions
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1.0 0.11
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Covariance Functions

1.0 0.11
x3=14,x; =-3 01l 10
0.089
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x1=-3,x=12,x=14and x4 =2.0with{ =2.0and a = 1.0.



Covariance Functions

k() = aexp (- L2l )

1.0 0.11 0.089
x3=14,x; =-3 01l 10
0.089
k31 =1.0 X exp (_(1;_2})32)2)

x1=-3,x%=12,x3=14,and x4, =2.0 with £ =2.0and a = 1.0.



Covariance Functions

1.0 0.11 0.089
x3=14,20=12 011 1.0
0.089
k32 = 1.0 X exp (_%)
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Covariance Functions

k (xi, x]-) = aexp (— —HX’;/” )

1.0 0.11 0.089 0.044
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0.089 1.0 1.0 0.96
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kaa =1.0X% exp( S0
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x1=-3,x=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.
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x1=-3,x=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.
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4.00 281 272
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— 2
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4.00 281 272
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_ 2
k3,3 =4.00 X exp (_%) 2.72 4.00
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k (xi, xj) =aexp (— _HXZ;AF )

4.00 281 272

x3 =1.40, x3 = 1.40
281 4.00 4.00

_ 2
ks = 4.00 X exp (- LA L0 272 4.00 | 4.00

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

k (xi, xj) =aexp (— _HXZ;AF )

x3 = 140, x3 = 1.40

ks3 = 4.00 X exp (_%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.
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Covariance from Basis Functions



Basis Function Form

Radial basis functions commonly have the form

2
i =
x;) = exp|—————|.
1 —

» Basis function 2 05 L

maps dataintoa <

“feature space” in

which a linear sum 0 ! L

is a non linear
function.

| —
8 6 4 -2 0 2 4 6 8
X

Figure: A set of radial basis functions with width
¢ = 2 and location parameters p = [-4 0 4]".



Basis Function Representations

» Represent a function by a linear sum over a basis,

fOa5w) = ) wie(x;,), (1)
k=1

» Here: m basis functions and ¢(-) is kth basis function and
w=[w,..., wn]".

» For standard linear model: ¢x(x;.) = x;j.



Random Functions

Functions derived
using;:

f0) =) (),
k=1

where W is sampled
from a Gaussian
density,

wr ~N(QO,a).

f()

[
864202 4 6 8

X
Figure: Functions sampled using the basis set from
figure 3. Each line is a separate sample, generated
by a weighted sum of the basis set. The weights, w
are sampled from a Gaussian density with variance
a=1



Direct Construction of Covariance Matrix

» Use matrix notation to write function,

f(xi;w) = Z WPy (x;)
p)
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computed at training data gives a vector

f = dw.
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m
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f = dw.

w and f are only related by an inner product.



Direct Construction of Covariance Matrix

» Use matrix notation to write function,
m
F i w) =) wiy (x)
k=1

computed at training data gives a vector

f = Ow.

w and f are only related by an inner product.

@ € R™Y is a design matrix



Direct Construction of Covariance Matrix

» Use matrix notation to write function,
m
fxi;w) = Z wiPr (X;)
k=1

computed at training data gives a vector

f = Odw.

w and f are only related by an inner product.
@ € R is a design matrix

@ is fixed and non-stochastic for a given training set.



Direct Construction of Covariance Matrix

» Use matrix notation to write function,
m
F O w) =) wiy (x)
k=1

computed at training data gives a vector

f = dw.

w and f are only related by an inner product.
@ e R™Y is a design matrix
@ is fixed and non-stochastic for a given training set.

f is Gaussian distributed.



Expectations

» We have
f) = D(w).

We use (-) to denote expectations under prior distributions.
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Expectations

» We have
f) = D(w).

» Prior mean of w was zero giving
(f) = 0.
» Prior covariance of f is

K = (ff7) —(HH)T

We use (-) to denote expectations under prior distributions.



Expectations

» We have
(f) = D (w).
» Prior mean of w was zero giving
(f) = 0.

» Prior covariance of f is
K= (f7) —(H(H)"
<ffT> =® <WWT> DT,

giving
K= )/'d)CDT.

We use (-) to denote expectations under prior distributions.
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» The prior covariance between two points x; and x; is

kK (xirx;) = 6: 0007 9. (x)),



Covariance between Two Points

» The prior covariance between two points x; and x; is

kK (xirx;) = 6: 0007 9. (x)),

or in sum notation

k (Xi/ Xj) =y Z Pe (xi) Pe (Xj)
7



Covariance between Two Points

» The prior covariance between two points x; and x; is

kK (xirx;) = 6: 0007 9. (x)),

or in sum notation
m
k(xi,xj) =y’ Z e (x) e (x))
R

» For the radial basis used this gives



Covariance between Two Points

» The prior covariance between two points x; and x; is

kK (xirx;) = 6: 0007 9. (x)),

or in sum notation
m
k (Xl', X]) = ‘)/’ Z qbf (Xl) qb{) (X])
¢
» For the radial basis used this gives

(]
xz,x] =y Z ex 57 .

=1




Covariance Functions

RBF Basis Functions

k(x,x") = ap(x) " p(x")




Covariance Functions

RBF Basis Functions

k(x,x") = ap(x) " p(x")

2
e

-1
0
1

P:




Selecting Number and Location of Basis

» Need to choose
1. location of centers



Selecting Number and Location of Basis

» Need to choose

1. location of centers
2. number of basis functions



Selecting Number and Location of Basis

» Need to choose

1. location of centers
2. number of basis functions

» Consider uniform spacing over a region:

X2+ x5 = 2 (x; + xj) + 2u2
xl,x )/AZexp ! [Jk( Z ]) i
J 242

Restrict analysis to 1-D input, x.



Uniform Basis Functions

» Set each center location to

pr=a+Au-(k-1).



Uniform Basis Functions

» Set each center location to

pr=a+Au-(k-1).

» Specify the basis functions in terms of their indices,

2
j

m=1 X%+ x
k (xi, xj) =yAu ,;; exp ( Y
2(a+Ay-k)(x,- +x]-) +2(a+Ap-k)2

- 202 )




Infinite Basis Functions

» Take yp =aand py, =bsob=a+ Ap-(m-1).
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Infinite Basis Functions

» Take yp =aand py, =bsob=a+ Ap-(m-1).

» Take limit as Ay — 0som — oo

2

b X7+ X;
k(x;, xi) = f ex ( -
PRV 9P\ T

2(y - % (xi + x]-))z - % (xi + x]-)2
202 )d”’

+

where we have used k- Ay — p.



Result

» Performing the integration leads to

Vrl?

x [erf[(b _

42

ol s

Nl—=

¢

(a -1 (xz- + xj))



Result

» Performing the integration leads to

N [ (i - x))
2 eXp —_——

k(xixj) =y 1

¢

» Now take limitasa — —ococand b — o



Result

» Performing the integration leads to

2
k(xi,xj) =Y \/? exp [%
ootz fictoend)

» Now take limitasa — —ococand b — o

(vi=x)"
k(xl-,xj) = aexp = |

where o = y Vil



Infinite Feature Space

» An RBF model with infinite basis functions is a Gaussian
process.



Infinite Feature Space

» An RBF model with infinite basis functions is a Gaussian
process.

» The covariance function is given by the exponentiated
quadratic covariance function.

(vi- )"

k(xi,xj) =aexp|-— 1

where @ = y Vul2.



Infinite Feature Space

» An RBF model with infinite basis functions is a Gaussian
process.

» The covariance function is the exponentiated quadratic.

» Note: The functional form for the covariance function and
basis functions are similar.

» this is a special case,
» in general they are very different

Similar results can obtained for multi-dimensional input
models Williams (1998); Neal (1996).
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