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Styles of Machine Learning

Background: interpolation is easy, extrapolation is hard

» Urs Holzle keynote talk at NIPS 2005.

» Emphasis on massive data sets.
> Let the data do the work—more data, less extrapolation.
» Alternative paradigm:
» Very scarce data: computational biology, human motion.
» How to generalize from scarce data?
» Need to include more assumptions about the data (e.g.
invariances).
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Weakly Mechanistic vs Strongly Mechanistic

» Underlying data modeling techniques there are weakly
mechanistic principles (e.g. smoothness).

» In physics the models are typically strongly mechanistic.

» In principle we expect a range of models which vary in the
strength of their mechanistic assumptions.

» Latent Force Models are one part of this spectrum: add
further mechanistic ideas to weakly mechanistic models.



Dimensionality Reduction

» Linear relationship between the data, X € R™?, and a
reduced dimensional representation, F € 'R"*9, where

qg<p.
X=FW+g,

e~N(0,X)

» Integrate out F, optimize with respect to W.
» For Gaussian prior, F ~ N (0,1)
» and X = ¢’I we have probabilistic PCA (Tipping and Bishop,

1999; Roweis, 1998).
» and X constrained to be diagonal, we have factor analysis.



Dimensionality Reduction: Temporal Data

» Deal with temporal data with a temporal latent prior.

» Independent Gauss-Markov priors over each f;(t) leads to :
Rauch-Tung-Striebel (RTS) smoother (Kalman filter).

» More generally consider a Gaussian process (GP) prior,

q
p (Flt) = H N (f:,ilor Kfzrfz) :
i=1



Joint Gaussian Process

» Given the covariance functions for {fi(t)} we have an
implied covariance function across all {x;(t)}—(ML:
semi-parametric latent factor model (Teh et al., 2005),
Geostatistics: linear model of coregionalization).

» Rauch-Tung-Striebel smoother has been preferred

» linear computational complexity in n.

» Advances in sparse approximations have made the general
GP framework practical. (Titsias, 2009; Snelson and
Ghahramani, 2006; Quifionero Candela and Rasmussen, 2005).



Mechanical Analogy

Back to Mechanistic Models!

» These models rely on the latent variables to provide the
dynamic information.

» We now introduce a further dynamical system with a
mechanistic inspiration.

» Physical Interpretation:

» the latent functions, fi(t) are g forces.

» We observe the displacement of p springs to the forces.,

» Interpret system as the force balance equation, XD = FS + €.
» Forces act, e.g. through levers — a matrix of sensitivities,

S € R,

Diagonal matrix of spring constants, D € RP*?.

Original System: W = SD™".

v

v



Extend Model

v

Add a damper and give the system mass.

FS = XM + XC + XD +e¢.

v

Now have a second order mechanical system.

It will exhibit inertia and resonance.

v

v

There are many systems that can also be represented by
differential equations.

» When being forced by latent function(s), { f,-(t)}?:l, we call
this a latent force model.
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pulleys

/spring
mass /‘

/
'_| ~—| _—damper

observations

latent input

Figure: Mass spring damper analogy, an unobserved force drives
multiple oscillators.
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Mathematical Model
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Gaussian Process priors and Latent Force Models

Driven Harmonic Oscillator

» For Gaussian process we can compute the covariance
matrices for the output displacements.

» For one displacement the model is

q
myXi(t) + cpXi () + dixi(t) = by + Z sikfi(t), 1)
=0

where, my is the kth diagonal element from M and
similarly for ¢, and dy. s is the i, kth element of S.

» Model the latent forces as q independent, GPs with
exponentiated quadratic covariances

, t—t)>
ks (t 1) = exp (—%) 0il-



Covariance for ODE Model

» Exponentiated Quadratic Covariance function for f (t)

9

xj(t) = L ZS]’ exp(— a]t)f fi(7) exp(a;t) sin(w;(t — 7))dt

]11
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A

» Joint distribution
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Joint Sampling of x () and f (¢)

» 1fmSample
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Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 (t) (underdamped), green: x; (t) (overdamped), and blue: x3 (t)
(critically damped).
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Covariance for ODE

» Exponentiated Quadratic Covariance function for f (t)
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Example: Motion Capture

Mauricio Alvarez and David Luengo (Alvarez et al., 2009,
2013)

» Motion capture data: used for animating human motion.

» Multivariate time series of angles representing joint
positions.

» Objective: generalize from training data to realistic
motions.

» Use 2nd Order Latent Force Model with

mass/spring/damper (resistor inductor capacitor) at each
joint.



Prediction of Test Motion

» Model left arm only.
» 3 balancing motions (18, 19, 20) from subject 49.

» 18 and 19 are similar, 20 contains more dramatic
movements.

» Train on 18 and 19 and testing on 20
» Data was down-sampled by 32 (from 120 fps).

» Reconstruct motion of left arm for 20 given other
movements.

» Compare with GP that predicts left arm angles given other
body angles.



Mocap Results

Table: Root mean squared (RMS) angle error for prediction of the left
arm’s configuration in the motion capture data. Prediction with the
latent force model outperforms the prediction with regression for all
apart from the radius’s angle.

Latent Force | Regression

Angle Error Error
Radius 4.11 4.02
Wrist 6.55 6.65
Hand X rotation 1.82 3.21
Hand Z rotation 2.76 6.14
Thumb X rotation 1.77 3.10
Thumb Z rotation 2.73 6.09




Mocap Results II

11111111

(a) Inferred Latent (b) Wrist (c) Hand X Rotation
Force

(d) Hand Z Rotation (e) Thumb X Rotation (f) Thumb Z Rotation

Figure: Predictions from LFM (solid line, grey error bars) and direct
reoression (crosses with stick error bars).



Motion Capture Experiments

» Data set is from the CMU motion capture data base!.

» Two different types of movements: golf-swing and
walking.

» Train on a subset of motions for each movement and test
on a different subset.

» This assesses the model’s ability to extrapolate.

» For testing: condition on three angles associated to the root
nodes and first five and last five frames of the motion.

» Golf-swing use leave one out cross validation on four
motions.

» For the walking train on 4 motions and validate on 8
motions.



Motion Capture Results

Table: RMSE and R? (explained variance) for golf swing and walking

Movement | Method RMSE R? (%)
INDGP | 21.55+2.35 | 30.99 +9.67
Golf swing MTGP | 21.19+2.18 | 45.59 +7.86
SLEM | 21.52+1.93 | 49.32 +3.03
LEM 18.09 +1.30 | 72.25 + 3.08
INDGP | 8.03+255 | 30.55+ 10.64
Walking MTGP | 775205 | 37.77+4.53
SLFM 781 +2.00 | 36.84+4.26
LFM 7.23+218 | 48.15+5.66
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