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Styles of Machine Learning
Background: interpolation is easy, extrapolation is hard

I Urs Hölzle keynote talk at NIPS 2005.
I Emphasis on massive data sets.
I Let the data do the work—more data, less extrapolation.

I Alternative paradigm:
I Very scarce data: computational biology, human motion.
I How to generalize from scarce data?
I Need to include more assumptions about the data (e.g.

invariances).



General Approach
Broadly Speaking: Two approaches to modeling

data modeling mechanistic modeling

let the data “speak” impose physical laws
data driven knowledge driven

adaptive models differential equations
digit recognition climate, weather models
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Figure: Main modeling activity.
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Weakly Mechanistic vs Strongly Mechanistic

I Underlying data modeling techniques there are weakly
mechanistic principles (e.g. smoothness).

I In physics the models are typically strongly mechanistic.
I In principle we expect a range of models which vary in the

strength of their mechanistic assumptions.
I Latent Force Models are one part of this spectrum: add

further mechanistic ideas to weakly mechanistic models.



Dimensionality Reduction

I Linear relationship between the data, X ∈ <n×p, and a
reduced dimensional representation, F ∈ <n×q, where
q� p.

X = FW + ε,

ε ∼ N (0,Σ)

I Integrate out F, optimize with respect to W.
I For Gaussian prior, F ∼ N (0, I)

I and Σ = σ2I we have probabilistic PCA (Tipping and Bishop,
1999; Roweis, 1998).

I and Σ constrained to be diagonal, we have factor analysis.



Dimensionality Reduction: Temporal Data

I Deal with temporal data with a temporal latent prior.
I Independent Gauss-Markov priors over each fi(t) leads to :

Rauch-Tung-Striebel (RTS) smoother (Kalman filter).
I More generally consider a Gaussian process (GP) prior,

p (F|t) =

q∏
i=1

N

(
f:,i|0,K f:,i, f:,i

)
.



Joint Gaussian Process

I Given the covariance functions for
{
fi(t)

}
we have an

implied covariance function across all {xi(t)}—(ML:
semi-parametric latent factor model (Teh et al., 2005),
Geostatistics: linear model of coregionalization).

I Rauch-Tung-Striebel smoother has been preferred
I linear computational complexity in n.
I Advances in sparse approximations have made the general

GP framework practical. (Titsias, 2009; Snelson and
Ghahramani, 2006; Quiñonero Candela and Rasmussen, 2005).



Mechanical Analogy

Back to Mechanistic Models!

I These models rely on the latent variables to provide the
dynamic information.

I We now introduce a further dynamical system with a
mechanistic inspiration.

I Physical Interpretation:
I the latent functions, fi(t) are q forces.
I We observe the displacement of p springs to the forces.,
I Interpret system as the force balance equation, XD = FS + ε.
I Forces act, e.g. through levers — a matrix of sensitivities,

S ∈ <q×p.
I Diagonal matrix of spring constants, D ∈ <p×p.
I Original System: W = SD−1.



Extend Model

I Add a damper and give the system mass.

FS = ẌM + ẊC + XD + ε.

I Now have a second order mechanical system.
I It will exhibit inertia and resonance.
I There are many systems that can also be represented by

differential equations.
I When being forced by latent function(s),

{
fi(t)

}q
i=1, we call

this a latent force model.
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Mass Spring Damper Analogy
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Figure: Mass spring damper analogy, an unobserved force drives
multiple oscillators.
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Mathematical Model

Genome Biology 2006, 7:R25
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p53 target prediction<p>Hidden Variable Dynamic Modelling is a new approach to microarray analysis that quantitatively predicts the regulation of gene activ-ity.</p>

Abstract

Full exploitation of microarray data requires hidden information that cannot be extracted using
current analysis methodologies. We present a new approach, hidden variable dynamic modeling
(HVDM), which derives the hidden profile of a transcription factor from time series microarray
data, and generates a ranked list of predicted targets. We applied HVDM to the p53 network,
validating predictions experimentally using small interfering RNA. HVDM can be applied in many
systems biology contexts to predict regulation of gene activity quantitatively.

Background
In order to understand how gene networks function, it is nec-
essary to identify their components and to quantitatively
describe how they relate to one another [1-3]. Subsequent
prediction of gene network behavior requires identification of
important parameters and variables, and estimation or meas-
urement of their values during a response [4-6].

Experimental approaches can be applied to identify network
components. For example, protein binding arrays and chro-
mosome immunoprecipitation can be applied to identify
transcription factor (TF)-binding sites and therefore infer TF
targets [7-10]. However, these approaches give a static view of
the system. Binding sites identified in vitro may not be avail-
able in vivo, and different regulators may be active in differ-
ent cellular systems. Furthermore, purely experimental
approaches cannot predict in a quantitative manner, and with
statistical confidence, the dynamics of network activity with-

out making an impractical number of experimental observa-
tions [11].

Insight into the dynamic relationships present in a transcrip-
tional response can be gained by running time series of
microarrays [3,11,12]. Currently, analysis of this type of
datum chiefly relies on clustering or correlation methods. The
assumption is that groups of genes with similar expression
profiles over time are likely to be regulated by the same TF.
Although clustering approaches have been applied with some
success, they are limited and inaccurate. Genes with different
profiles may still be regulated by the same TF, and many
genes included in clusters may be regulated by other factors.
Clustering approaches typically do not generate confidence
statistics about the validity of individual predictions, and
therefore they can neither rank candidates nor distinguish
between true and false targets.

Published: 31 March 2006
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Gaussian Process priors and Latent Force Models
Driven Harmonic Oscillator

I For Gaussian process we can compute the covariance
matrices for the output displacements.

I For one displacement the model is

mkẍk(t) + ckẋk(t) + dkxk(t) = bk +

q∑
i=0

sik fi(t), (1)

where, mk is the kth diagonal element from M and
similarly for ck and dk. sik is the i, kth element of S.

I Model the latent forces as q independent, GPs with
exponentiated quadratic covariances

k fi fl(t, t
′) = exp

− (t − t′)2

2`2
i

 δil.



Covariance for ODE Model

I Exponentiated Quadratic Covariance function for f (t)

x j(t) =
1

m jω j

q∑
i=1

s ji exp(−α jt)
∫ t

0
fi(τ) exp(α jτ) sin(ω j(t − τ))dτ

I Joint distribution
for x1 (t), x2 (t),
x3 (t) and f (t).
Damping ratios:
ζ1 ζ2 ζ3
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Covariance for ODE Model

I Analogy

x =
∑

i

e>i fi fi ∼ N (0,Σi)→ x ∼ N

0,
∑

i

e>i Σiei


I Joint distribution
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x3 (t) and f (t).
Damping ratios:
ζ1 ζ2 ζ3

0.125 2 1
f(t) y

1
(t) y

2
(t) y

3
(t)

f(
t)

y 1(t
)

y 2(t
)

y 3(t
)

−0.4

−0.2

0

0.2

0.4

0.6

0.8



Covariance for ODE Model

I Exponentiated Quadratic Covariance function for f (t)

x j(t) =
1

m jω j

q∑
i=1

s ji exp(−α jt)
∫ t

0
fi(τ) exp(α jτ) sin(ω j(t − τ))dτ

I Joint distribution
for x1 (t), x2 (t),
x3 (t) and f (t).
Damping ratios:
ζ1 ζ2 ζ3

0.125 2 1
f(t) y

1
(t) y

2
(t) y

3
(t)

f(
t)

y 1(t
)

y 2(t
)

y 3(t
)

−0.4

−0.2

0

0.2

0.4

0.6

0.8



Joint Sampling of x (t) and f (t)

I lfmSample
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Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 (t) (underdamped), green: x2 (t) (overdamped), and blue: x3 (t)
(critically damped).
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Covariance for ODE
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Example: Motion Capture

Mauricio Alvarez and David Luengo (Álvarez et al., 2009,
2013)

I Motion capture data: used for animating human motion.
I Multivariate time series of angles representing joint

positions.
I Objective: generalize from training data to realistic

motions.
I Use 2nd Order Latent Force Model with

mass/spring/damper (resistor inductor capacitor) at each
joint.
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Example: Motion Capture

Mauricio Alvarez and David Luengo (Álvarez et al., 2009,
2013)

I Motion capture data: used for animating human motion.
I Multivariate time series of angles representing joint

positions.
I Objective: generalize from training data to realistic

motions.
I Use 2nd Order Latent Force Model with

mass/spring/damper (resistor inductor capacitor) at each
joint.



Prediction of Test Motion

I Model left arm only.
I 3 balancing motions (18, 19, 20) from subject 49.
I 18 and 19 are similar, 20 contains more dramatic

movements.
I Train on 18 and 19 and testing on 20
I Data was down-sampled by 32 (from 120 fps).
I Reconstruct motion of left arm for 20 given other

movements.
I Compare with GP that predicts left arm angles given other

body angles.



Mocap Results

Table: Root mean squared (RMS) angle error for prediction of the left
arm’s configuration in the motion capture data. Prediction with the
latent force model outperforms the prediction with regression for all
apart from the radius’s angle.

Latent Force Regression
Angle Error Error
Radius 4.11 4.02
Wrist 6.55 6.65

Hand X rotation 1.82 3.21
Hand Z rotation 2.76 6.14

Thumb X rotation 1.77 3.10
Thumb Z rotation 2.73 6.09



Mocap Results II
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Figure: Predictions from LFM (solid line, grey error bars) and direct
regression (crosses with stick error bars).



Motion Capture Experiments

I Data set is from the CMU motion capture data base1.
I Two different types of movements: golf-swing and

walking.
I Train on a subset of motions for each movement and test

on a different subset.
I This assesses the model’s ability to extrapolate.
I For testing: condition on three angles associated to the root

nodes and first five and last five frames of the motion.
I Golf-swing use leave one out cross validation on four

motions.
I For the walking train on 4 motions and validate on 8

motions.



Motion Capture Results

Table: RMSE and R2 (explained variance) for golf swing and walking

Movement Method RMSE R2 (%)

Golf swing

IND GP 21.55 ± 2.35 30.99 ± 9.67
MTGP 21.19 ± 2.18 45.59 ± 7.86
SLFM 21.52 ± 1.93 49.32 ± 3.03
LFM 18.09 ± 1.30 72.25 ± 3.08

Walking

IND GP 8.03 ± 2.55 30.55 ± 10.64
MTGP 7.75 ± 2.05 37.77 ± 4.53
SLFM 7.81 ± 2.00 36.84 ± 4.26
LFM 7.23 ± 2.18 48.15 ± 5.66



References I
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