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The Gaussian Density

Perhaps the most common probability density.

p(y |µ, σ2) =
1√

2πσ2
exp

(
−(y − µ)2

2σ2

)
= N

(
y |µ, σ2

)
The Gaussian density.
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Gaussian Density
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The Gaussian PDF with µ = 1.7 and variance σ2 = 0.0225. Mean shown
as red line. It could represent the heights of a population of students.
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Gaussian Density

N
(
y |µ, σ2

)
=

1√
2πσ2

exp

(
−(y − µ)

2

2σ2

)
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Two Important Gaussian Properties

1 Sum of Gaussian variables is also Gaussian.

yi ∼ N
(
µi , σ

2
i

)
n∑

i=1

yi ∼ N

(
n∑

i=1

µi ,

n∑
i=1

σ2
i

)
(Aside: As sum increases, sum of non-Gaussian, finite variance
variables is also Gaussian [central limit theorem].)

2 Scaling a Gaussian leads to a Gaussian.

y ∼ N
(
µ, σ2

)
wy ∼ N

(
wµ,w2σ2

)
Lawrence () GP Introduction UCLA 8 / 41



Two Important Gaussian Properties

1 Sum of Gaussian variables is also Gaussian.

yi ∼ N
(
µi , σ

2
i

)
n∑

i=1

yi ∼ N

(
n∑

i=1

µi ,

n∑
i=1

σ2
i

)
(Aside: As sum increases, sum of non-Gaussian, finite variance
variables is also Gaussian [central limit theorem].)

2 Scaling a Gaussian leads to a Gaussian.

y ∼ N
(
µ, σ2

)
wy ∼ N

(
wµ,w2σ2

)
Lawrence () GP Introduction UCLA 8 / 41



Two Important Gaussian Properties

1 Sum of Gaussian variables is also Gaussian.

yi ∼ N
(
µi , σ

2
i

)
n∑

i=1

yi ∼ N

(
n∑

i=1

µi ,

n∑
i=1

σ2
i

)
(Aside: As sum increases, sum of non-Gaussian, finite variance
variables is also Gaussian [central limit theorem].)

2 Scaling a Gaussian leads to a Gaussian.

y ∼ N
(
µ, σ2

)
wy ∼ N

(
wµ,w2σ2

)
Lawrence () GP Introduction UCLA 8 / 41



Two Important Gaussian Properties

1 Sum of Gaussian variables is also Gaussian.

yi ∼ N
(
µi , σ

2
i

)
n∑

i=1

yi ∼ N

(
n∑

i=1

µi ,

n∑
i=1

σ2
i

)
(Aside: As sum increases, sum of non-Gaussian, finite variance
variables is also Gaussian [central limit theorem].)

2 Scaling a Gaussian leads to a Gaussian.

y ∼ N
(
µ, σ2

)
wy ∼ N

(
wµ,w2σ2

)
Lawrence () GP Introduction UCLA 8 / 41



Two Important Gaussian Properties

1 Sum of Gaussian variables is also Gaussian.

yi ∼ N
(
µi , σ

2
i

)
n∑

i=1

yi ∼ N

(
n∑

i=1

µi ,

n∑
i=1

σ2
i

)
(Aside: As sum increases, sum of non-Gaussian, finite variance
variables is also Gaussian [central limit theorem].)

2 Scaling a Gaussian leads to a Gaussian.

y ∼ N
(
µ, σ2

)
wy ∼ N

(
wµ,w2σ2

)
Lawrence () GP Introduction UCLA 8 / 41



Two Important Gaussian Properties

1 Sum of Gaussian variables is also Gaussian.

yi ∼ N
(
µi , σ

2
i

)
n∑

i=1

yi ∼ N

(
n∑

i=1

µi ,

n∑
i=1

σ2
i

)
(Aside: As sum increases, sum of non-Gaussian, finite variance
variables is also Gaussian [central limit theorem].)

2 Scaling a Gaussian leads to a Gaussian.

y ∼ N
(
µ, σ2

)
wy ∼ N

(
wµ,w2σ2

)
Lawrence () GP Introduction UCLA 8 / 41



Two Simultaneous Equations

A system of two differential
equations with two unknowns.

y1 =mx1 + c

y2 =mx2 + c
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Two Simultaneous Equations

A system of two differential
equations with two unknowns.

m =
y2 − y1

x2 − x1

c = y1 −mx1
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y 1
−

y 2

x2 − x1

m =
y2−y1
x2−x1

Lawrence () GP Introduction UCLA 9 / 41



Two Simultaneous Equations

How do we deal with three
simultaneous equations with only two
unknowns?

y1 =mx1 + c

y2 =mx2 + c

y3 =mx3 + c 0

1
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y

x

c

y 1
−

y 2

x2 − x1

m =
y2−y1
x2−x1
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Overdetermined System

With two unknowns and two observations:

y1 =mx1 + c

y2 =mx2 + c

Additional observation leads to overdetermined system.

y3 = mx3 + c

This problem is solved through a noise model ε ∼ N
(
0, σ2

)
y1 = mx1 + c + ε1

y2 = mx2 + c + ε2

y3 = mx3 + c + ε3
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Noise Models

We aren’t modeling entire system.

Noise model gives mismatch between model and data.

Gaussian model justified by appeal to central limit theorem.

Other models also possible (Student-t for heavy tails).

Maximum likelihood with Gaussian noise leads to least squares.
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Underdetermined System

What about two unknowns and one
observation?

y1 = mx1 + c
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Underdetermined System

Can compute m given c.

m =
y1 − c

x
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Underdetermined System

Can compute m given c.

c = 1.75 =⇒ m = 1.25
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Underdetermined System

Can compute m given c.

c = −0.777 =⇒ m = 3.78
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Underdetermined System

Can compute m given c.

c = −4.01 =⇒ m = 7.01
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Underdetermined System

Can compute m given c.

c = −0.718 =⇒ m = 3.72
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Underdetermined System

Can compute m given c.

c = 2.45 =⇒ m = 0.545
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Underdetermined System

Can compute m given c.

c = −0.657 =⇒ m = 3.66
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Underdetermined System

Can compute m given c.

c = −3.13 =⇒ m = 6.13
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Underdetermined System

Can compute m given c.

c = −1.47 =⇒ m = 4.47
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Underdetermined System

Can compute m given c.
Assume

c ∼ N (0, 4) ,

we find a distribution of solutions.
0

1

2

3

4

5

0 1 2 3
y

x

Lawrence () GP Introduction UCLA 12 / 41



Probability for Under- and Overdetermined

To deal with overdetermined introduced probability distribution for
‘variable’, εi .

For underdetermined system introduced probability distribution for
‘parameter’, c.

This is known as a Bayesian treatment.
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Sampling a Function

Multi-variate Gaussians

We will consider a Gaussian with a particular structure of covariance
matrix.

Generate a single sample from this 25 dimensional Gaussian
distribution, f = [f1, f2 . . . f25].

We will plot these points against their index.
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Gaussian Distribution Sample
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(b) colormap showing correlations between
dimensions.

Figure: A sample from a 25 dimensional Gaussian distribution.
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Gaussian Distribution Sample

-2

-1

0

1

2

0 5 10 15 20 25

f i

i(a) A 25 dimensional correlated random
variable (values ploted against index)

1 0.96587

0.96587 1
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Figure: A sample from a 25 dimensional Gaussian distribution.
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Prediction of f2 from f1

-1

0

1

-1 0 1

f 1

f2

1 0.96587

0.96587 1

The single contour of the Gaussian density represents the joint
distribution, p(f1, f2).

We observe that f1 = −0.313.

Conditional density: p(f2|f1 = −0.313).
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Prediction with Correlated Gaussians

Prediction of f2 from f1 requires conditional density.

Conditional density is also Gaussian.

p(f2|f1) = N

(
f2|

k1,2

k1,1
f1, k2,2 −

k2
1,2

k1,1

)

where covariance of joint density is given by

K =

[
k1,1 k1,2

k2,1 k2,2

]

Lawrence () GP Introduction UCLA 17 / 41



Prediction of f5 from f1
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1 0.57375

0.57375 1

The single contour of the Gaussian density represents the joint
distribution, p(f1, f5).

We observe that f1 = −0.313.

Conditional density: p(f5|f1 = −0.313).
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Prediction with Correlated Gaussians

Prediction of f∗ from f requires multivariate conditional density.

Multivariate conditional density is also Gaussian.

p(f∗|f) = N
(
f∗|K∗,fK−1

f,f f,K∗,∗ −K∗,fK
−1
f,f Kf,∗

)

Here covariance of joint density is given by

K =

[
Kf,f K∗,f
Kf,∗ K∗,∗

]
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Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k
(
x, x′

)
= α exp

(
−
‖x− x′‖2

2

2`2

)

Covariance matrix is built
using the inputs to the
function x.

For the example above it
was based on Euclidean
distance.

The covariance function is
also know as a kernel.

Lawrence () GP Introduction UCLA 20 / 41



Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k
(
x, x′

)
= α exp

(
−
‖x− x′‖2

2

2`2

)

Covariance matrix is built
using the inputs to the
function x.

For the example above it
was based on Euclidean
distance.

The covariance function is
also know as a kernel.

-3

-2

-1

0

1

2

3

-1 -0.5 0 0.5 1

Lawrence () GP Introduction UCLA 20 / 41



Covariance Functions
Where did this covariance matrix come from?

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x1 = −3.0, x1 = −3.0

k1,1 = 1.00× exp
(
− (−3.0−−3.0)2

2×2.002

)
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Covariance Functions
Where did this covariance matrix come from?

1.00 0.110

0.110 1.00

0.0889

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x1 = −3.0

k3,1 = 1.00× exp
(
− (1.40−1.40)2

2×2.002

)

Lawrence () GP Introduction UCLA 21 / 41



Covariance Functions
Where did this covariance matrix come from?

1.00 0.110 0.0889

0.110 1.00

0.0889

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x1 = −3.0

k3,1 = 1.00× exp
(
− (1.40−1.40)2

2×2.002

)

Lawrence () GP Introduction UCLA 21 / 41



Covariance Functions
Where did this covariance matrix come from?

1.00 0.110 0.0889

0.110 1.00

0.0889

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x2 = 1.20

k3,2 = 1.00× exp
(
− (1.40−1.40)2

2×2.002

)

Lawrence () GP Introduction UCLA 21 / 41



Covariance Functions
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k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x3 = 1.40

k3,3 = 1.00× exp
(
− (1.40−1.40)2

2×2.002

)
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Covariance Functions
Where did this covariance matrix come from?

1.00 0.110 0.0889

0.110 1.00 0.995

0.0889 0.995 1.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x3 = 1.40

k3,3 = 1.00× exp
(
− (1.40−1.40)2

2×2.002

)
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Covariance Functions
Where did this covariance matrix come from?

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x3 = 1.40

k3,3 = 1.00× exp
(
− (1.40−1.40)2

2×2.002

)
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Covariance Functions
Where did this covariance matrix come from?

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x1 = −3, x1 = −3

k1,1 = 1.0× exp
(
− (−3−−3)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x1 = −3, x1 = −3

k1,1 = 1.0× exp
(
− (−3−−3)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x1 = −3

k2,1 = 1.0× exp
(
− (1.2−1.2)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0

0.11

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x1 = −3

k2,1 = 1.0× exp
(
− (1.2−1.2)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x1 = −3

k2,1 = 1.0× exp
(
− (1.2−1.2)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x2 = 1.2

k2,2 = 1.0× exp
(
− (1.2−1.2)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11 1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x2 = 1.2

k2,2 = 1.0× exp
(
− (1.2−1.2)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11 1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x1 = −3

k3,1 = 1.0× exp
(
− (1.4−1.4)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11 1.0

0.089

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x1 = −3

k3,1 = 1.0× exp
(
− (1.4−1.4)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0

0.089

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x1 = −3

k3,1 = 1.0× exp
(
− (1.4−1.4)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0

0.089

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x2 = 1.2

k3,2 = 1.0× exp
(
− (1.4−1.4)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0

0.089 1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x2 = 1.2

k3,2 = 1.0× exp
(
− (1.4−1.4)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x2 = 1.2

k3,2 = 1.0× exp
(
− (1.4−1.4)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x3 = 1.4

k3,3 = 1.0× exp
(
− (1.4−1.4)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0 1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x3 = 1.4

k3,3 = 1.0× exp
(
− (1.4−1.4)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0 1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x1 = −3

k4,1 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0 1.0

0.044

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x1 = −3

k4,1 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0

0.089 1.0 1.0

0.044

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x1 = −3

k4,1 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0

0.089 1.0 1.0

0.044

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x2 = 1.2

k4,2 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)

Lawrence () GP Introduction UCLA 21 / 41



Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0

0.089 1.0 1.0

0.044 0.92

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x2 = 1.2

k4,2 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0

0.044 0.92

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x2 = 1.2

k4,2 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0

0.044 0.92

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x3 = 1.4

k4,3 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0

0.044 0.92 0.96

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x3 = 1.4

k4,3 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

0.044 0.92 0.96

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x3 = 1.4

k4,3 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

0.044 0.92 0.96

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x4 = 2.0

k4,4 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

0.044 0.92 0.96 1.0

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x4 = 2.0

k4,4 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x4 = 2.0

k4,4 = 1.0× exp
(
− (2.0−2.0)2

2×2.02

)
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Covariance Functions
Where did this covariance matrix come from?

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x1 = −3.0, x1 = −3.0

k1,1 = 4.00× exp
(
− (−3.0−−3.0)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x1 = −3.0, x1 = −3.0

k1,1 = 4.00× exp
(
− (−3.0−−3.0)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x1 = −3.0

k2,1 = 4.00× exp
(
− (1.20−1.20)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00

2.81

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x1 = −3.0

k2,1 = 4.00× exp
(
− (1.20−1.20)2

2×5.002

)

Lawrence () GP Introduction UCLA 21 / 41



Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x1 = −3.0

k2,1 = 4.00× exp
(
− (1.20−1.20)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x2 = 1.20

k2,2 = 4.00× exp
(
− (1.20−1.20)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81 4.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x2 = 1.20

k2,2 = 4.00× exp
(
− (1.20−1.20)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81 4.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x1 = −3.0

k3,1 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81 4.00

2.72

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x1 = −3.0

k3,1 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00

2.72

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x1 = −3.0

k3,1 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00

2.72

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x2 = 1.20

k3,2 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00

2.72 4.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x2 = 1.20

k3,2 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00 4.00

2.72 4.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x2 = 1.20

k3,2 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00 4.00

2.72 4.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x3 = 1.40

k3,3 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00 4.00

2.72 4.00 4.00

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x3 = 1.40

k3,3 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)
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Covariance Functions
Where did this covariance matrix come from?

k (xi , xj) = α exp
(
− ||xi−xj ||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x3 = 1.40

k3,3 = 4.00× exp
(
− (1.40−1.40)2

2×5.002

)
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Constructing Covariance Functions

Sum of two covariances is also a covariance function.

k(x, x′) = k1(x, x′) + k2(x, x′)
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Constructing Covariance Functions

Product of two covariances is also a covariance function.

k(x, x′) = k1(x, x′)k2(x, x′)
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Multiply by Deterministic Function

If f (x) is a Gaussian process.

g(x) is a deterministic function.

h(x) = f (x)g(x)

Then
kh(x, x′) = g(x)kf (x, x′)g(x′)

where kh is covariance for h(·) and kf is covariance for f (·).
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Covariance Functions

MLP Covariance Function

k
(
x, x′

)
= αasin

(
wx>x′ + b

√
wx>x + b + 1

√
wx′>x′ + b + 1

)

Based on infinite neural
network model.

w = 40

b = 4
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Covariance Functions

Linear Covariance Function

k
(
x, x′

)
= αx>x′

Bayesian linear regression.

α = 1
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Gaussian Process Interpolation
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Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)). Interpolation
through outputs from slow computer simulations (e.g. atmospheric carbon levels).
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Noise Models

Graph of a GP

Relates input variables, X,
to vector, y, through f
given kernel parameters θ.

Plate notation indicates
independence of yi |fi .
Noise model, p (yi |fi ) can
take several forms.

Simplest is Gaussian
noise.

yi

X

fi

θ

i = 1 . . . n

Figure: The Gaussian process
depicted graphically.
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Gaussian Noise

Gaussian noise model,

p (yi |fi ) = N
(
yi |fi , σ2

)
where σ2 is the variance of the noise.

Equivalent to a covariance function of the form

k(xi , xj) = δi ,jσ
2

where δi ,j is the Kronecker delta function.

Additive nature of Gaussians means we can simply add this term to
existing covariance matrices.
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Gaussian Process Regression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Learning Covariance Parameters
Can we determine covariance parameters from the data?

N (y|0,K) =
1

(2π)
n
2 |K|

exp

(
−y
>K−1y

2

)
The parameters are inside the covariance function

(matrix).

ki ,j = k(xi , xj ;θ)
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Learning Covariance Parameters
Can we determine covariance parameters from the data?

logN (y|0,K) = −n
2
log 2π−1

2
log |K|−y

>K−1y

2

The parameters are inside the covariance function
(matrix).

ki ,j = k(xi , xj ;θ)
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Learning Covariance Parameters
Can we determine covariance parameters from the data?

E (θ) =
1

2
log |K| + y>K−1y

2

The parameters are inside the covariance function
(matrix).

ki ,j = k(xi , xj ;θ)
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Eigendecomposition of Covariance

A useful decomposition for understanding the objective function.

K = RΛ2R>

λ1

λ2
Diagonal of Λ represents distance
along axes.
R gives a rotation of these axes.

where Λ is a diagonal matrix and R>R = I.

Useful representation since |K| =
∣∣Λ2
∣∣ = |Λ|2.
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Capacity control: log |K|

λ1 0

0 λ2

λ1

Λ =
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Capacity control: log |K|

|Λ| = λ1λ2λ3

λ1 0 0

0 λ2 0

0 0 λ3

λ1

λ2
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Capacity control: log |K|

|RΛ| = λ1λ2

w1,1 w1,2

w2,1 w2,2

λ1

λ2

|Λ|
RΛ =
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Data Fit: y−1K−1y
2
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Learning Covariance Parameters
Can we determine length scales and noise levels from the data?
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Gene Expression Example

Global expression estimation with l = 30

Global expression estimation with l = 15.6

Data from Della Gatta et al. (2008). Figure from Kalaitzis and Lawrence
(2011).
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Limitations of Gaussian Processes

Inference is O(n3) due to matrix inverse (in practice use Cholesky).

Gaussian processes don’t deal well with discontinuities (financial
crises, phosphorylation, collisions, edges in images).

Widely used exponentiated quadratic covariance (RBF) can be too
smooth in practice (but there are many alternatives!!).
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Summary

Broad introduction to Gaussian processes.
I Started with Gaussian distribution.
I Motivated Gaussian processes through the multivariate density.

Emphasized the role of the covariance (not the mean).

Performs nonlinear regression with error bars.

Parameters of the covariance function (kernel) are easily optimized
with maximum likelihood.
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