

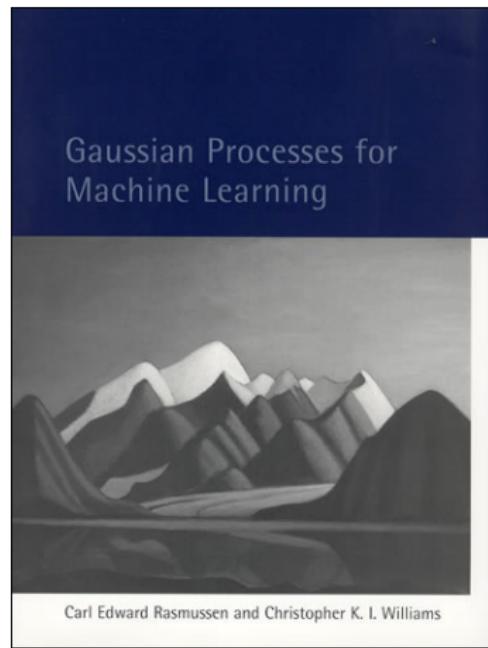
A Brief Introduction to Gaussian Processes

Neil D. Lawrence

UCLA

27th July 2012

Book



Rasmussen and Williams (2006)

Outline

- 1 The Gaussian Density
- 2 Constructing Covariance
- 3 GP Limitations
- 4 Conclusions

Outline

- 1 The Gaussian Density
- 2 Constructing Covariance
- 3 GP Limitations
- 4 Conclusions

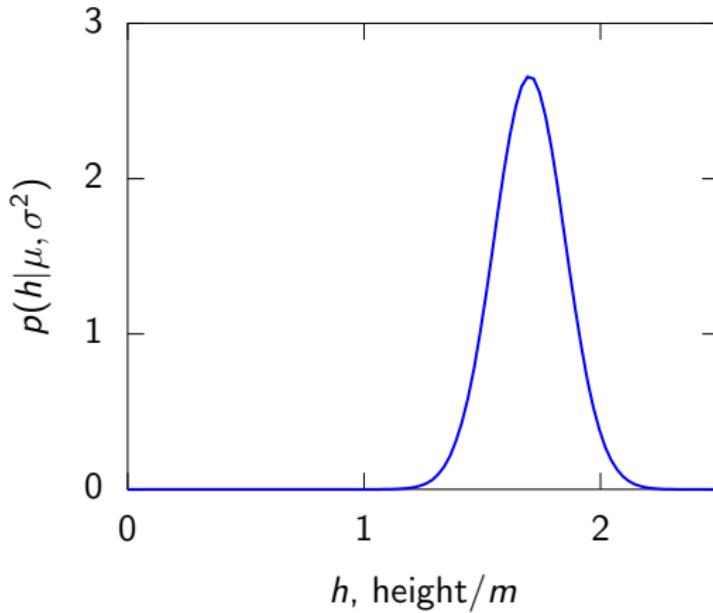
The Gaussian Density

- Perhaps the most common probability density.

$$\begin{aligned} p(y|\mu, \sigma^2) &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right) \\ &= \mathcal{N}(y|\mu, \sigma^2) \end{aligned}$$

- The Gaussian density.

Gaussian Density



The Gaussian PDF with $\mu = 1.7$ and variance $\sigma^2 = 0.0225$. Mean shown as red line. It could represent the heights of a population of students.

Gaussian Density

$$\mathcal{N}(y|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y - \mu)^2}{2\sigma^2}\right)$$

Two Important Gaussian Properties

- ➊ Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$$

$$\sum_{i=1}^n y_i \sim \mathcal{N}\left(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2\right)$$

(*Aside*: As sum increases, sum of non-Gaussian, finite variance variables is also Gaussian [central limit theorem].)

- ➋ Scaling a Gaussian leads to a Gaussian.

$$y \sim \mathcal{N}(\mu, \sigma^2)$$

$$wy \sim \mathcal{N}(w\mu, w^2\sigma^2)$$

Two Important Gaussian Properties

- ➊ Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$$

$$\sum_{i=1}^n y_i \sim \mathcal{N}\left(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2\right)$$

(*Aside*: As sum increases, sum of non-Gaussian, finite variance variables is also Gaussian [central limit theorem].)

- ➋ Scaling a Gaussian leads to a Gaussian.

$$y \sim \mathcal{N}(\mu, \sigma^2)$$

$$wy \sim \mathcal{N}(w\mu, w^2\sigma^2)$$

Two Important Gaussian Properties

- ➊ Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$$

$$\sum_{i=1}^n y_i \sim \mathcal{N}\left(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2\right)$$

(*Aside*: As sum increases, sum of non-Gaussian, finite variance variables is also Gaussian [central limit theorem].)

- ➋ Scaling a Gaussian leads to a Gaussian.

$$y \sim \mathcal{N}(\mu, \sigma^2)$$

$$wy \sim \mathcal{N}(w\mu, w^2\sigma^2)$$

Two Important Gaussian Properties

- ➊ Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$$

$$\sum_{i=1}^n y_i \sim \mathcal{N}\left(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2\right)$$

(*Aside*: As sum increases, sum of non-Gaussian, finite variance variables is also Gaussian [central limit theorem].)

- ➋ Scaling a Gaussian leads to a Gaussian.

$$y \sim \mathcal{N}(\mu, \sigma^2)$$

$$wy \sim \mathcal{N}(w\mu, w^2\sigma^2)$$

Two Important Gaussian Properties

- ➊ Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$$

$$\sum_{i=1}^n y_i \sim \mathcal{N}\left(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2\right)$$

(*Aside*: As sum increases, sum of non-Gaussian, finite variance variables is also Gaussian [central limit theorem].)

- ➋ Scaling a Gaussian leads to a Gaussian.

$$y \sim \mathcal{N}(\mu, \sigma^2)$$

$$wy \sim \mathcal{N}(w\mu, w^2\sigma^2)$$

Two Important Gaussian Properties

- ➊ Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$$

$$\sum_{i=1}^n y_i \sim \mathcal{N}\left(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2\right)$$

(*Aside*: As sum increases, sum of non-Gaussian, finite variance variables is also Gaussian [central limit theorem].)

- ➋ Scaling a Gaussian leads to a Gaussian.

$$y \sim \mathcal{N}(\mu, \sigma^2)$$

$$wy \sim \mathcal{N}(w\mu, w^2\sigma^2)$$

Two Simultaneous Equations

A system of two differential equations with two unknowns.

$$y_1 = mx_1 + c$$

$$y_2 = mx_2 + c$$

Two Simultaneous Equations

A system of two differential equations with two unknowns.

$$y_1 - y_2 = m(x_1 - x_2)$$

Two Simultaneous Equations

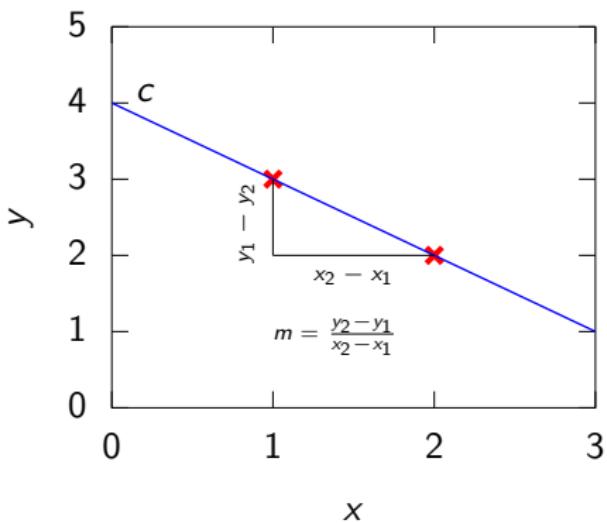
A system of two differential equations with two unknowns.

$$\frac{y_1 - y_2}{x_1 - x_2} = m$$

Two Simultaneous Equations

A system of two differential equations with two unknowns.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
$$c = y_1 - mx_1$$



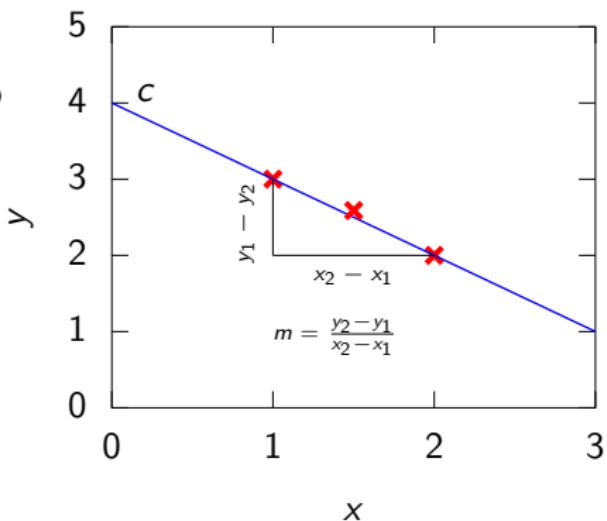
Two Simultaneous Equations

How do we deal with three simultaneous equations with only two unknowns?

$$y_1 = mx_1 + c$$

$$y_2 = mx_2 + c$$

$$y_3 = mx_3 + c$$



Overdetermined System

- With two unknowns and two observations:

$$y_1 = mx_1 + c$$

$$y_2 = mx_2 + c$$

- Additional observation leads to *overdetermined* system.

$$y_3 = mx_3 + c$$

- This problem is solved through a noise model $\epsilon \sim \mathcal{N}(0, \sigma^2)$

$$y_1 = mx_1 + c + \epsilon_1$$

$$y_2 = mx_2 + c + \epsilon_2$$

$$y_3 = mx_3 + c + \epsilon_3$$

Overdetermined System

- With two unknowns and two observations:

$$y_1 = mx_1 + c$$

$$y_2 = mx_2 + c$$

- Additional observation leads to *overdetermined* system.

$$y_3 = mx_3 + c$$

- This problem is solved through a noise model $\epsilon \sim \mathcal{N}(0, \sigma^2)$

$$y_1 = mx_1 + c + \epsilon_1$$

$$y_2 = mx_2 + c + \epsilon_2$$

$$y_3 = mx_3 + c + \epsilon_3$$

Overdetermined System

- With two unknowns and two observations:

$$y_1 = mx_1 + c$$

$$y_2 = mx_2 + c$$

- Additional observation leads to *overdetermined* system.

$$y_3 = mx_3 + c$$

- This problem is solved through a noise model $\epsilon \sim \mathcal{N}(0, \sigma^2)$

$$y_1 = mx_1 + c + \epsilon_1$$

$$y_2 = mx_2 + c + \epsilon_2$$

$$y_3 = mx_3 + c + \epsilon_3$$

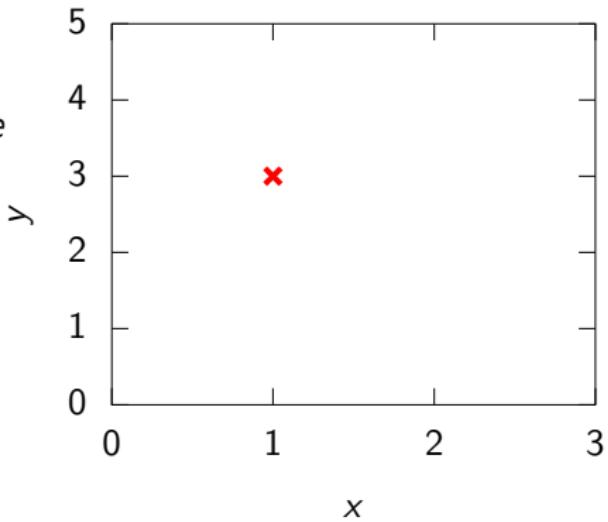
Noise Models

- We aren't modeling entire system.
- Noise model gives mismatch between model and data.
- Gaussian model justified by appeal to central limit theorem.
- Other models also possible (Student- t for heavy tails).
- Maximum likelihood with Gaussian noise leads to *least squares*.

Underdetermined System

What about two unknowns and *one* observation?

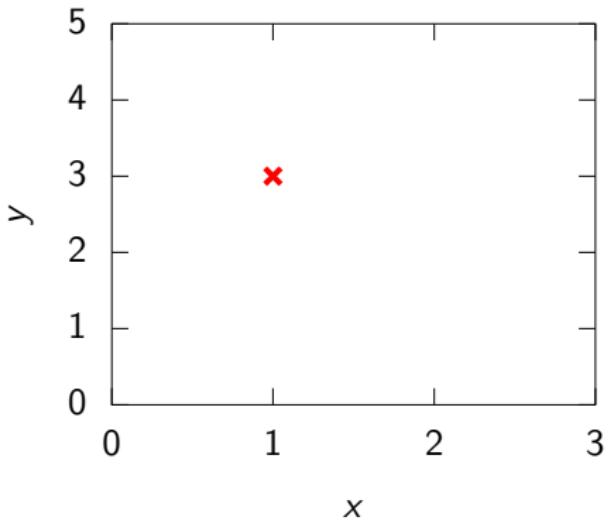
$$y_1 = mx_1 + c$$



Underdetermined System

Can compute m given c .

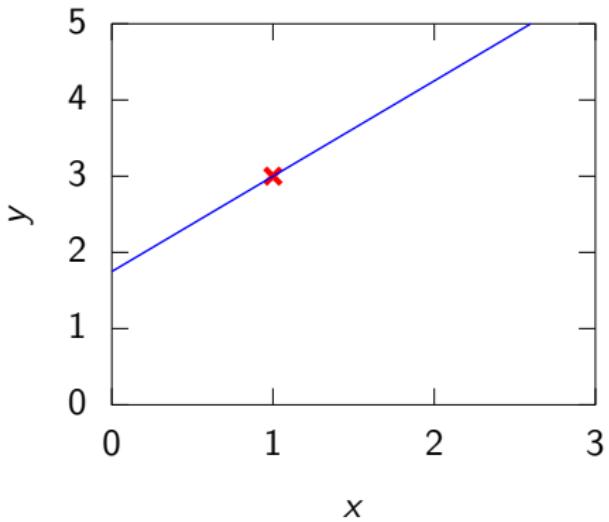
$$m = \frac{y_1 - c}{x}$$



Underdetermined System

Can compute m given c .

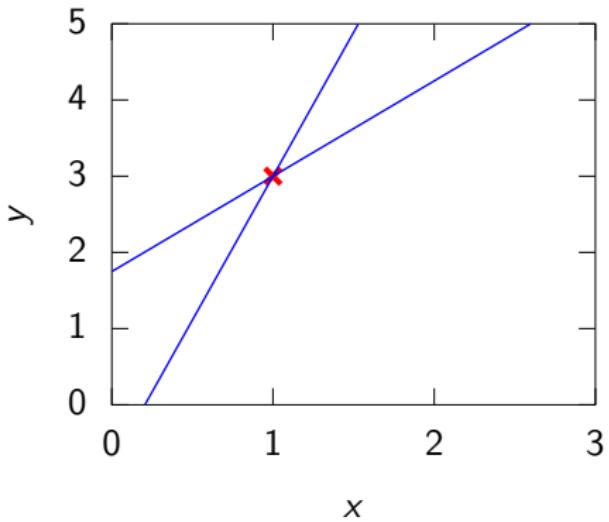
$$c = 1.75 \implies m = 1.25$$



Underdetermined System

Can compute m given c .

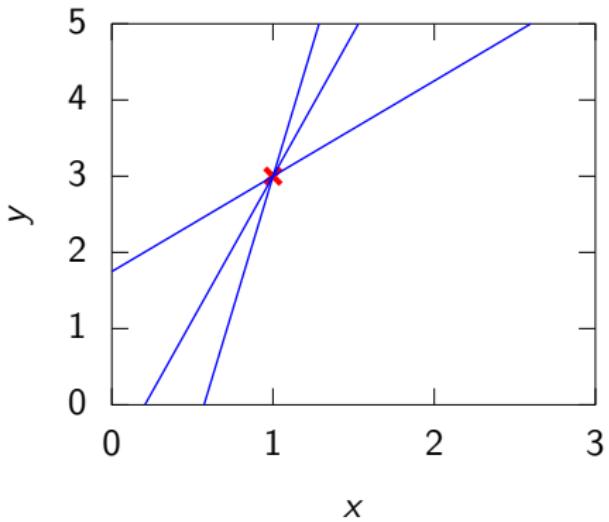
$$c = -0.777 \implies m = 3.78$$



Underdetermined System

Can compute m given c .

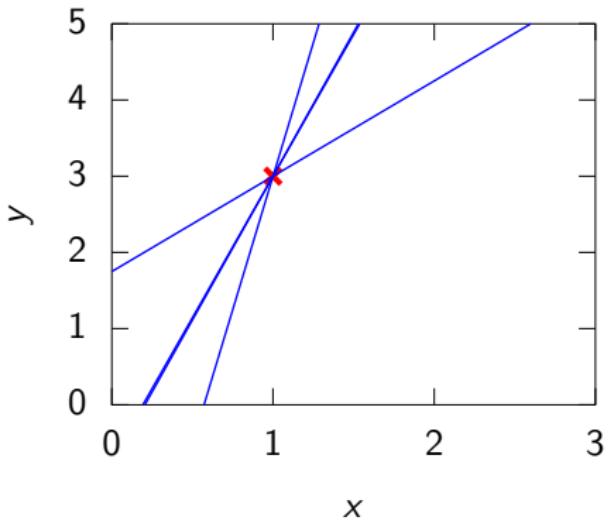
$$c = -4.01 \implies m = 7.01$$



Underdetermined System

Can compute m given c .

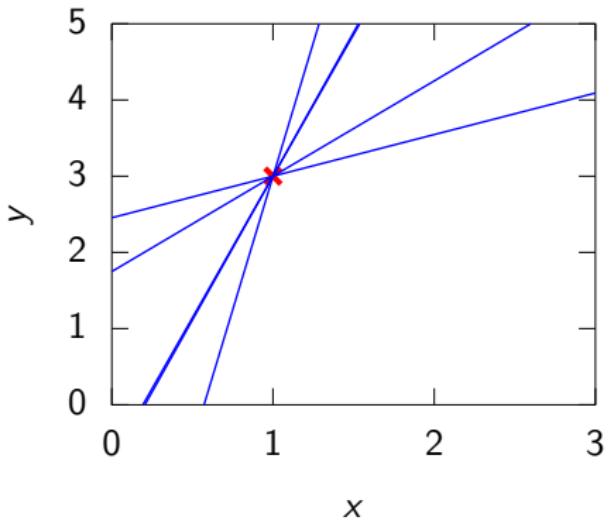
$$c = -0.718 \implies m = 3.72$$



Underdetermined System

Can compute m given c .

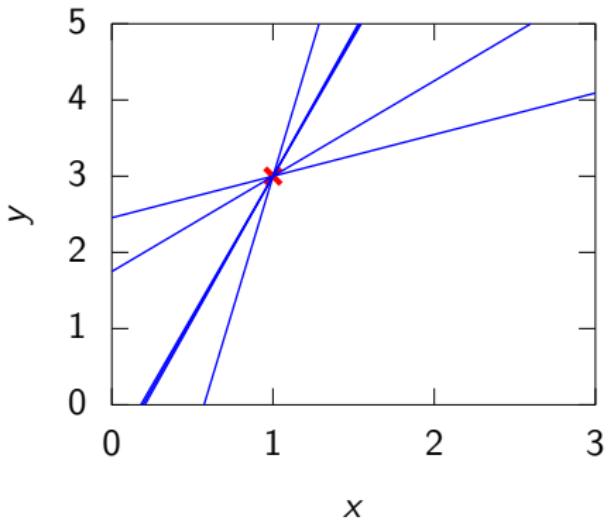
$$c = 2.45 \implies m = 0.545$$



Underdetermined System

Can compute m given c .

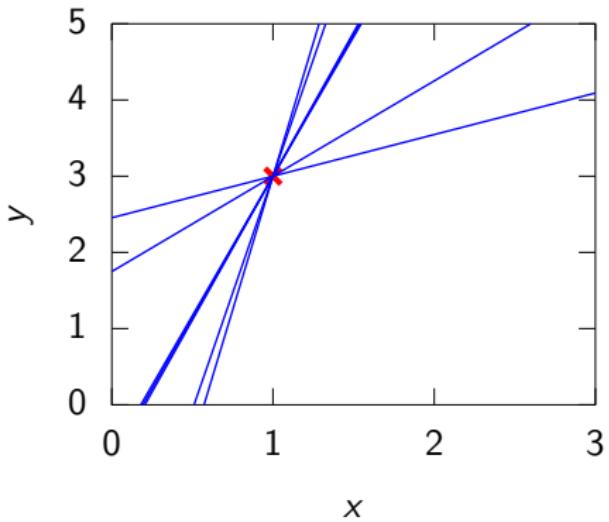
$$c = -0.657 \implies m = 3.66$$



Underdetermined System

Can compute m given c .

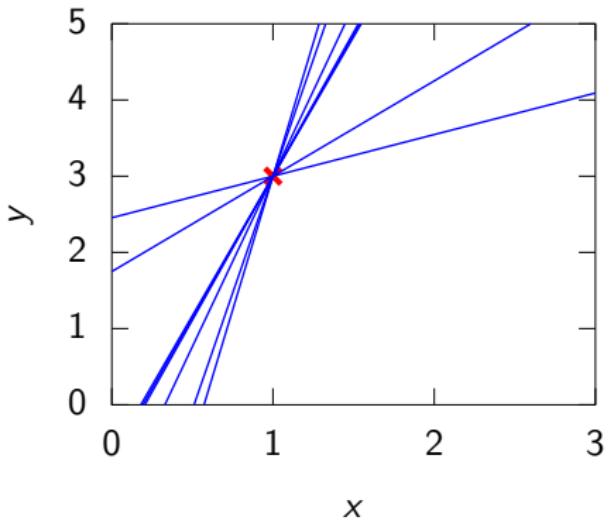
$$c = -3.13 \implies m = 6.13$$



Underdetermined System

Can compute m given c .

$$c = -1.47 \implies m = 4.47$$



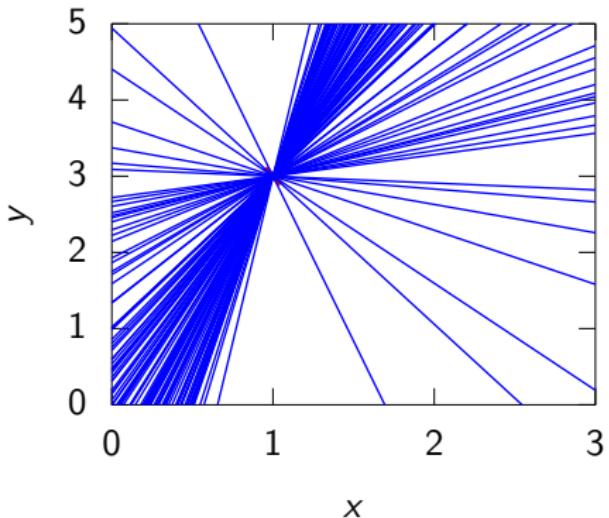
Underdetermined System

Can compute m given c .

Assume

$$c \sim \mathcal{N}(0, 4),$$

we find a distribution of solutions.



Probability for Under- and Overdetermined

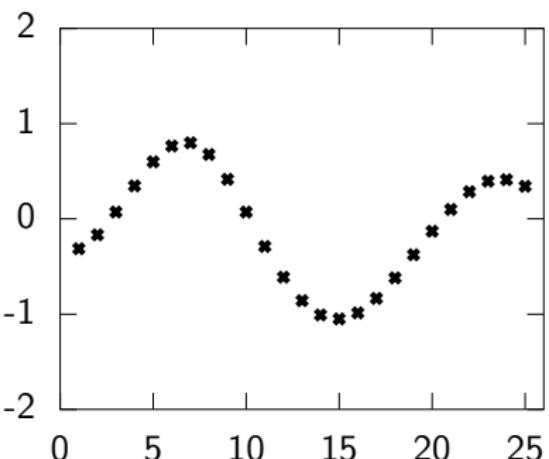
- To deal with overdetermined introduced probability distribution for 'variable', ϵ_i .
- For underdetermined system introduced probability distribution for 'parameter', c .
- This is known as a Bayesian treatment.

Sampling a Function

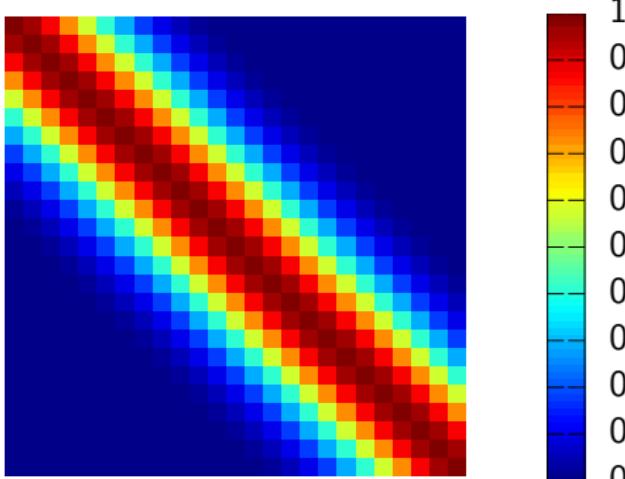
Multi-variate Gaussians

- We will consider a Gaussian with a particular structure of covariance matrix.
- Generate a single sample from this 25 dimensional Gaussian distribution, $\mathbf{f} = [f_1, f_2 \dots f_{25}]$.
- We will plot these points against their index.

Gaussian Distribution Sample



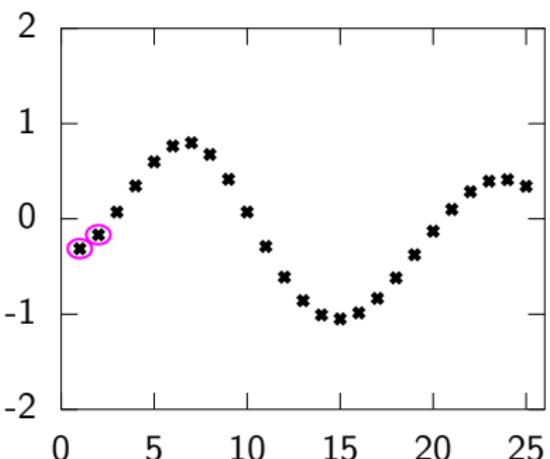
(a) A 25 dimensional correlated random variable (values plotted against index)



(b) colormap showing correlations between dimensions.

Figure: A sample from a 25 dimensional Gaussian distribution.

Gaussian Distribution Sample



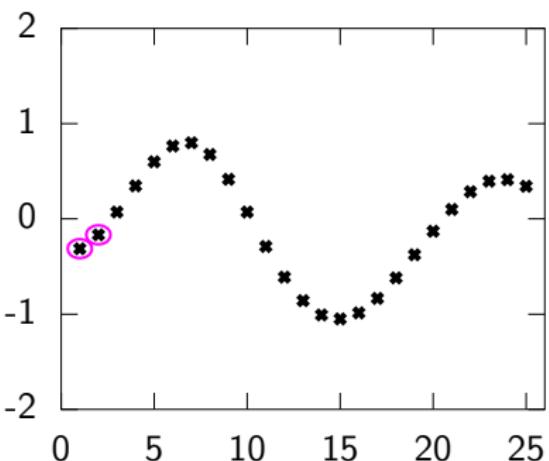
(a) A 25 dimensional correlated random variable (values plotted against index)



(b) colormap showing correlations between dimensions.

Figure: A sample from a 25 dimensional Gaussian distribution.

Gaussian Distribution Sample



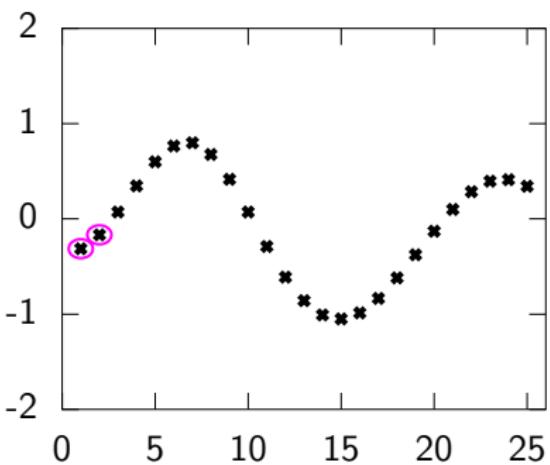
(a) A 25 dimensional correlated random variable (values plotted against index)



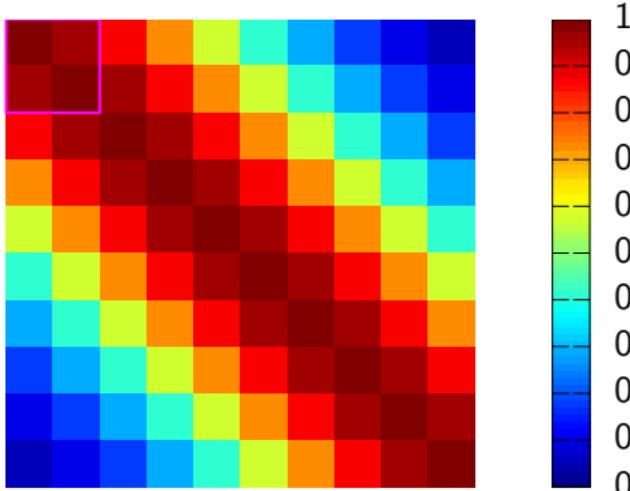
(b) colormap showing correlations between dimensions.

Figure: A sample from a 25 dimensional Gaussian distribution.

Gaussian Distribution Sample



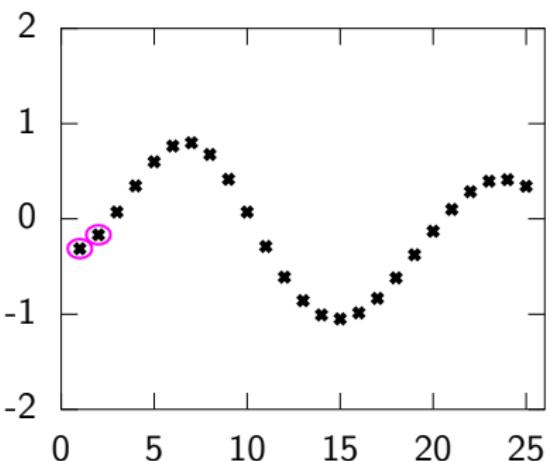
(a) A 25 dimensional correlated random variable (values plotted against index)



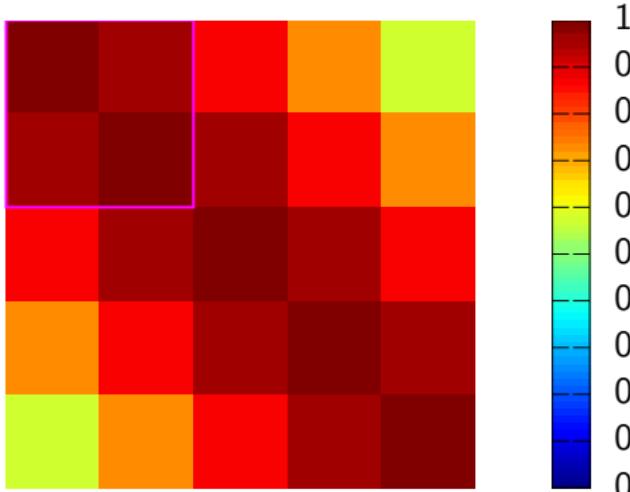
(b) colormap showing correlations between dimensions.

Figure: A sample from a 25 dimensional Gaussian distribution.

Gaussian Distribution Sample



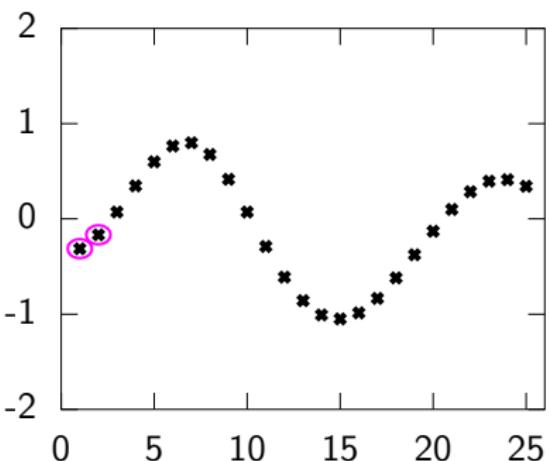
(a) A 25 dimensional correlated random variable (values plotted against index)



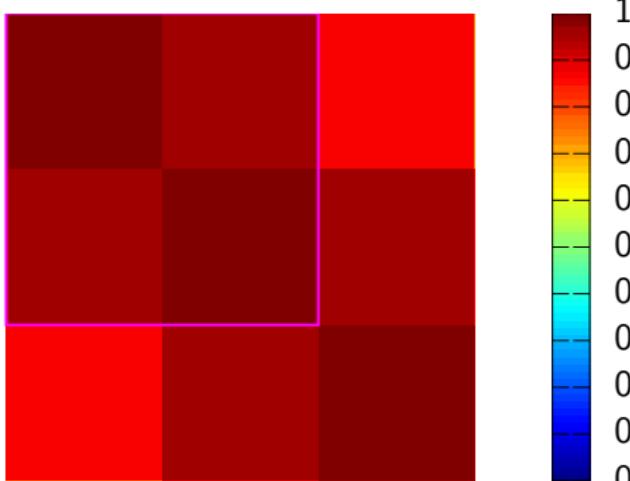
(b) colormap showing correlations between dimensions.

Figure: A sample from a 25 dimensional Gaussian distribution.

Gaussian Distribution Sample



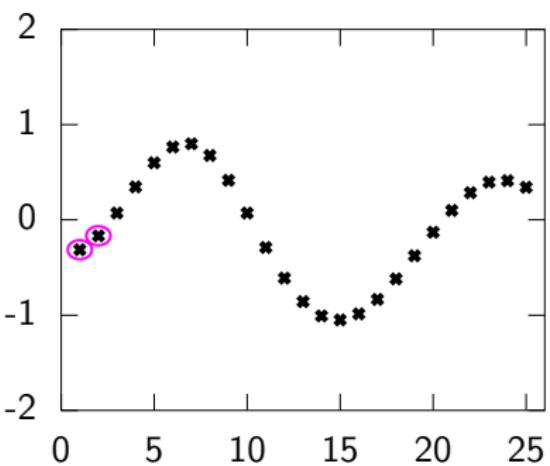
(a) A 25 dimensional correlated random variable (values plotted against index)



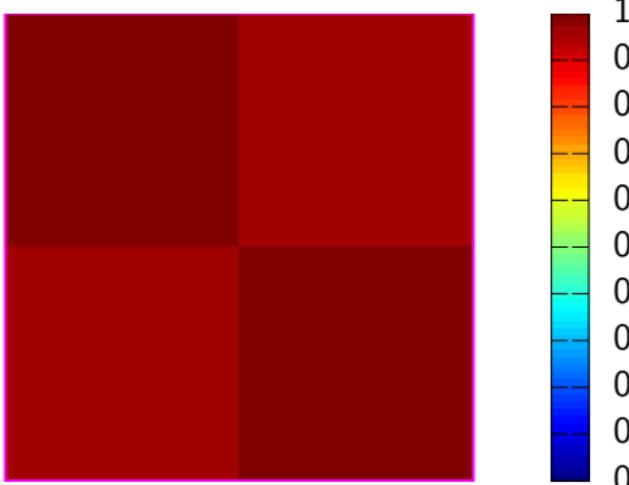
(b) colormap showing correlations between dimensions.

Figure: A sample from a 25 dimensional Gaussian distribution.

Gaussian Distribution Sample



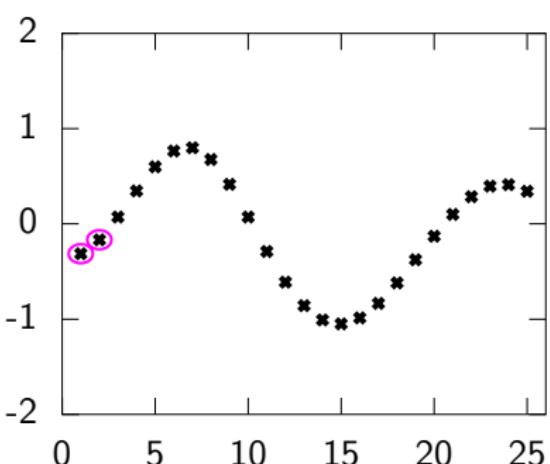
(a) A 25 dimensional correlated random variable (values plotted against index)



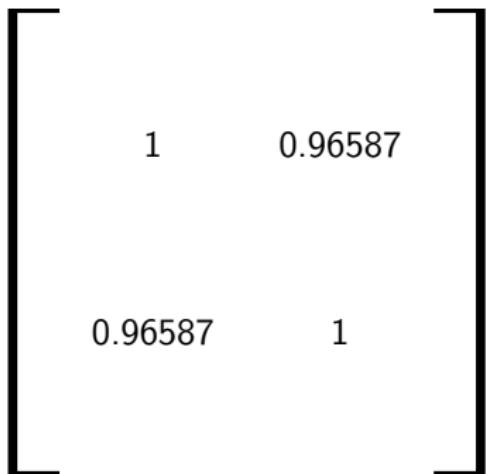
(b) colormap showing correlations between dimensions.

Figure: A sample from a 25 dimensional Gaussian distribution.

Gaussian Distribution Sample



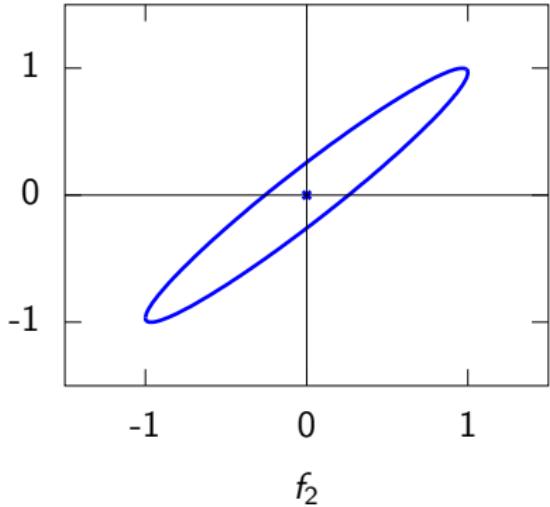
(a) A 25 dimensional correlated random variable (values plotted against index)



(b) correlation between f_1 and f_2 .

Figure: A sample from a 25 dimensional Gaussian distribution.

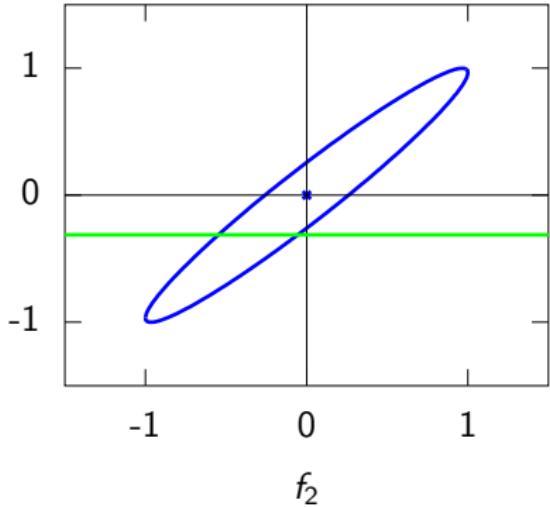
Prediction of f_2 from f_1



$$\begin{bmatrix} 1 & 0.96587 \\ 0.96587 & 1 \end{bmatrix}$$

- The single contour of the Gaussian density represents the joint distribution, $p(f_1, f_2)$.
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_2|f_1 = -0.313)$.

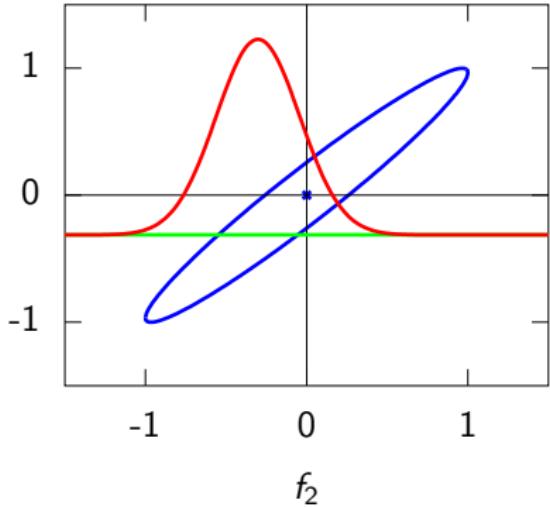
Prediction of f_2 from f_1



$$\begin{bmatrix} 1 & 0.96587 \\ 0.96587 & 1 \end{bmatrix}$$

- The single contour of the Gaussian density represents the joint distribution, $p(f_1, f_2)$.
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_2|f_1 = -0.313)$.

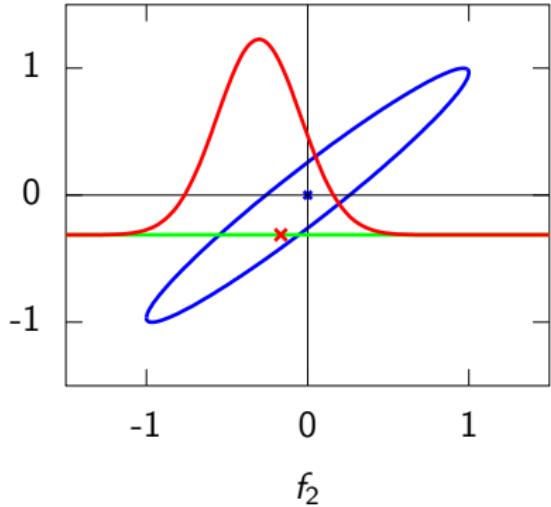
Prediction of f_2 from f_1



$$\begin{bmatrix} 1 & 0.96587 \\ 0.96587 & 1 \end{bmatrix}$$

- The single contour of the Gaussian density represents the joint distribution, $p(f_1, f_2)$.
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_2 | f_1 = -0.313)$.

Prediction of f_2 from f_1



$$\begin{bmatrix} 1 & 0.96587 \\ 0.96587 & 1 \end{bmatrix}$$

- The single contour of the Gaussian density represents the joint distribution, $p(f_1, f_2)$.
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_2 | f_1 = -0.313)$.

Prediction with Correlated Gaussians

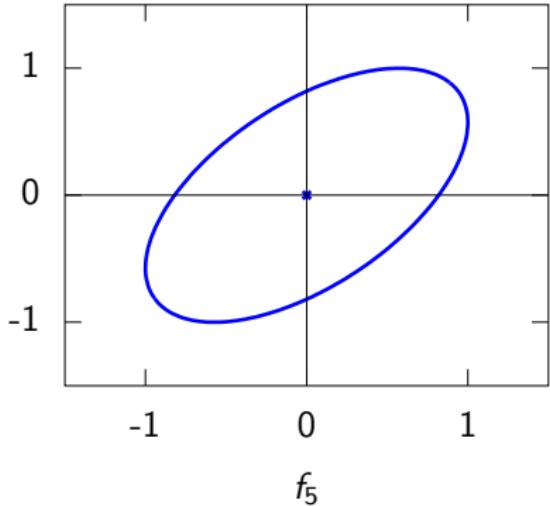
- Prediction of f_2 from f_1 requires *conditional density*.
- Conditional density is *also* Gaussian.

$$p(f_2|f_1) = \mathcal{N} \left(f_2 \middle| \frac{k_{1,2}}{k_{1,1}} f_1, k_{2,2} - \frac{k_{1,2}^2}{k_{1,1}} \right)$$

where covariance of joint density is given by

$$\mathbf{\mathbf{K}} = \begin{bmatrix} k_{1,1} & k_{1,2} \\ k_{2,1} & k_{2,2} \end{bmatrix}$$

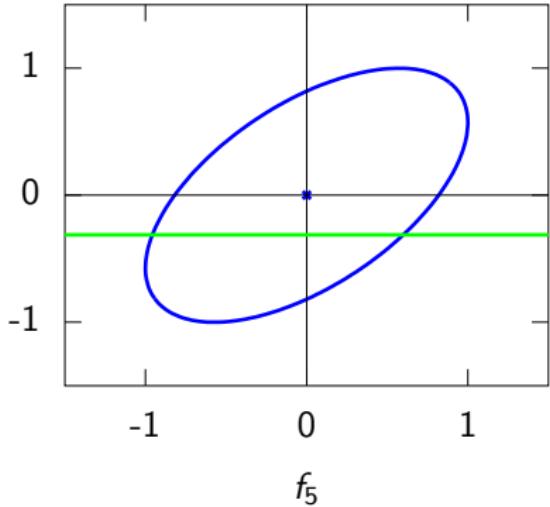
Prediction of f_5 from f_1



$$\begin{bmatrix} 1 & 0.57375 \\ 0.57375 & 1 \end{bmatrix}$$

- The single contour of the Gaussian density represents the joint distribution, $p(f_1, f_5)$.
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_5 | f_1 = -0.313)$.

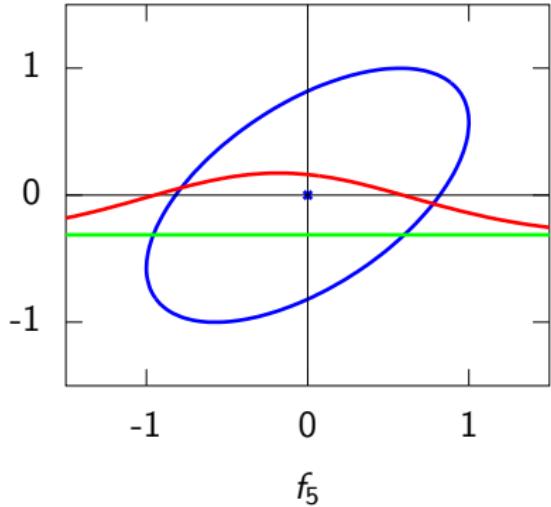
Prediction of f_5 from f_1



$$\begin{bmatrix} 1 & 0.57375 \\ 0.57375 & 1 \end{bmatrix}$$

- The single contour of the Gaussian density represents the joint distribution, $p(f_1, f_5)$.
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_5|f_1 = -0.313)$.

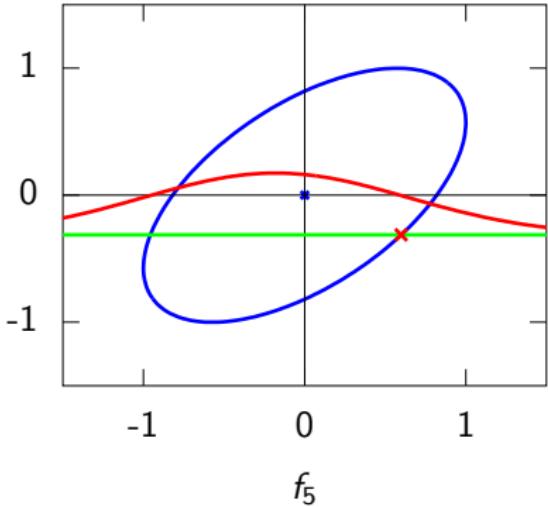
Prediction of f_5 from f_1



$$\begin{bmatrix} 1 & 0.57375 \\ 0.57375 & 1 \end{bmatrix}$$

- The single contour of the Gaussian density represents the joint distribution, $p(f_1, f_5)$.
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_5|f_1 = -0.313)$.

Prediction of f_5 from f_1



$$\begin{bmatrix} 1 & 0.57375 \\ 0.57375 & 1 \end{bmatrix}$$

- The single contour of the Gaussian density represents the joint distribution, $p(f_1, f_5)$.
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_5 | f_1 = -0.313)$.

Prediction with Correlated Gaussians

- Prediction of \mathbf{f}_* from \mathbf{f} requires multivariate *conditional density*.
- Multivariate conditional density is *also* Gaussian.

$$p(\mathbf{f}_* | \mathbf{f}) = \mathcal{N} \left(\mathbf{f}_* | \mathbf{K}_{*,\mathbf{f}} \mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1} \mathbf{f}, \mathbf{K}_{*,*} - \mathbf{K}_{*,\mathbf{f}} \mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1} \mathbf{K}_{\mathbf{f},*} \right)$$

- Here covariance of joint density is given by

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}_{\mathbf{f},\mathbf{f}} & \mathbf{K}_{*,\mathbf{f}} \\ \mathbf{K}_{\mathbf{f},*} & \mathbf{K}_{*,*} \end{bmatrix}$$

Prediction with Correlated Gaussians

- Prediction of \mathbf{f}_* from \mathbf{f} requires multivariate *conditional density*.
- Multivariate conditional density is *also* Gaussian.

$$p(\mathbf{f}_* | \mathbf{f}) = \mathcal{N}(\mathbf{f}_* | \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$\boldsymbol{\mu} = \mathbf{K}_{*,\mathbf{f}} \mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1} \mathbf{f}$$

$$\boldsymbol{\Sigma} = \mathbf{K}_{*,*} - \mathbf{K}_{*,\mathbf{f}} \mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1} \mathbf{K}_{\mathbf{f},*}$$

- Here covariance of joint density is given by

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}_{\mathbf{f},\mathbf{f}} & \mathbf{K}_{*,\mathbf{f}} \\ \mathbf{K}_{\mathbf{f},*} & \mathbf{K}_{*,*} \end{bmatrix}$$

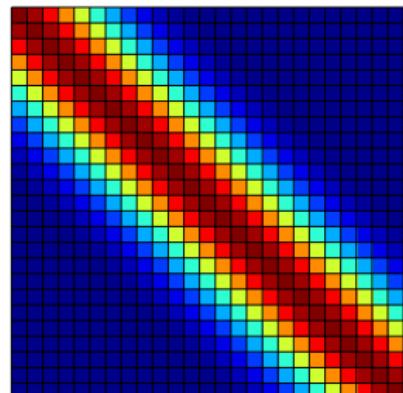
Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{2\ell^2}\right)$$

- Covariance matrix is built using the *inputs* to the function \mathbf{x} .
- For the example above it was based on Euclidean distance.
- The covariance function is also known as a kernel.



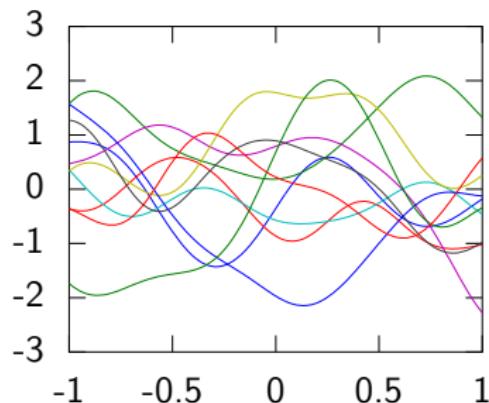
Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{2\ell^2}\right)$$

- Covariance matrix is built using the *inputs* to the function \mathbf{x} .
- For the example above it was based on Euclidean distance.
- The covariance function is also known as a kernel.



Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_1 = -3.0, x_2 = -3.0$$

$$k_{1,1} = 1.00 \times \exp\left(-\frac{(-3.0 - -3.0)^2}{2 \times 2.00^2}\right)$$

$$x_1 = -3.0, x_2 = 1.20, \text{ and } x_3 = 1.40 \text{ with } \ell = 2.00 \text{ and } \alpha = 1.00.$$

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_1 = -3.0, x_1 = -3.0$$

$$k_{1,1} = 1.00 \times \exp\left(-\frac{(-3.0 - -3.0)^2}{2 \times 2.00^2}\right)$$

$$\begin{bmatrix} & & \\ & 1.00 & \\ & & \end{bmatrix}$$

$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_1 = -3.0$$

$$k_{2,1} = 1.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 2.00^2}\right)$$

$$\begin{bmatrix} & & & 1.00 & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \end{bmatrix}$$

$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_1 = -3.0$$

$$k_{2,1} = 1.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 2.00^2}\right)$$

$$\begin{bmatrix} & & & \\ & & 1.00 & \\ & & & \\ & 0.110 & & \\ & & & \\ & & & \end{bmatrix}$$

$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_1 = -3.0$$

$$k_{2,1} = 1.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 2.00^2}\right)$$

$$\begin{bmatrix} & & \\ & 1.00 & 0.110 \\ & 0.110 & \end{bmatrix}$$

$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_2 = 1.20$$

$$k_{2,2} = 1.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 2.00^2}\right)$$

$$\begin{bmatrix} & & \\ & 1.00 & 0.110 \\ & 0.110 & \end{bmatrix}$$

$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_2 = 1.20$$

$$k_{2,2} = 1.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 2.00^2}\right)$$

$$\begin{bmatrix} & & & \\ & 1.00 & 0.110 & \\ & 0.110 & \boxed{1.00} & \\ & & & \end{bmatrix}$$

$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$k_{3,1} = 1.00 \times \exp\left(-\frac{(1.40 - (-3.0))^2}{2 \times 2.00^2}\right)$$

$$\begin{bmatrix} & & & \\ & 1.00 & 0.110 & \\ & 0.110 & 1.00 & \\ & & & \end{bmatrix}$$

$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$k_{3,1} = 1.00 \times \exp\left(-\frac{(1.40 - (-3.0))^2}{2 \times 2.00^2}\right)$$

$$\begin{bmatrix} & & & \\ & 1.00 & 0.110 & \\ & 0.110 & 1.00 & \\ & & 0.0889 & \end{bmatrix}$$

$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$k_{3,1} = 1.00 \times \exp\left(-\frac{(1.40 - (-3.0))^2}{2 \times 2.00^2}\right)$$

$$\begin{bmatrix} & & & \\ & 1.00 & 0.110 & 0.0889 \\ & 0.110 & 1.00 & \\ & 0.0889 & & \end{bmatrix}$$

$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 1.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 2.00^2}\right)$$

$$\begin{bmatrix} & & \\ & 1.00 & 0.110 & 0.0889 \\ & 0.110 & 1.00 & \\ & 0.0889 & & \end{bmatrix}$$

$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 1.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 2.00^2}\right)$$

$$\begin{bmatrix} & & & \\ & 1.00 & 0.110 & 0.0889 \\ & 0.110 & 1.00 & \\ & 0.0889 & 0.995 & \end{bmatrix}$$

$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 1.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 2.00^2}\right)$$

$$\begin{bmatrix} 1.00 & 0.110 & 0.0889 \\ 0.110 & 1.00 & 0.995 \\ 0.0889 & 0.995 \end{bmatrix}$$

$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_3 = 1.40$$

$$k_{3,3} = 1.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 2.00^2}\right)$$

$$\begin{bmatrix} & & \\ & 1.00 & 0.110 & 0.0889 \\ & 0.110 & 1.00 & 0.995 \\ & 0.0889 & 0.995 & \\ & & \end{bmatrix}$$

$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_3 = 1.40$$

$$k_{3,3} = 1.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 2.00^2}\right)$$

$$\begin{bmatrix} 1.00 & 0.110 & 0.0889 \\ 0.110 & 1.00 & 0.995 \\ 0.0889 & 0.995 & 1.00 \end{bmatrix}$$

$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

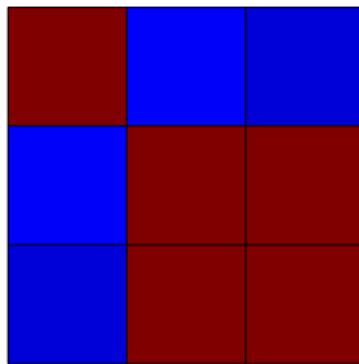
Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_3 = 1.40$$

$$k_{3,3} = 1.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 2.00^2}\right)$$



$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 2.00$ and $\alpha = 1.00$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_1 = -3, x_2 = -3$$

$$k_{1,1} = 1.0 \times \exp\left(-\frac{(-3 - -3)^2}{2 \times 2.0^2}\right)$$

$x_1 = -3, x_2 = 1.2, x_3 = 1.4, \text{ and } x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_1 = -3, x_1 = -3$$

$$k_{1,1} = 1.0 \times \exp\left(-\frac{(-3 - -3)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 \\ & \end{bmatrix}$$

$x_1 = -3, x_2 = 1.2, x_3 = 1.4, \text{ and } x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.2, x_1 = -3$$

$$k_{2,1} = 1.0 \times \exp\left(-\frac{(1.2-1.2)^2}{2 \times 2.0^2}\right)$$

1.0

$x_1 = -3$, $x_2 = 1.2$, $x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.2, x_1 = -3$$

$$k_{2,1} = 1.0 \times \exp\left(-\frac{(1.2 - 1.2)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} & & 1.0 & \\ & & \boxed{0.11} & \\ & & & \\ & & & \end{bmatrix}$$

$x_1 = -3, x_2 = 1.2, x_3 = 1.4, \text{ and } x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.2, x_1 = -3$$

$$k_{2,1} = 1.0 \times \exp\left(-\frac{(1.2 - 1.2)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} & & & \\ & 1.0 & 0.11 & \\ & 0.11 & & \\ & & & \end{bmatrix}$$

$x_1 = -3, x_2 = 1.2, x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.2, x_2 = 1.2$$

$$k_{2,2} = 1.0 \times \exp\left(-\frac{(1.2-1.2)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} & & & \\ & 1.0 & 0.11 & \\ & 0.11 & & \\ & & & \end{bmatrix}$$

$x_1 = -3, x_2 = 1.2, x_3 = 1.4, \text{ and } x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.2, x_2 = 1.2$$

$$k_{2,2} = 1.0 \times \exp\left(-\frac{(1.2-1.2)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} & & & \\ & 1.0 & 0.11 & \\ & 0.11 & \boxed{1.0} & \\ & & & \end{bmatrix}$$

$x_1 = -3, x_2 = 1.2, x_3 = 1.4, \text{ and } x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_1 = -3$$

$$k_{3,1} = 1.0 \times \exp\left(-\frac{(1.4 - 1.4)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} & & & \\ & 1.0 & 0.11 & \\ & 0.11 & 1.0 & \\ & & & \end{bmatrix}$$

$x_1 = -3, x_2 = 1.2, x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_1 = -3$$

$$k_{3,1} = 1.0 \times \exp\left(-\frac{(1.4 - (-3))^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} & & & \\ & 1.0 & 0.11 & \\ & 0.11 & 1.0 & \\ & \boxed{0.089} & & \end{bmatrix}$$

$x_1 = -3, x_2 = 1.2, x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_1 = -3$$

$$k_{3,1} = 1.0 \times \exp\left(-\frac{(1.4 - 1.4)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 \\ 0.11 & 1.0 & \\ 0.089 & & \end{bmatrix}$$

$x_1 = -3, x_2 = 1.2, x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_2 = 1.2$$

$$k_{3,2} = 1.0 \times \exp\left(-\frac{(1.4-1.2)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 \\ 0.11 & 1.0 & \\ 0.089 & & \end{bmatrix}$$

$x_1 = -3, x_2 = 1.2, x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_2 = 1.2$$

$$k_{3,2} = 1.0 \times \exp\left(-\frac{(1.4-1.4)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 \\ 0.11 & 1.0 & \\ 0.089 & 1.0 & \end{bmatrix}$$

$x_1 = -3, x_2 = 1.2, x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_2 = 1.2$$

$$k_{3,2} = 1.0 \times \exp\left(-\frac{(1.4-1.2)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 \\ 0.11 & 1.0 & 1.0 \\ 0.089 & 1.0 \end{bmatrix}$$

$x_1 = -3, x_2 = 1.2, x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_3 = 1.4$$

$$k_{3,3} = 1.0 \times \exp\left(-\frac{(1.4-1.4)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 \\ 0.11 & 1.0 & 1.0 \\ 0.089 & 1.0 \end{bmatrix}$$

$x_1 = -3, x_2 = 1.2, x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_3 = 1.4$$

$$k_{3,3} = 1.0 \times \exp\left(-\frac{(1.4-1.4)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 \\ 0.11 & 1.0 & 1.0 \\ 0.089 & 1.0 & \boxed{1.0} \end{bmatrix}$$

$x_1 = -3, x_2 = 1.2, x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_1 = -3$$

$$k_{4,1} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 \\ 0.11 & 1.0 & 1.0 \\ 0.089 & 1.0 & 1.0 \end{bmatrix}$$

$x_1 = -3, x_2 = 1.2, x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_1 = -3$$

$$k_{4,1} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 \\ 0.11 & 1.0 & 1.0 \\ 0.089 & 1.0 & 1.0 \\ 0.044 & & \end{bmatrix}$$

$x_1 = -3, x_2 = 1.2, x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_1 = -3$$

$$k_{4,1} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 & 0.044 \\ 0.11 & 1.0 & 1.0 & \\ 0.089 & 1.0 & 1.0 & \\ 0.044 & & & \end{bmatrix}$$

$x_1 = -3, x_2 = 1.2, x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_2 = 1.2$$

$$k_{4,2} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 & 0.044 \\ 0.11 & 1.0 & 1.0 & \\ 0.089 & 1.0 & 1.0 & \\ 0.044 & & & \end{bmatrix}$$

$x_1 = -3, x_2 = 1.2, x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_2 = 1.2$$

$$k_{4,2} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 & 0.044 \\ 0.11 & 1.0 & 1.0 & \\ 0.089 & 1.0 & 1.0 & \\ 0.044 & 0.92 & & \end{bmatrix}$$

$x_1 = -3, x_2 = 1.2, x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_2 = 1.2$$

$$k_{4,2} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 & 0.044 \\ 0.11 & 1.0 & 1.0 & 0.92 \\ 0.089 & 1.0 & 1.0 & \\ 0.044 & 0.92 & & \end{bmatrix}$$

$x_1 = -3, x_2 = 1.2, x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_3 = 1.4$$

$$k_{4,3} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 & 0.044 \\ 0.11 & 1.0 & 1.0 & 0.92 \\ 0.089 & 1.0 & 1.0 & \\ 0.044 & 0.92 & & \end{bmatrix}$$

$x_1 = -3, x_2 = 1.2, x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_3 = 1.4$$

$$k_{4,3} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 & 0.044 \\ 0.11 & 1.0 & 1.0 & 0.92 \\ 0.089 & 1.0 & 1.0 & \\ 0.044 & 0.92 & 0.96 & \end{bmatrix}$$

$x_1 = -3, x_2 = 1.2, x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_3 = 1.4$$

$$k_{4,3} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 & 0.044 \\ 0.11 & 1.0 & 1.0 & 0.92 \\ 0.089 & 1.0 & 1.0 & 0.96 \\ 0.044 & 0.92 & 0.96 \end{bmatrix}$$

$x_1 = -3, x_2 = 1.2, x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_4 = 2.0$$

$$k_{4,4} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 & 0.044 \\ 0.11 & 1.0 & 1.0 & 0.92 \\ 0.089 & 1.0 & 1.0 & 0.96 \\ 0.044 & 0.92 & 0.96 \end{bmatrix}$$

$x_1 = -3, x_2 = 1.2, x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_4 = 2.0$$

$$k_{4,4} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 & 0.044 \\ 0.11 & 1.0 & 1.0 & 0.92 \\ 0.089 & 1.0 & 1.0 & 0.96 \\ 0.044 & 0.92 & 0.96 & 1.0 \end{bmatrix}$$

$x_1 = -3, x_2 = 1.2, x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

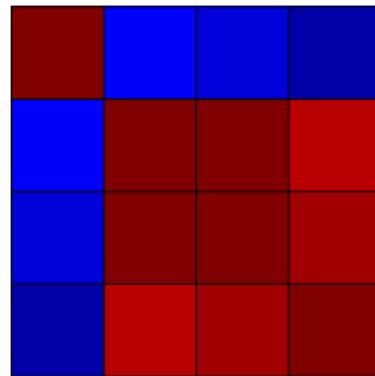
Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_4 = 2.0$$

$$k_{4,4} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$



$x_1 = -3, x_2 = 1.2, x_3 = 1.4$, and $x_4 = 2.0$ with $\ell = 2.0$ and $\alpha = 1.0$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_1 = -3.0, x_2 = -3.0$$

$$k_{1,1} = 4.00 \times \exp\left(-\frac{(-3.0 - -3.0)^2}{2 \times 5.00^2}\right)$$

$$x_1 = -3.0, x_2 = 1.20, \text{ and } x_3 = 1.40 \text{ with } \ell = 5.00 \text{ and } \alpha = 4.00.$$

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_1 = -3.0, x_1 = -3.0$$

$$k_{1,1} = 4.00 \times \exp\left(-\frac{(-3.0 - -3.0)^2}{2 \times 5.00^2}\right)$$

$$\begin{bmatrix} & & \\ & 4.00 & \\ & & \end{bmatrix}$$

$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_1 = -3.0$$

$$k_{2,1} = 4.00 \times \exp \left(-\frac{(1.20-1.20)^2}{2 \times 5.00^2} \right)$$

4.00

$x_1 = -3.0$, $x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_1 = -3.0$$

$$k_{2,1} = 4.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 5.00^2}\right)$$

$$\begin{bmatrix} & & & \\ & & 4.00 & \\ & & & \\ & 2.81 & & \\ & & & \\ & & & \end{bmatrix}$$

$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_1 = -3.0$$

$$k_{2,1} = 4.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 5.00^2}\right)$$

$$\begin{bmatrix} & & \\ & 4.00 & 2.81 \\ & 2.81 & \end{bmatrix}$$

$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_2 = 1.20$$

$$k_{2,2} = 4.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 5.00^2}\right)$$

$$\begin{bmatrix} & & \\ & 4.00 & 2.81 \\ & 2.81 & \end{bmatrix}$$

$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_2 = 1.20$$

$$k_{2,2} = 4.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 5.00^2}\right)$$

$$\begin{bmatrix} & & & \\ & 4.00 & 2.81 & \\ & 2.81 & \boxed{4.00} & \\ & & & \end{bmatrix}$$

$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$k_{3,1} = 4.00 \times \exp\left(-\frac{(1.40 - (-3.0))^2}{2 \times 5.00^2}\right)$$

$$\begin{bmatrix} & & & \\ & 4.00 & 2.81 & \\ & 2.81 & 4.00 & \\ & & & \end{bmatrix}$$

$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$k_{3,1} = 4.00 \times \exp\left(-\frac{(1.40 - (-3.0))^2}{2 \times 5.00^2}\right)$$

$$\begin{bmatrix} & & & \\ & 4.00 & 2.81 & \\ & 2.81 & 4.00 & \\ & & & \boxed{2.72} \end{bmatrix}$$

$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$k_{3,1} = 4.00 \times \exp\left(-\frac{(1.40 - (-3.0))^2}{2 \times 5.00^2}\right)$$

$$\begin{bmatrix} & & \\ & 4.00 & 2.81 & 2.72 \\ & 2.81 & 4.00 & \\ & 2.72 & & \end{bmatrix}$$

$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 4.00 \times \exp\left(-\frac{(1.40 - 1.20)^2}{2 \times 5.00^2}\right)$$

$$\begin{bmatrix} & & \\ & 4.00 & 2.81 & 2.72 \\ & 2.81 & 4.00 & \\ & & 2.72 & \end{bmatrix}$$

$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 4.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 5.00^2}\right)$$

$$\begin{bmatrix} & & & \\ & 4.00 & 2.81 & 2.72 \\ & 2.81 & 4.00 & \\ & 2.72 & 4.00 & \end{bmatrix}$$

$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 4.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 5.00^2}\right)$$

$$\begin{bmatrix} & & \\ & 4.00 & 2.81 & 2.72 \\ & 2.81 & 4.00 & 4.00 \\ & 2.72 & 4.00 & \\ & & & \end{bmatrix}$$

$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_3 = 1.40$$

$$k_{3,3} = 4.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 5.00^2}\right)$$

$$\begin{bmatrix} & & \\ & 4.00 & 2.81 & 2.72 \\ & 2.81 & 4.00 & 4.00 \\ & 2.72 & 4.00 & \\ & & & \end{bmatrix}$$

$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_3 = 1.40$$

$$k_{3,3} = 4.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 5.00^2}\right)$$

$$\begin{bmatrix} & & & \\ & 4.00 & 2.81 & 2.72 \\ & 2.81 & 4.00 & 4.00 \\ & 2.72 & 4.00 & 4.00 \end{bmatrix}$$

$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

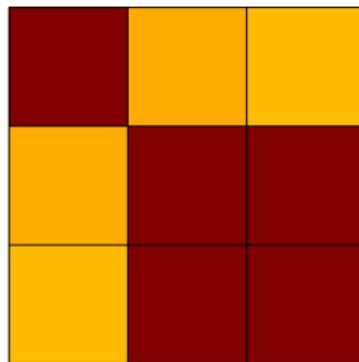
Covariance Functions

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_3 = 1.40$$

$$k_{3,3} = 4.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 5.00^2}\right)$$



$x_1 = -3.0, x_2 = 1.20$, and $x_3 = 1.40$ with $\ell = 5.00$ and $\alpha = 4.00$.

Outline

- 1 The Gaussian Density
- 2 Constructing Covariance
- 3 GP Limitations
- 4 Conclusions

Constructing Covariance Functions

- Sum of two covariances is also a covariance function.

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$

Constructing Covariance Functions

- Product of two covariances is also a covariance function.

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}')k_2(\mathbf{x}, \mathbf{x}')$$

Multiply by Deterministic Function

- If $f(\mathbf{x})$ is a Gaussian process.
- $g(\mathbf{x})$ is a deterministic function.
- $h(\mathbf{x}) = f(\mathbf{x})g(\mathbf{x})$
- Then

$$k_h(\mathbf{x}, \mathbf{x}') = g(\mathbf{x})k_f(\mathbf{x}, \mathbf{x}')g(\mathbf{x}')$$

where k_h is covariance for $h(\cdot)$ and k_f is covariance for $f(\cdot)$.

Covariance Functions

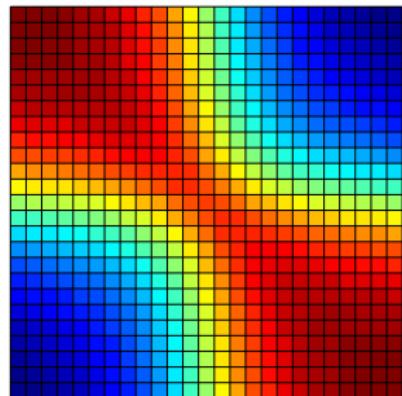
MLP Covariance Function

$$k(\mathbf{x}, \mathbf{x}') = \alpha \arcsin \left(\frac{\mathbf{w} \mathbf{x}^\top \mathbf{x}' + b}{\sqrt{\mathbf{w} \mathbf{x}^\top \mathbf{x} + b + 1} \sqrt{\mathbf{w} \mathbf{x}'^\top \mathbf{x}' + b + 1}} \right)$$

- Based on infinite neural network model.

$$w = 40$$

$$b = 4$$



Covariance Functions

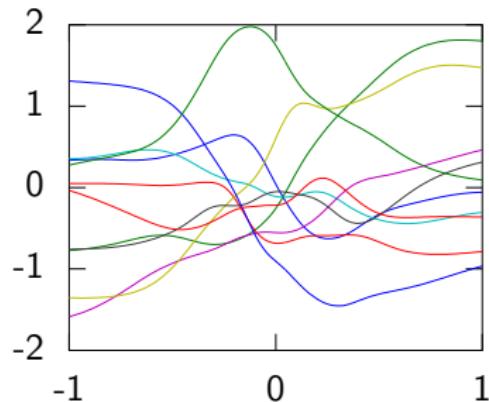
MLP Covariance Function

$$k(\mathbf{x}, \mathbf{x}') = \alpha \arcsin \left(\frac{\mathbf{w} \mathbf{x}^\top \mathbf{x}' + b}{\sqrt{\mathbf{w} \mathbf{x}^\top \mathbf{x} + b + 1} \sqrt{\mathbf{w} \mathbf{x}'^\top \mathbf{x}' + b + 1}} \right)$$

- Based on infinite neural network model.

$$w = 40$$

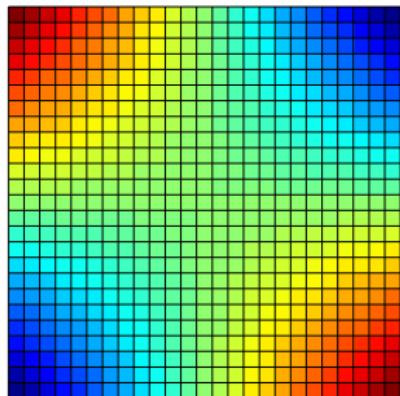
$$b = 4$$



Covariance Functions

Linear Covariance Function

$$k(\mathbf{x}, \mathbf{x}') = \alpha \mathbf{x}^\top \mathbf{x}'$$



- Bayesian linear regression.

$$\alpha = 1$$

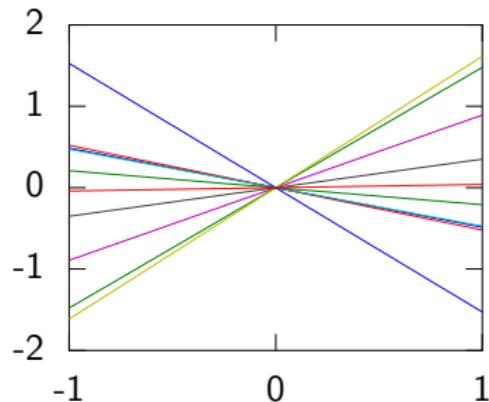
Covariance Functions

Linear Covariance Function

$$k(\mathbf{x}, \mathbf{x}') = \alpha \mathbf{x}^\top \mathbf{x}'$$

- Bayesian linear regression.

$$\alpha = 1$$



Gaussian Process Interpolation

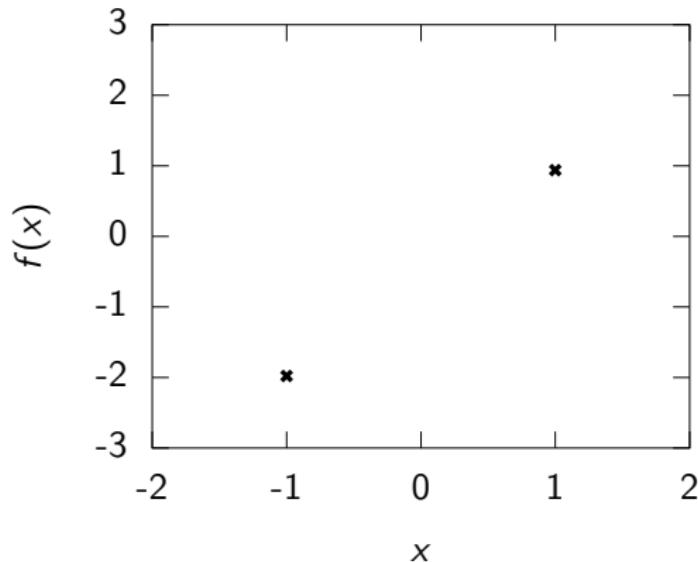


Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)). Interpolation through outputs from slow computer simulations (e.g. atmospheric carbon levels).

Gaussian Process Interpolation

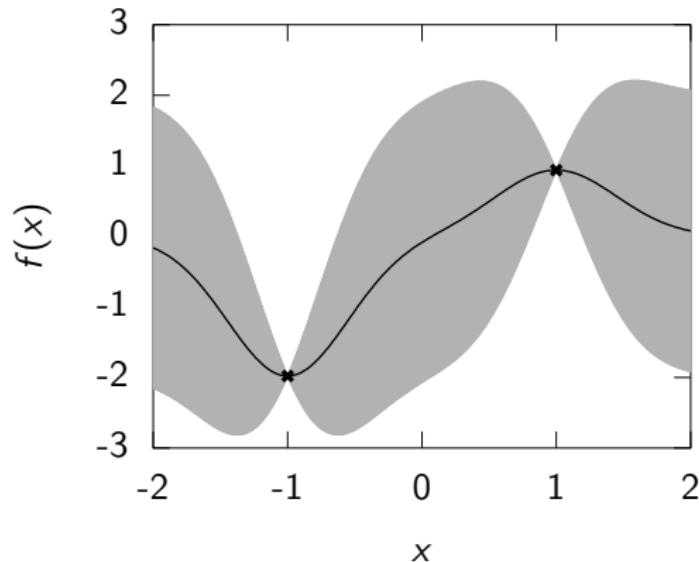


Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)). Interpolation through outputs from slow computer simulations (e.g. atmospheric carbon levels).

Gaussian Process Interpolation

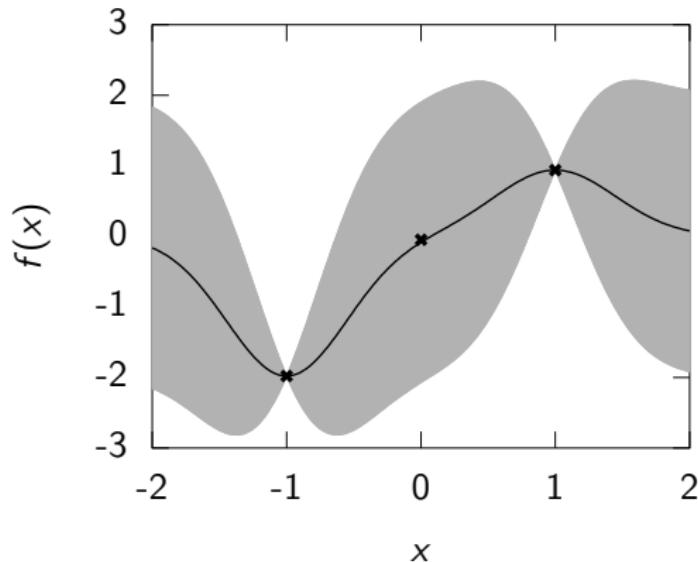


Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)). Interpolation through outputs from slow computer simulations (e.g. atmospheric carbon levels).

Gaussian Process Interpolation

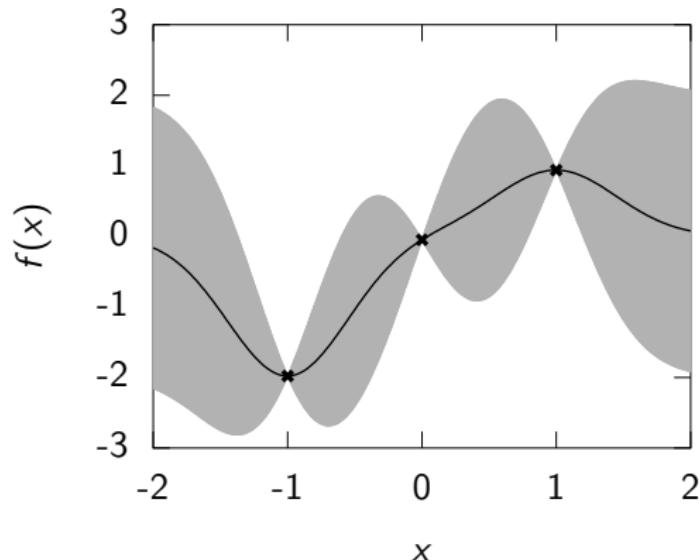


Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)). Interpolation through outputs from slow computer simulations (e.g. atmospheric carbon levels).

Gaussian Process Interpolation

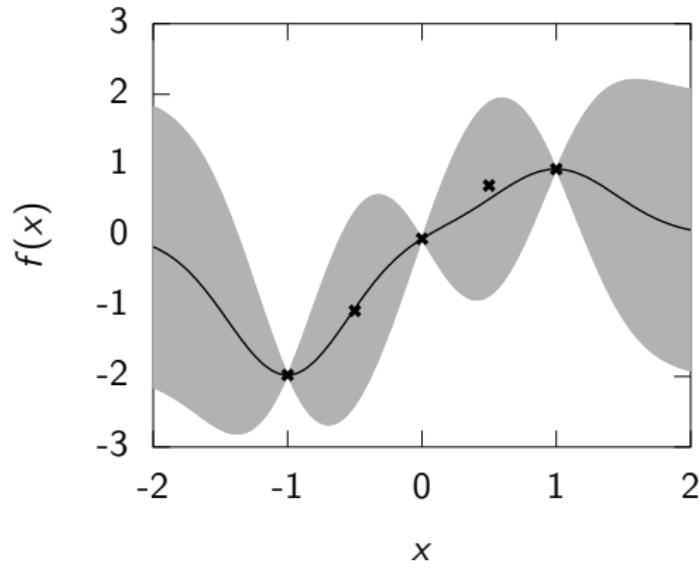


Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)). Interpolation through outputs from slow computer simulations (e.g. atmospheric carbon levels).

Gaussian Process Interpolation

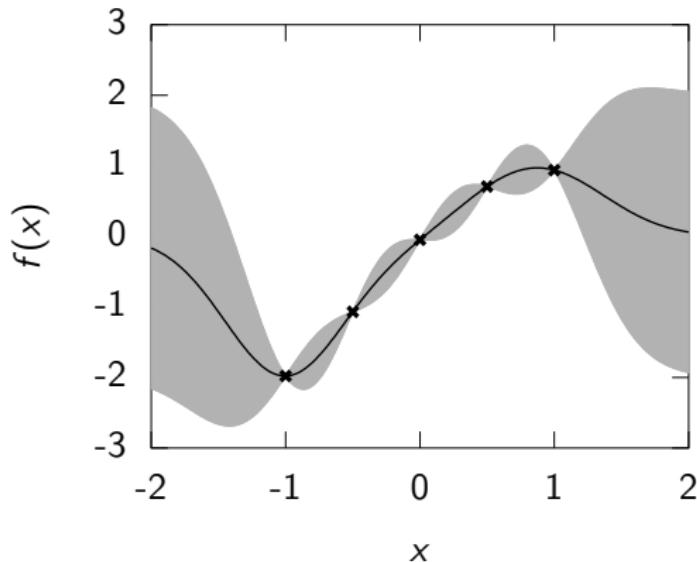


Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)). Interpolation through outputs from slow computer simulations (e.g. atmospheric carbon levels).

Gaussian Process Interpolation

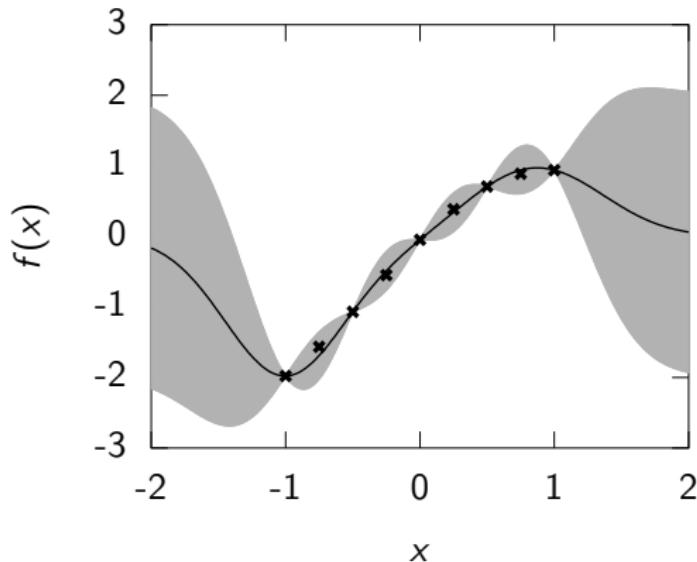


Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)). Interpolation through outputs from slow computer simulations (e.g. atmospheric carbon levels).

Gaussian Process Interpolation

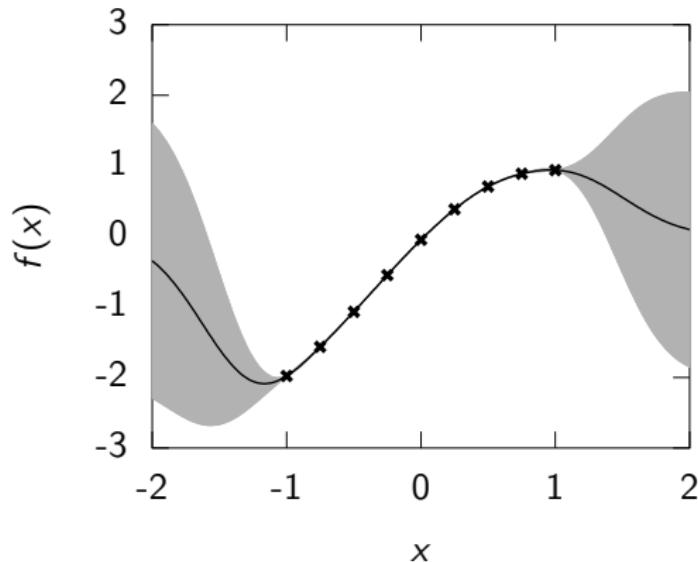


Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)). Interpolation through outputs from slow computer simulations (e.g. atmospheric carbon levels).

Noise Models

Graph of a GP

- Relates input variables, \mathbf{X} , to vector, \mathbf{y} , through \mathbf{f} given kernel parameters θ .
- Plate notation indicates independence of $y_i|f_i$.
- Noise model, $p(y_i|f_i)$ can take several forms.
- Simplest is Gaussian noise.

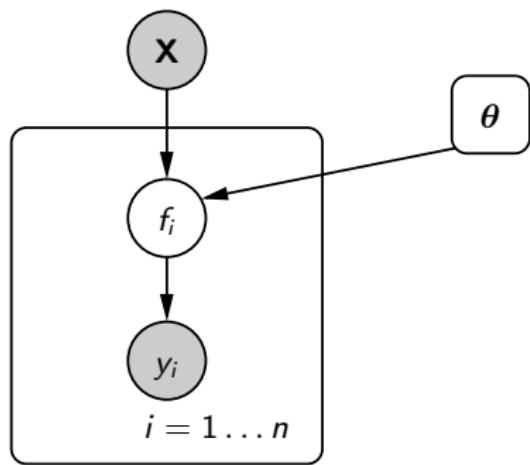


Figure: The Gaussian process depicted graphically.

Gaussian Noise

- Gaussian noise model,

$$p(y_i|f_i) = \mathcal{N}(y_i|f_i, \sigma^2)$$

where σ^2 is the variance of the noise.

- Equivalent to a covariance function of the form

$$k(\mathbf{x}_i, \mathbf{x}_j) = \delta_{i,j} \sigma^2$$

where $\delta_{i,j}$ is the Kronecker delta function.

- Additive nature of Gaussians means we can simply add this term to existing covariance matrices.

Gaussian Process Regression

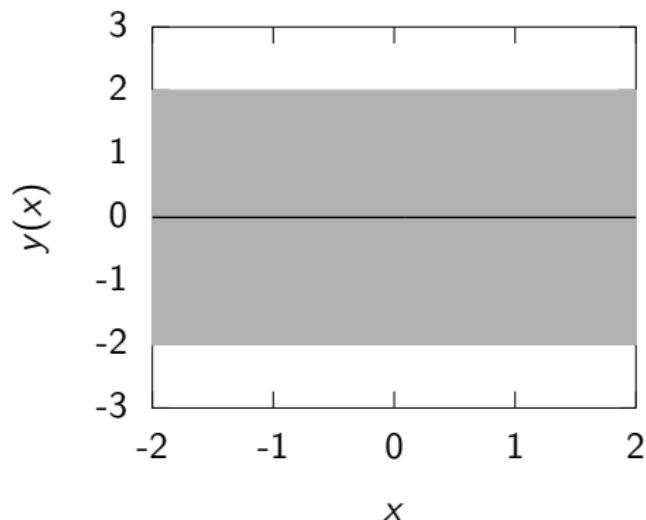


Figure: Examples include WiFi localization, C14 calibration curve.

Gaussian Process Regression

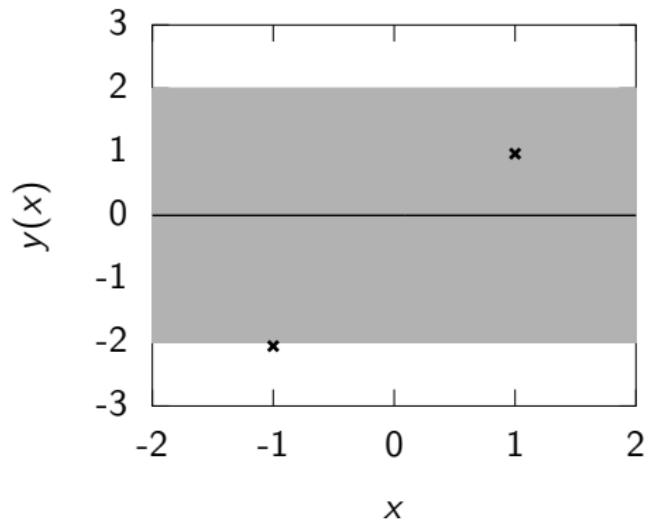


Figure: Examples include WiFi localization, C14 calibration curve.

Gaussian Process Regression

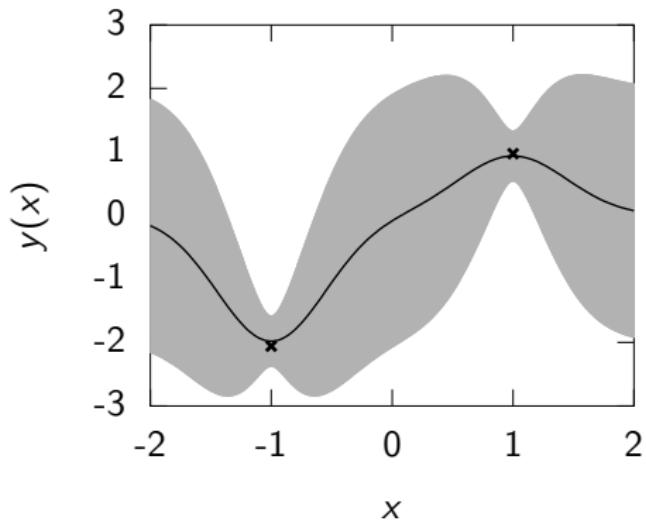


Figure: Examples include WiFi localization, C14 calibration curve.

Gaussian Process Regression

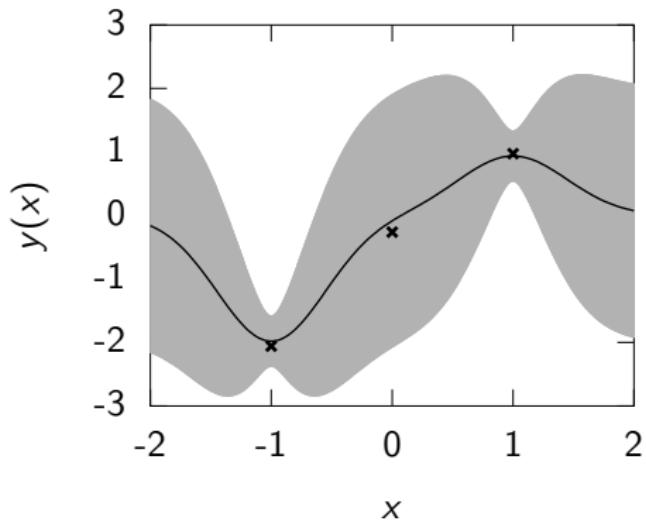


Figure: Examples include WiFi localization, C14 calibration curve.

Gaussian Process Regression

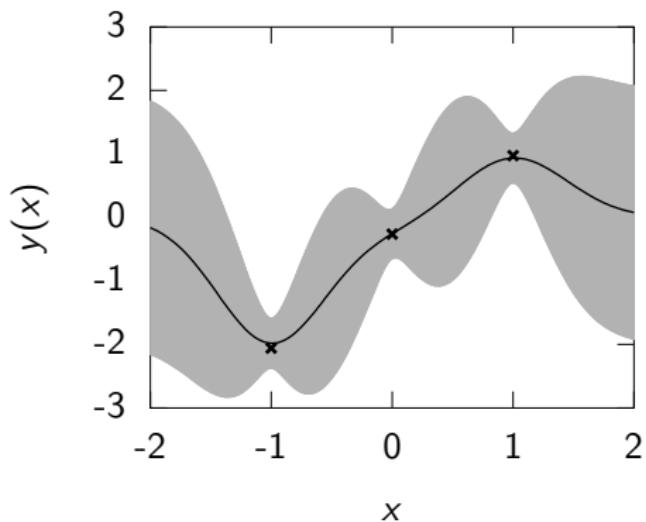


Figure: Examples include WiFi localization, C14 calibration curve.

Gaussian Process Regression

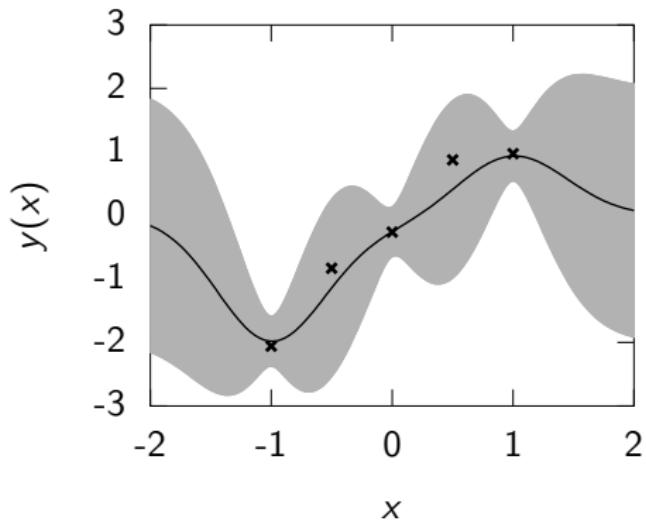


Figure: Examples include WiFi localization, C14 calibration curve.

Gaussian Process Regression

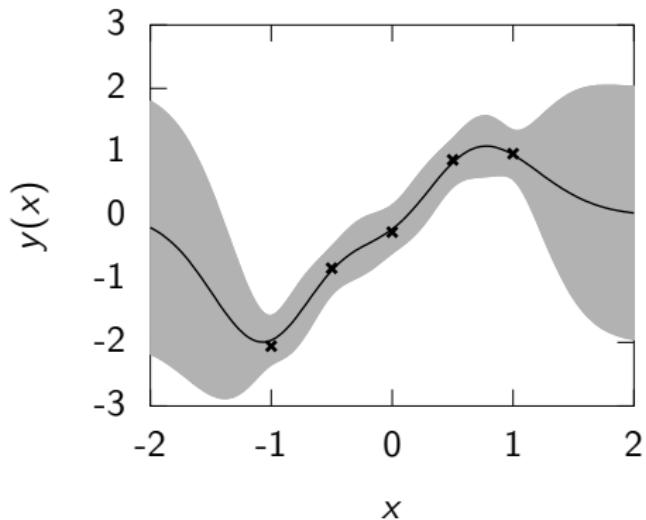


Figure: Examples include WiFi localization, C14 calibration curve.

Gaussian Process Regression

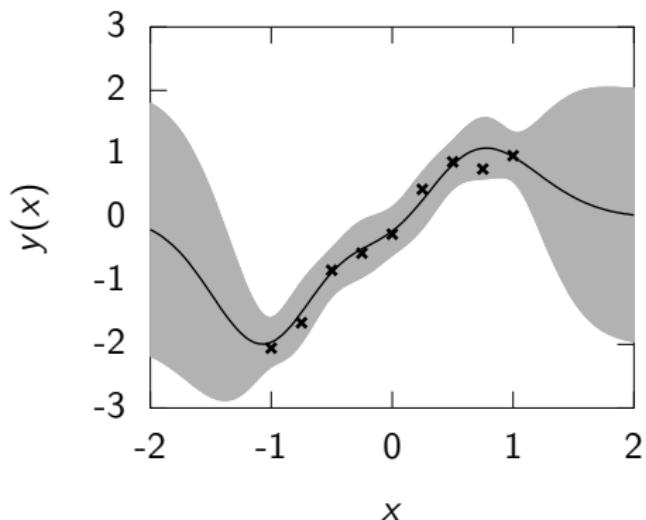


Figure: Examples include WiFi localization, C14 calibration curve.

Gaussian Process Regression



Figure: Examples include WiFi localization, C14 calibration curve.

Learning Covariance Parameters

Can we determine covariance parameters from the data?

$$\mathcal{N}(\mathbf{y}|\mathbf{0}, \mathbf{K}) = \frac{1}{(2\pi)^{\frac{n}{2}}|\mathbf{K}|} \exp\left(-\frac{\mathbf{y}^\top \mathbf{K}^{-1} \mathbf{y}}{2}\right)$$

The parameters are *inside* the covariance function (matrix).

$$k_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j; \boldsymbol{\theta})$$

Learning Covariance Parameters

Can we determine covariance parameters from the data?

$$\mathcal{N}(\mathbf{y}|\mathbf{0}, \mathbf{K}) = \frac{1}{(2\pi)^{\frac{n}{2}} |\mathbf{K}|} \exp\left(-\frac{\mathbf{y}^\top \mathbf{K}^{-1} \mathbf{y}}{2}\right)$$

The parameters are *inside* the covariance function (matrix).

$$k_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j; \boldsymbol{\theta})$$

Learning Covariance Parameters

Can we determine covariance parameters from the data?

$$\log \mathcal{N}(\mathbf{y}|\mathbf{0}, \mathbf{K}) = -\frac{n}{2} \log 2\pi - \frac{1}{2} \log |\mathbf{K}| - \frac{\mathbf{y}^\top \mathbf{K}^{-1} \mathbf{y}}{2}$$

The parameters are *inside* the covariance function (matrix).

$$k_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j; \boldsymbol{\theta})$$

Learning Covariance Parameters

Can we determine covariance parameters from the data?

$$E(\theta) = \frac{1}{2} \log |\mathbf{K}| + \frac{\mathbf{y}^\top \mathbf{K}^{-1} \mathbf{y}}{2}$$

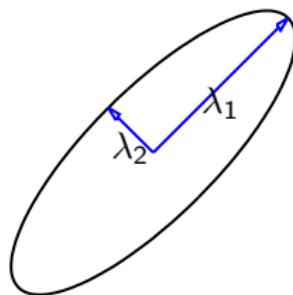
The parameters are *inside* the covariance function (matrix).

$$k_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j; \theta)$$

Eigendecomposition of Covariance

A useful decomposition for understanding the objective function.

$$\mathbf{K} = \mathbf{R}\Lambda^2\mathbf{R}^\top$$



Diagonal of Λ represents distance along axes.
 \mathbf{R} gives a rotation of these axes.

where Λ is a *diagonal* matrix and $\mathbf{R}^\top\mathbf{R} = \mathbf{I}$.

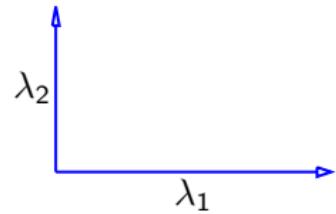
Useful representation since $|\mathbf{K}| = |\Lambda^2| = |\Lambda|^2$.

Capacity control: $\log |\mathbf{K}|$

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \xrightarrow{\lambda_1}$$

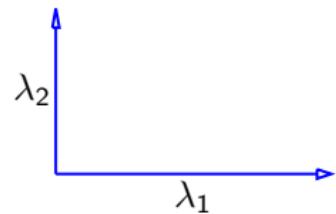
Capacity control: $\log |\mathbf{K}|$

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

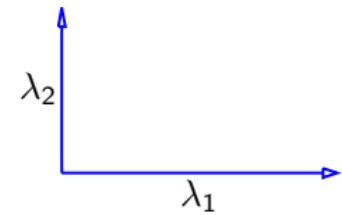


Capacity control: $\log |\mathbf{K}|$

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

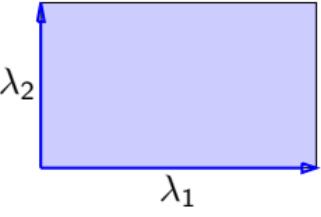


Capacity control: $\log |\mathbf{K}|$

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$


$$|\Lambda| = \lambda_1 \lambda_2$$

Capacity control: $\log |\mathbf{K}|$

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$


$$|\Lambda| = \lambda_1 \lambda_2$$

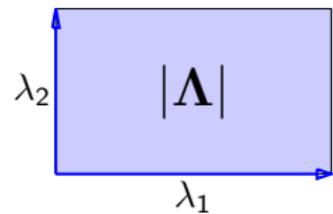
Capacity control: $\log |\mathbf{K}|$

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

$$|\Lambda| = \lambda_1 \lambda_2$$

Capacity control: $\log |\mathbf{K}|$

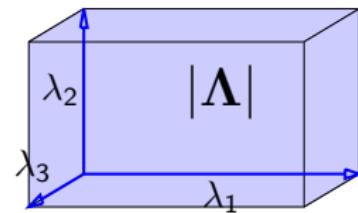
$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$$



$$|\Lambda| = \lambda_1 \lambda_2$$

Capacity control: $\log |\mathbf{K}|$

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$$



$$|\Lambda| = \lambda_1 \lambda_2 \lambda_3$$

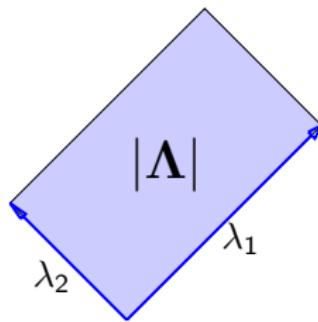
Capacity control: $\log |\mathbf{K}|$

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

$$|\Lambda| = \lambda_1 \lambda_2$$

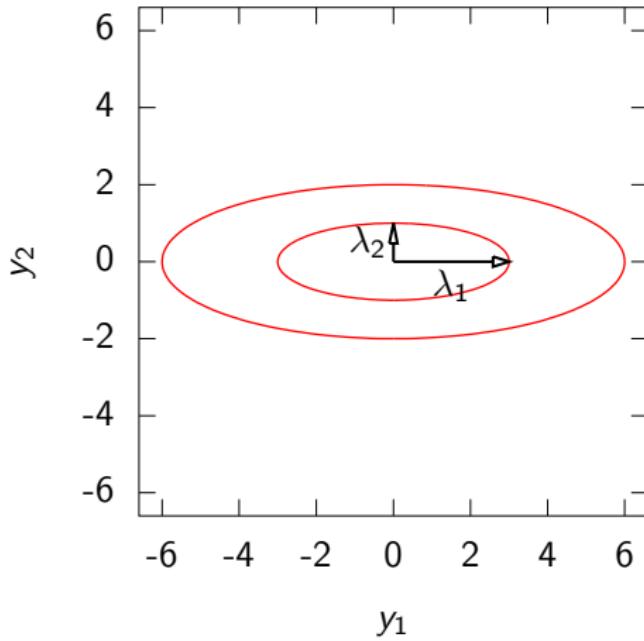
Capacity control: $\log |\mathbf{K}|$

$$\mathbf{R}\Lambda = \begin{bmatrix} w_{1,1} & w_{1,2} \\ w_{2,1} & w_{2,2} \end{bmatrix}$$

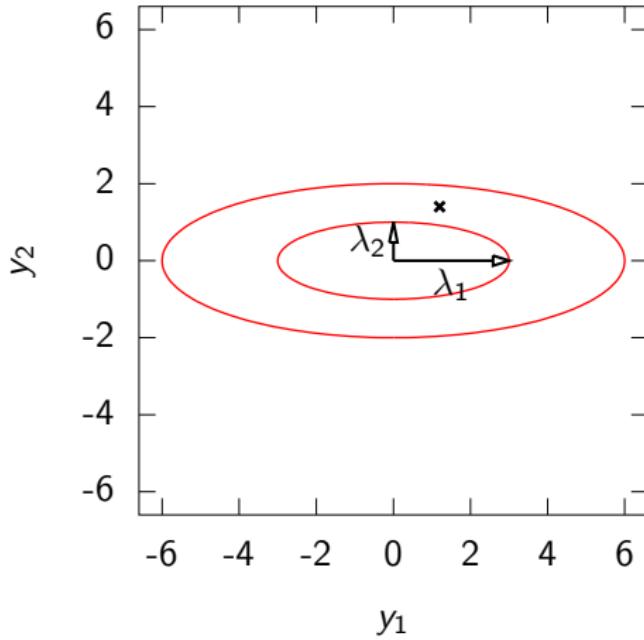


$$|\mathbf{R}\Lambda| = \lambda_1 \lambda_2$$

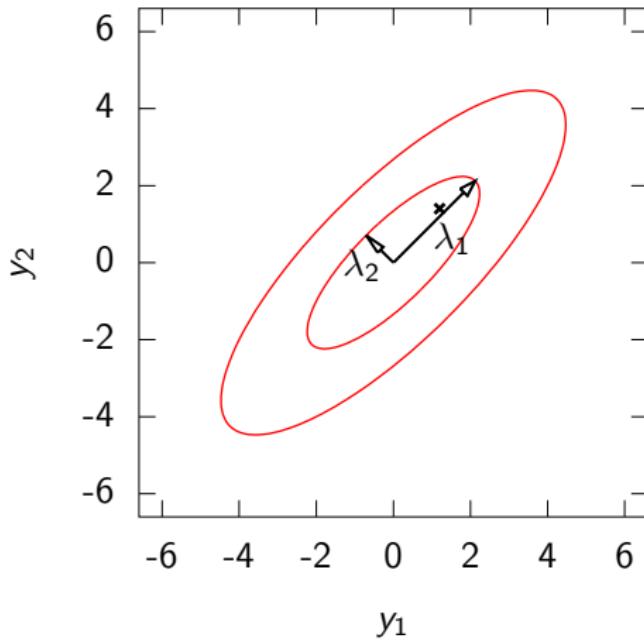
Data Fit: $\frac{\mathbf{y}^{-1}\mathbf{K}^{-1}\mathbf{y}}{2}$



Data Fit: $\frac{\mathbf{y}^{-1}\mathbf{K}^{-1}\mathbf{y}}{2}$

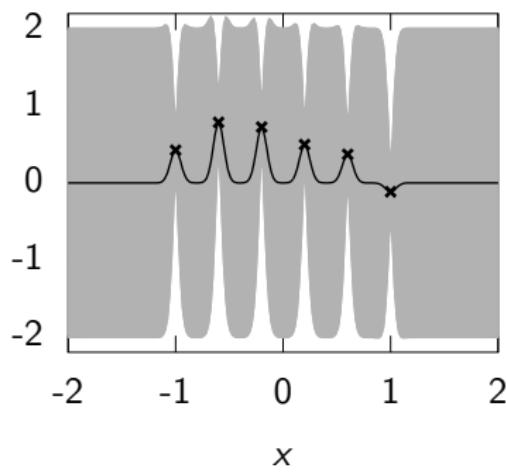
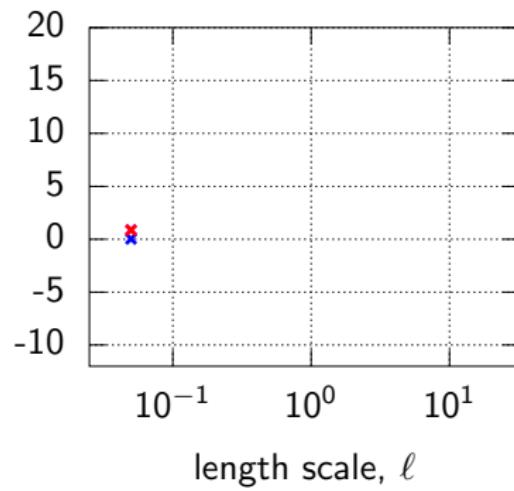


Data Fit: $\frac{\mathbf{y}^{-1}\mathbf{K}^{-1}\mathbf{y}}{2}$



Learning Covariance Parameters

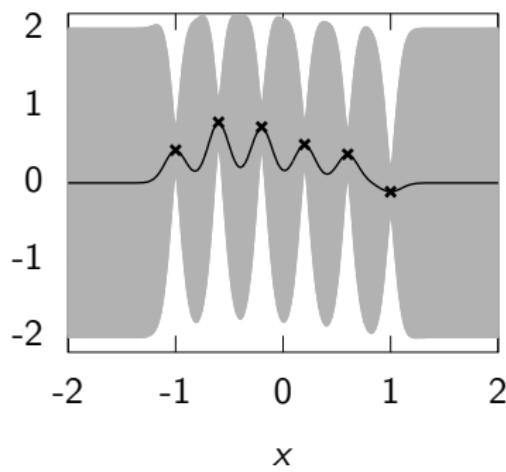
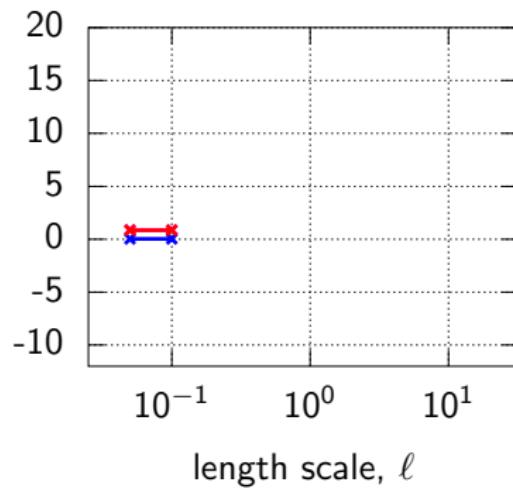
Can we determine length scales and noise levels from the data?



$$E(\theta) = \frac{1}{2} |\mathbf{K}| + \frac{\mathbf{y}^\top \mathbf{K}^{-1} \mathbf{y}}{2}$$

Learning Covariance Parameters

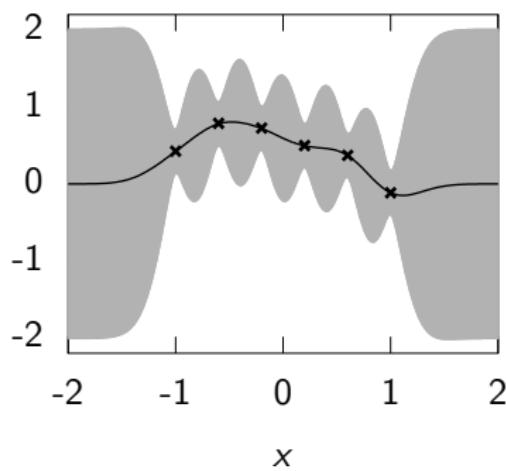
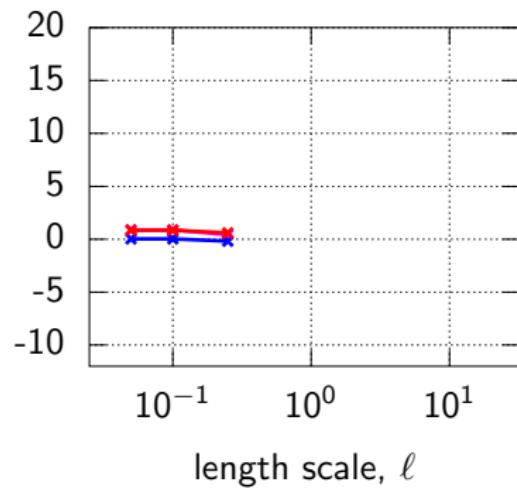
Can we determine length scales and noise levels from the data?



$$E(\theta) = \frac{1}{2} |\mathbf{K}| + \frac{\mathbf{y}^\top \mathbf{K}^{-1} \mathbf{y}}{2}$$

Learning Covariance Parameters

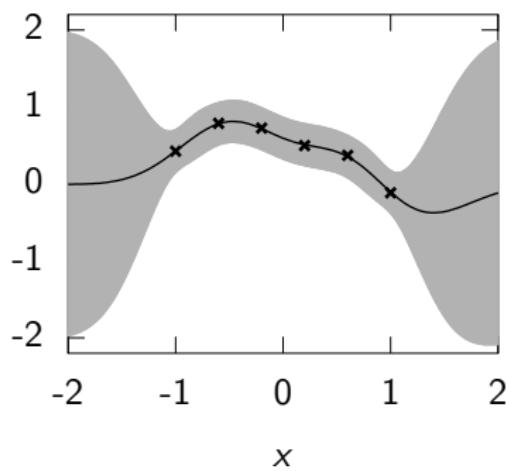
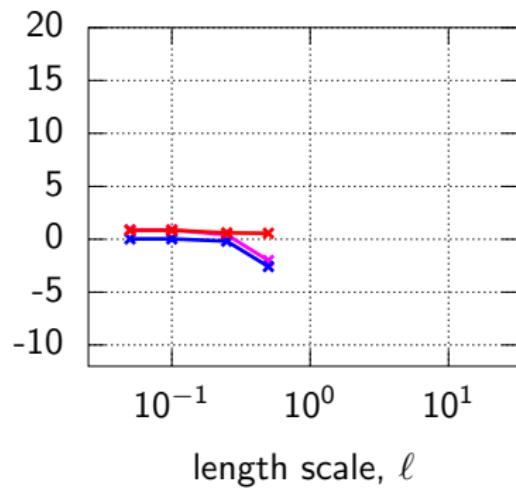
Can we determine length scales and noise levels from the data?



$$E(\theta) = \frac{1}{2} |\mathbf{K}| + \frac{\mathbf{y}^\top \mathbf{K}^{-1} \mathbf{y}}{2}$$

Learning Covariance Parameters

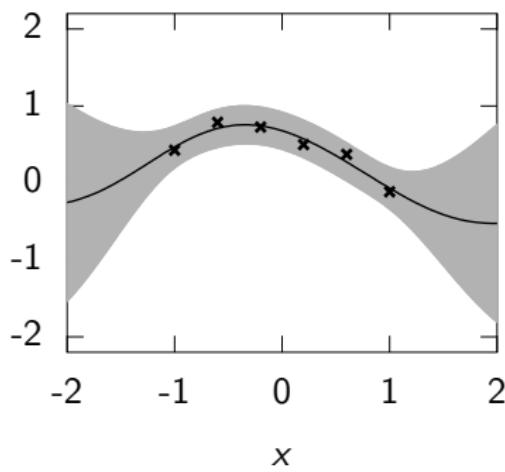
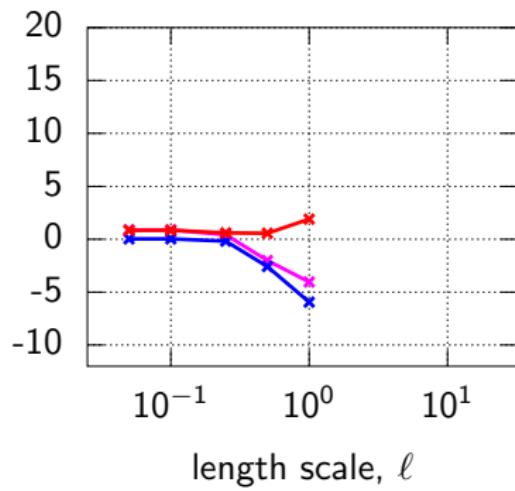
Can we determine length scales and noise levels from the data?



$$E(\theta) = \frac{1}{2} |\mathbf{K}| + \frac{\mathbf{y}^\top \mathbf{K}^{-1} \mathbf{y}}{2}$$

Learning Covariance Parameters

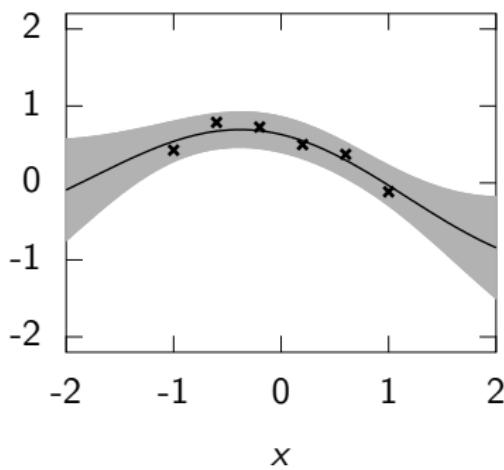
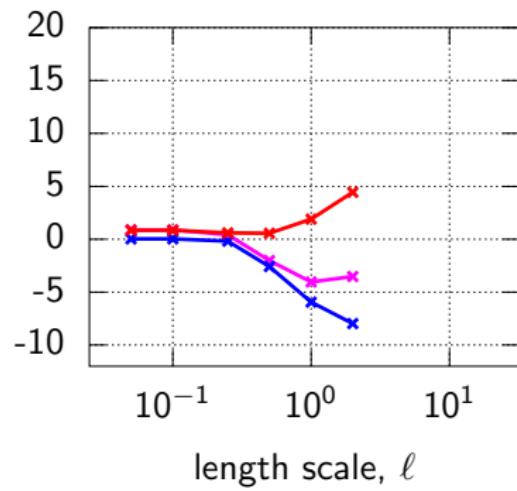
Can we determine length scales and noise levels from the data?



$$E(\theta) = \frac{1}{2} |\mathbf{K}| + \frac{\mathbf{y}^\top \mathbf{K}^{-1} \mathbf{y}}{2}$$

Learning Covariance Parameters

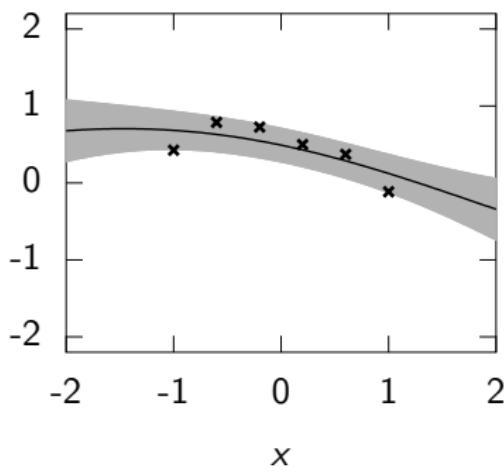
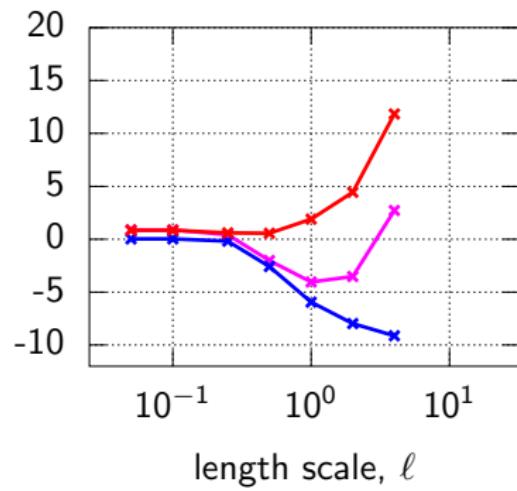
Can we determine length scales and noise levels from the data?



$$E(\theta) = \frac{1}{2} |\mathbf{K}| + \frac{\mathbf{y}^\top \mathbf{K}^{-1} \mathbf{y}}{2}$$

Learning Covariance Parameters

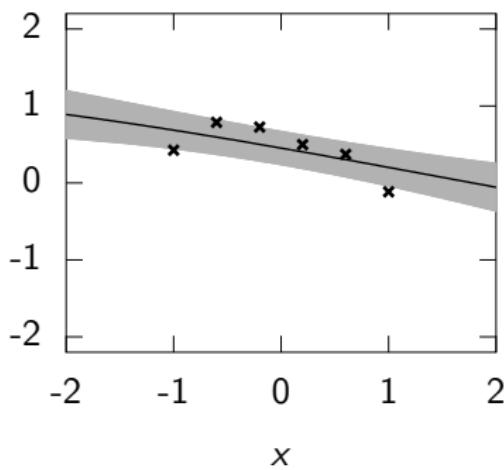
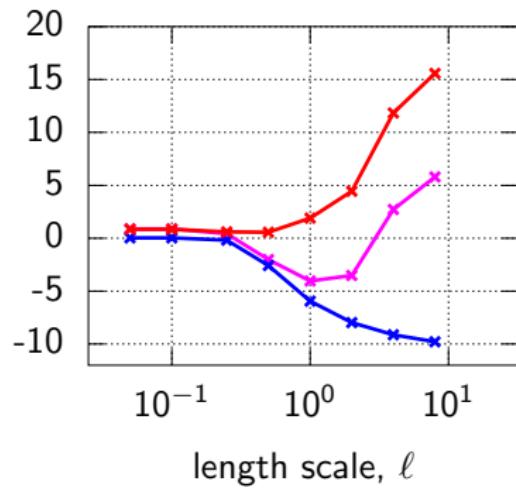
Can we determine length scales and noise levels from the data?



$$E(\theta) = \frac{1}{2} |\mathbf{K}| + \frac{\mathbf{y}^\top \mathbf{K}^{-1} \mathbf{y}}{2}$$

Learning Covariance Parameters

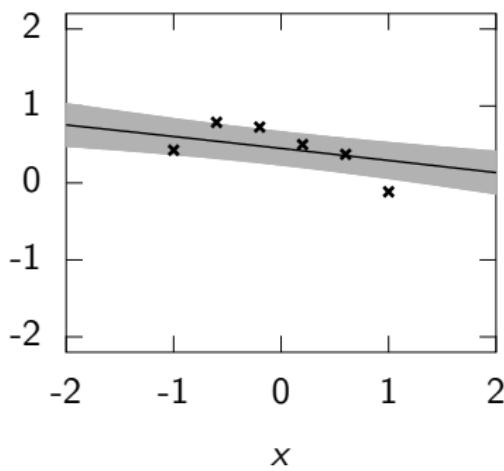
Can we determine length scales and noise levels from the data?



$$E(\theta) = \frac{1}{2} |\mathbf{K}| + \frac{\mathbf{y}^\top \mathbf{K}^{-1} \mathbf{y}}{2}$$

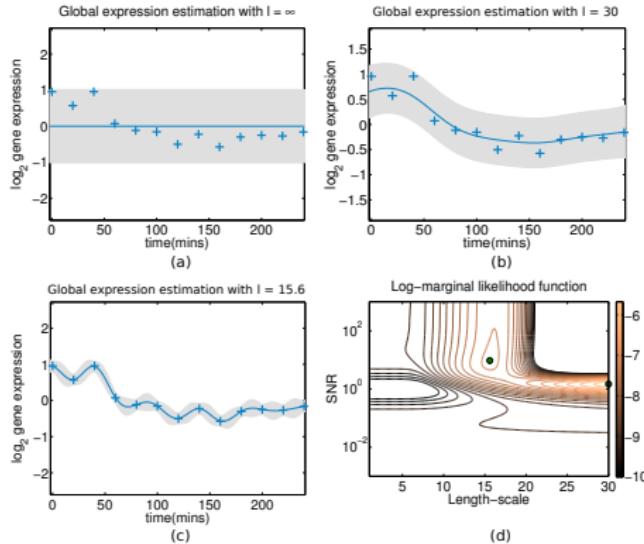
Learning Covariance Parameters

Can we determine length scales and noise levels from the data?



$$E(\theta) = \frac{1}{2} |\mathbf{K}| + \frac{\mathbf{y}^\top \mathbf{K}^{-1} \mathbf{y}}{2}$$

Gene Expression Example



Data from Della Gatta et al. (2008). Figure from Kalaitzis and Lawrence (2011).

Outline

- 1 The Gaussian Density
- 2 Constructing Covariance
- 3 GP Limitations
- 4 Conclusions

Limitations of Gaussian Processes

- Inference is $O(n^3)$ due to matrix inverse (in practice use Cholesky).
- Gaussian processes don't deal well with discontinuities (financial crises, phosphorylation, collisions, edges in images).
- Widely used exponentiated quadratic covariance (RBF) can be too smooth in practice (but there are many alternatives!!).

Summary

- Broad introduction to Gaussian processes.
 - ▶ Started with Gaussian distribution.
 - ▶ Motivated Gaussian processes through the multivariate density.
- Emphasized the role of the covariance (not the mean).
- Performs nonlinear regression with error bars.
- Parameters of the covariance function (kernel) are easily optimized with maximum likelihood.

References |

G. Della Gatta, M. Bansal, A. Ambesi-Impiombato, D. Antonini, C. Missiro, and D. di Bernardo. Direct targets of the trp63 transcription factor revealed by a combination of gene expression profiling and reverse engineering. *Genome Research*, 18(6): 939–948, Jun 2008. [\[URL\]](#). [\[DOI\]](#).

A. A. Kalaitzis and N. D. Lawrence. A simple approach to ranking differentially expressed gene expression time courses through Gaussian process regression. *BMC Bioinformatics*, 12(180), 2011. [\[DOI\]](#).

J. Oakley and A. O'Hagan. Bayesian inference for the uncertainty distribution of computer model outputs. *Biometrika*, 89(4): 769–784, 2002.

C. E. Rasmussen and C. K. I. Williams. *Gaussian Processes for Machine Learning*. MIT Press, Cambridge, MA, 2006. [\[Google Books\]](#) .