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The Gaussian Density

@ Perhaps the most common probability density.

Py, 0?) = — eXp(_M>

V2mo? 202
2
=N (ylp,o%)
@ The Gaussian density.
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Gaussian Density

p(hlp,o?)

0 | \
0 1 2

h, height/m

The Gaussian PDF with ;o = 1.7 and variance 02 = 0.0225. Mean shown
as red line. It could represent the heights of a population of students.
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Gaussian Density
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Two Important Gaussian Properties

@ Sum of Gaussian variables is also Gaussian.

Yi NN(N’I"O-iz)

Lawrence () GP Introduction



Two Important Gaussian Properties

@ Sum of Gaussian variables is also Gaussian.

Yir~ N (:u’l"o-l?)

n n n
Sy~ N (Zuf,20?>
i=1 i=1 i=1
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Two Important Gaussian Properties

@ Sum of Gaussian variables is also Gaussian.

yi ~ N (i, 07)

n n n
Sy~ N (Zuf,20?>
i=1 i=1 i=1

(Aside: As sum increases, sum of non-Gaussian, finite variance
variables is also Gaussian [central limit theorem].)
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(Aside: As sum increases, sum of non-Gaussian, finite variance
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@ Scaling a Gaussian leads to a Gaussian.
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Two Important Gaussian Properties

@ Sum of Gaussian variables is also Gaussian.

yi ~ N (i, 07)

n n n
Sy~ N (Zuf,20?>
i=1 i=1 i=1

(Aside: As sum increases, sum of non-Gaussian, finite variance
variables is also Gaussian [central limit theorem].)

@ Scaling a Gaussian leads to a Gaussian.

y ~ N (n,07)

wy ~ N (wp, w?o?)
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Two Simultaneous Equations

A system of two differential
equations with two unknowns.

y1=mxi+c¢

Yo =mxp + C
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Two Simultaneous Equations

A system of two differential
equations with two unknowns.

yi—y2 :m(Xl - X2)
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Two Simultaneous Equations

A system of two differential
equations with two unknowns.

yi—y2
X1 — X2
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Two Simultaneous Equations

A system of two differential
equations with two unknowns.

Yo—n
m =
X2 — X1

C=Yy1 —mxy
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Two Simultaneous Equations

How do we deal with three
simultaneous equations with only two
unknowns?

>
yi=mxi+c
Yo=mxao+c¢
y3 =mx3 + ¢ 0 ‘ ‘
0 1 2 3
X
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Overdetermined System

@ With two unknowns and two observations:

yi=mxi+c

Ya=mxa+c¢
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Overdetermined System

@ With two unknowns and two observations:

yi=mxi+c

Yo =mxp + C

o Additional observation leads to overdetermined system.

y3=mx3+c¢
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Overdetermined System

@ With two unknowns and two observations:

yi=mxi+c

Yo =mxp + C

o Additional observation leads to overdetermined system.

y3=mx3+cC

e This problem is solved through a noise model e ~ A (0, 0?)

yi=mxiy+c+e€
Yo = mxp + C+ €
¥3 = mx3 + C + €3
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Noise Models

We aren’'t modeling entire system.

Noise model gives mismatch between model and data.
Gaussian model justified by appeal to central limit theorem.
Other models also possible (Student-t for heavy tails).

Maximum likelihood with Gaussian noise leads to least squares.
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Underdetermined System

5
4 I i
What about two unknowns and one
observation? 3+ x i
>
_ 2 B
yi=mxi+c¢
1L N
0 \ \
0 1 2 3
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Underdetermined System

5
: 4 -
Can compute m given c.
3 x —
yvi—=¢ N
m =
X 2 B
1 _
0 ! !
0 1 2 3
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Underdetermined System

Can compute m given c.

c=17= m=1.25 >
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Underdetermined System

Can compute m given c.

c=—-0777T—= m=3.78 >
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Underdetermined System

Can compute m given c.

c=—-401=m=7.01 >
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Underdetermined System

Can compute m given c.

c=-0718=— m=23.72 >
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Underdetermined System

Can compute m given c.

c=245= m=0.545 >
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Underdetermined System

Can compute m given c.

¢ =—-0.657 —= m=3.66 >
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Underdetermined System

Can compute m given c.

c=-313— m=26.13 >
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Underdetermined System

Can compute m given c.

c=—147 = m=4.47 >
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Underdetermined System

Can compute m given c.
Assume

c~N(0,4),

we find a distribution of solutions.
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Probability for Under- and Overdetermined

@ To deal with overdetermined introduced probability distribution for
‘variable’, ¢;.

@ For underdetermined system introduced probability distribution for
‘parameter’, c.

@ This is known as a Bayesian treatment.

Lawrence () GP Introduction UCLA 13 / 41



Sampling a Function

Multi-variate Gaussians

@ We will consider a Gaussian with a particular structure of covariance
matrix.

@ Generate a single sample from this 25 dimensional Gaussian
distribution, f = [f1, ... fa5].

@ We will plot these points against their index.
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Gaussian Distribution Sample

1
2 0.¢
0.8
1+ . 0.7
23 .
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0L = » » | 0.
E 3 » e
* * 0.2
-1 - Ry — 0.:
0.
_2 | | | | | O]
0 5 10 15 20 25 0

(a) A 25 dimensiona) correlated random (b) colormap shawing correlations between

variable (values ploted against index)

dimensions.

Figure: A sample from a 25 dimensional Gaussian distribution.
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Gaussian Distribution Sample
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Gaussian Distribution Sample
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n
*
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(a) A 25 dimensiona) correlated random
variable (values ploted against index)

(b) correlation between f; and f.

1
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Figure: A sample from a 25 dimensional Gaussian distribution.
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Prediction of , from f;

f2

1

0.96587

0.96587

1

@ The single contour of the Gaussian density represents the joint

distribution, p(f1, ).
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Prediction of , from f;

f2

1

0.96587

0.96587

1

@ The single contour of the Gaussian density represents the joint

distribution, p(f1, ).

@ We observe that /1 = —0.313.
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Prediction of , from f;

I
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@ The single contour of the Gaussian density represents the joint
distribution, p(f1, ).

@ We observe that /1 = —0.313.
e Conditional density: p(f|fi = —0.313).
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Prediction with Correlated Gaussians

@ Prediction of f, from f; requires conditional density.

o Conditional density is also Gaussian.

k 2
P(f2|f1):-/\/<f2| 12f1,/<2,2— 1’2)

ki1

where covariance of joint density is given by

ki1 kip
K=

ko1 koo
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Prediction of f5 from f;

/ /7 1 0.57375
0
1L C// 0.57375 1

fs
@ The single contour of the Gaussian density represents the joint
distribution, p(f1, f5).
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Prediction of f5 from f;
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Prediction with Correlated Gaussians

@ Prediction of f, from f requires multivariate conditional density.

@ Multivariate conditional density is also Gaussian.

p(FIF) = NV (F|K. K, K, — K KK )

@ Here covariance of joint density is given by

_ | Kes K
K= |:Kf,* K*,*:|
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Prediction with Correlated Gaussians

@ Prediction of f, from f requires multivariate conditional density.

@ Multivariate conditional density is also Gaussian.
p(FIf) = N (f.|p, X)
m= K*7fo_7f1f
Y = K*,* - K*,fKEfle,*

@ Here covariance of joint density is given by

_ | Kes K
K= |:Kf,* K*,*:|
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Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (x x’) = aexp 77]\x—x’||§
' 202

@ Covariance matrix is built
using the inputs to the
function x.

@ For the example above it
was based on Euclidean
distance.

@ The covariance function is
also know as a kernel.
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Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (x x’) = aexp 77]|x _ X'||§
' 202

@ Covariance matrix is built
using the inputs to the
function x.

@ For the example above it
was based on Euclidean
distance.

@ The covariance function is
also know as a kernel.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = cacexp (——rllx'zng” )

X1 = _3.0, X1 = _3.0
ki = 1.00 x exp (_M)

2x2.002

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 2.00 and o = 1.00.
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Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) = aexp (—

X1 = —3.0, X1 = —-3.0

— N 2
ki = 1.00 x exp (_%)

|1xi =
Hxi—gllt

2/

)

1.00

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 2.00 and o = 1.00.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = aexp (——rllx'gngll )

1.00
X = 120, X1 = —-3.0

_ 2
ko1 = 1.00 x exp (—%)

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 2.00 and o = 1.00.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = acexp (——rllx'gngll )

1.00

X = 120, X1 = —-3.0
0.110

_ 2
ko1 = 1.00 x exp (—%)

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 2.00 and o = 1.00.
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Covariance Functions

Where did this covariance matrix come from?

k (xi, X)) = aexp (_IIX_;;ﬁ)
1.00 0.110

X = 120, X1 = —-3.0
0.110

_ 2
ko1 = 1.00 x exp (—%)

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 2.00 and o = 1.00.
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Covariance Functions

Where did this covariance matrix come from?

k (xi, X)) = aexp (_IIX_;;ﬁ)
1.00 0.110

xo =120, x, =1.20
0.110

_ 2
ko = 1.00 x exp (—%)

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 2.00 and o = 1.00.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = acexp (——rllx'gngll )

1.00 0.110

xo =120, x, =1.20
0.110 | 1.00

_ 2
ko = 1.00 x exp (—%)

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 2.00 and o = 1.00.

Lawrence () GP Introduction

UCLA

21 /41



Covariance Functions

Where did this covariance matrix come from?

k (xi, X)) = aexp (_IIX_;;ﬁ)
1.00 0.110

X3 = 140, X1 = —-3.0
0.110 1.00

— 2
k31 = 1.00 x exp (_%>

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 2.00 and o = 1.00.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = aexp (——rllx'gngll )

100 0.110
X3 = 140, X1 = —30
0.110 1.0
ko = 1.00 x exp (— {13250 ) 0.0889

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 2.00 and o = 1.00.
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Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) = aexp (

X3 = 140, X1 = —-3.0

— 2
k31 = 1.00 x exp (_%>

_lxi—xl?

frrll )

1.00 0.110 0.0889

0.110 1.00

0.0889

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 2.00 and o = 1.00.

Lawrence ()

GP Introduction

UCLA

21 /41



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) = aexp (

X3 = 140, X = 1.20

— 2
ks> = 1.00 x exp (_%>

_lxi—xl?

frrll )

1.00 0.110 0.0889

0.110 1.00

0.0889

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 2.00 and o = 1.00.
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Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) = aexp (

X3 = 140, X = 1.20

— 2
ks> = 1.00 x exp (_%>

_lxi—xl?

frrll )

1.00 0.110 0.0889

0.110 1.00

0.0889| 0.995

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 2.00 and o = 1.00.
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Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) = aexp (

X3 = 140, X = 1.20

— 2
ks> = 1.00 x exp (_%>

_lxi—xl?

frrll )

1.00 0.110 0.0889

0.110 1.00 0.995

0.0889 0.995

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 2.00 and o = 1.00.
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Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) = aexp (

X3 = 140, X3 = 1.40

— 2
k3 = 1.00 x exp (_%>

_lxi—xl?

frrll )

1.00 0.110 0.0889

0.110 1.00 0.995

0.0889 0.995

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 2.00 and o = 1.00.
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Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) = aexp (

X3 = 140, X3 = 1.40

— 2
k3 = 1.00 x exp (_%>

_lxi—xl?

frrll )

1.00 0.110 0.0889

0.110 1.00 0.995

0.0889 0.995

1.00

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 2.00 and o = 1.00.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = aexp (—7”X’24?” )

X3 = 140, X3 = 1.40

— 2
k3 = 1.00 x exp <_%)

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 2.00 and o = 1.00.
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Covariance Functions

Where did this covariance matrix come from?

k (xi, X)) = aexp (_IIX_z—eﬁ)

X1 = —3, X1 = -3
kl,l =1.0 x exp (—ﬂ)

2x2.0%

x1 = -3, x =12, x3=1.4, and x4 = 2.0 with / = 2.0 and o = 1.0.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = acexp (——rllx'gngll )

1.0

X1 = —3, X1 :—3

_2__2)\
kl,l =1.0 x exp (—%)

x1 = -3, x =12, x3=1.4, and x4 = 2.0 with / = 2.0 and o = 1.0.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = acexp (——rllx'gngll )

1.0

Xy = 12, X1 = -3

— 2
k2,1 = 1.0 X exp <_%)

x1 = -3, x =12, x3=1.4, and x4 = 2.0 with / = 2.0 and o = 1.0.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = acexp (——rllx'gngll )

1.0

=12 x =-3 0.11

— 2
k2,1 = 1.0 X exp <_%)

x1 = -3, x =12, x3=1.4, and x4 = 2.0 with / = 2.0 and o = 1.0.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = acexp (——rllx'gngll )

1.0 0.11

=12 x =-3 0.11

— 2
k2,1 = 1.0 X exp <_%)

x1 = -3, x =12, x3=1.4, and x4 = 2.0 with / = 2.0 and o = 1.0.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = acexp (——rllx'gngll )

1.0 0.11

Xy = 12, X = 1.2 0.11

— 2
k2,2 = 1.0 X exp <_%)

x1 = -3, x =12, x3=1.4, and x4 = 2.0 with / = 2.0 and o = 1.0.
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Covariance Functio

ns

Where did this covariance matrix come from?

Xy = 12, X2

k2’2 =1.0 x exp <

x1 = -3, x =12, x3=1.4, and x4 = 2.0 with / = 2.0 and o = 1.0.

Lawrence ()

=12

_ (1.2—1.2)2>

2x2.0%

|1xi =

k (xi,x;) = aexp (_T

0.11

GP Introduction

)

1.0 0.11

1.0
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = acexp (——rllx'gngll )

1.0 0.11

x3 =14, x; = —3 011 1.0

— 2
k31 = 1.0 x exp <_%)

x1 = -3, x =12, x3=1.4, and x4 = 2.0 with / = 2.0 and o = 1.0.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = acexp (——rllx'gngll )

1.0 0.11
x3 =14, x; = —3 011 1.0
0.089

— 2
k31 = 1.0 x exp <_%)

x1 = -3, x =12, x3=1.4, and x4 = 2.0 with / = 2.0 and o = 1.0.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = acexp (——rllx'gngll )

1.0 0.11 0.089
X3 = 1.4, X1 = -3 0.11 1.0
0.089

— 2
k31 = 1.0 x exp <_%)

x1 = -3, x =12, x3=1.4, and x4 = 2.0 with / = 2.0 and o = 1.0.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = acexp (——rllx'gngll )

1.0 0.11 0.089
X3 = 1.4, X = 1.2 0.11 1.0
0.089

— 2
k32 = 1.0 x exp <_%)

x1 = -3, x =12, x3=1.4, and x4 = 2.0 with / = 2.0 and o = 1.0.
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Covariance Functio

ns

Where did this covariance matrix come from?

X3 = 1.4, X2

k3’2 =1.0 x exp <

x1 = -3, x =12, x3=1.4, and x4 = 2.0 with / = 2.0 and o = 1.0.

Lawrence ()

k (xi, xj) = aexp (—

=12

_ (1.4—1.4)2)

2x2.0%

GP Introduction

|1xi =
Hxi—gllt

2/

)

1.0 0.11 0.089
0.11 1.0
0.089| 1.0
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Covariance Functio

ns

Where did this covariance matrix come from?

x3 = 1.4, x»

k3o = 1.0 x exp (

xp=—3,x =12 x3 =14, and x4 = 2.0 with £ = 2.0 and oo = 1.0.

Lawrence ()

k (xi, X)) = aexp (_IIX_;;ﬁ)
1.0 0.11 0.089
=12 011 1.0 1.0
0.089 1.0
_M)
2x2.02

GP Introduction
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = acexp (——rllx'gngll )

1.0 0.11 0.089
X3 = 1.4, X3 = 1.4 0.11 1.0 1.0
0.089 1.0

— 2
k33 = 1.0 x exp <_%)

x1 = -3, x =12, x3=1.4, and x4 = 2.0 with / = 2.0 and o = 1.0.
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Covariance Functio

ns

Where did this covariance matrix come from?

x3 =14, x3

k33 = 1.0 x exp (

xp=—3,x =12 x3 =14, and x4 = 2.0 with £ = 2.0 and oo = 1.0.

Lawrence ()

k (xi, X)) = aexp (_IIX_;;ﬁ)
1.0 0.11 0.089
=14 011 1.0 1.0
0.089 1.0 | 1.0
_M)
2x2.02

GP Introduction
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Covariance Functio

ns

Where did this covariance matrix come from?

x3 = 2.0, x1

ka1 = 1.0 x exp (

xp=—3,x =12 x3 =14, and x4 = 2.0 with £ = 2.0 and oo = 1.0.

Lawrence ()

k (xi, X)) = aexp (_IIX_;;ﬁ)
1.0 0.11 0.089
=3 011 1.0 1.0
0.089 1.0 1.0
_M)
2x2.02
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Covariance Functio

ns

Where did this covariance matrix come from?

x3 = 2.0, x1

ka1 = 1.0 x exp (

xp=—3,x =12 x3 =14, and x4 = 2.0 with £ = 2.0 and oo = 1.0.

Lawrence ()

k (xi, X)) = aexp (_IIX_;;ﬁ)
1.0 0.11 0.089
=3 011 1.0 1.0
0.089 1.0 1.0
(2.0-2.0)?
ok 0.044
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = acexp (——rllx'gngll )

1.0 0.11 0.0890.044

X4 = 20, X1 = -3 0.11 1.0 1.0
0.089 1.0 1.0
_ 2
ko= 1.0 x exp <——(2é0xfég) ) 0.044

x1 = -3, x =12, x3=1.4, and x4 = 2.0 with / = 2.0 and o = 1.0.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = acexp (——rllx'gngll )

1.0 0.11 0.0890.044

X4 = 20, X = 1.2 0.11 1.0 1.0
0.089 1.0 1.0
_ 2
ka2 = 1.0 x exp <——(2é0xfég) ) 0.044

x1 = -3, x =12, x3=1.4, and x4 = 2.0 with / = 2.0 and o = 1.0.
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Covariance Functio

ns

Where did this covariance matrix come from?

X4 = 20, X2

k4’2 =1.0 x exp <

x1 = -3, x =12, x3=1.4, and x4 = 2.0 with / = 2.0 and o = 1.0.

Lawrence ()

k (xi, xj) = aexp (

=12

_ (2.0-2.0)? )

2x2.0%

GP Introduction

2/

1.0 0.11 0.0890.044

0.11

0.089

0.044

_ ||x,-—x,-||2)
Hxi—gllt

1.0

1.0

0.92

1.0

1.0

UCLA
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = acexp (——rllx'gngll )

1.0 0.11 0.0890.044

xs =2.0, % =12 0.11 1.0 1.0 0.92
0.089 1.0 1.0
_ (2.0—-2.0)2
ka2 =1.0 x exp <_ 2x2.07 ) 0.044 0.92

x1 = -3, x =12, x3=1.4, and x4 = 2.0 with / = 2.0 and o = 1.0.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = acexp (——rllx'gngll )

1.0 0.11 0.0890.044

xs =20 x3=14 0.11 1.0 1.0 0.92
0.089 1.0 1.0
_ (2.0—-2.0)2
ka3 =1.0 x exp <_ 2x2.07 ) 0.044 0.92

x1 = -3, x =12, x3=1.4, and x4 = 2.0 with / = 2.0 and o = 1.0.

Lawrence () GP Introduction UCLA 21 /41



Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = acexp (——rllx'gngll )

1.0 0.11 0.0890.044

xa =20, xs= 1.4 011 1.0 1.0 0.92
0.089 1.0 1.0
_ (2.0—-2.0)2
ka3 = 1.0 x exp (- 232,07 ) 0.044 0.92 | 0.96

x1 = -3, x =12, x3=1.4, and x4 = 2.0 with / = 2.0 and o = 1.0.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = acexp (——FHX'%XJH )

1.0 0.11 0.0890.044
xs =20 x3=14 0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

. (2.0—-2.0)°
kyz = 1.0 x exp <_ 2x2.02 ) 0.044 0.92 0.96

x1 = -3, x =12, x3=1.4, and x4 = 2.0 with / = 2.0 and o = 1.0.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = acexp (——rllx'gngll )

1.0 0.11 0.0890.044
xa =2.0, xa =2.0 0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

_ (2.0—-2.0)2
ka4 = 1.0 x exp (- 232,07 ) 0.044 0.92 0.96

x1 = -3, x =12, x3=1.4, and x4 = 2.0 with / = 2.0 and o = 1.0.
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Covariance Functio

ns

Where did this covariance matrix come from?

X4 = 20, X4

k4’4 =1.0 x exp <

x1 = -3, x =12, x3=1.4, and x4 = 2.0 with / = 2.0 and o = 1.0.

Lawrence ()

k (xi, xj) = aexp (—

=20

_ (2.0-2.0)? )

2x2.0%

GP Introduction

|1xi =
27

1.0 0.11 0.0890.044
0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

0.044 0.92 0.96

1.0

UCLA

21 /41



Covariance Functions

Where did this covariance matrix come from?
_ [1xi—x| >
k (xi, xj) = ccexp (— Teh
X4 = 20, X4 = 2.0

5 )2
k4,4 =10x exp <—%)

x1 = -3, x =12, x3 =14, and x4 = 2.0 with £ = 2.0 and a = 1.0.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = cacexp (——rllx'zng” )

X1 = _3.0, X1 = _3.0
kiy = 4.00 x exp (_M)

2x5.002

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 5.00 and a = 4.00.
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Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) = aexp (—

X1 = —3.0, X1 = —-3.0

— N 2
ki = 4.00 x exp (_%)

|1xi =
Hxi—gllt

2/

)

4.00

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 5.00 and a = 4.00.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = aexp (——rllx'gngll )

4.00
X = 120, X1 = —-3.0

— 2
ko1 = 4.00 X exp (_%>

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 5.00 and a = 4.00.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = aexp (——rllx'gngll )

4.00

X = 120, X1 = —-3.0
2.81

— 2
ko1 = 4.00 X exp (_%>

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 5.00 and a = 4.00.

Lawrence () GP Introduction

UCLA

21 /41



Covariance Functions

Where did this covariance matrix come from?

k (xi, X)) = aexp (_IIX_;;ﬁ)
4.00 281

X = 120, X1 = —-3.0
2.81

— 2
ko1 = 4.00 X exp (_%>

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 5.00 and a = 4.00.
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Covariance Functions

Where did this covariance matrix come from?

k (xi, X)) = aexp (_IIX_;;ﬁ)
4.00 281

xo =120, x, =1.20
2.81

— 2
ko2 = 4.00 X exp (_%>

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 5.00 and a = 4.00.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = aexp (——rllx'gngll )

400 2381

xo =120, x, =1.20
2.81 | 4.00

— 2
ko2 = 4.00 X exp (_%>

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 5.00 and a = 4.00.
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Covariance Functions

Where did this covariance matrix come from?

k (xi, X)) = aexp (_IIX_;;ﬁ)
4.00 281

X3 = 140, X1 = —-3.0
281 4.00

_ 2
k3,1 = 4.00 x exp (—%)

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 5.00 and a = 4.00.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = aexp (——rllx'gngll )

4.00 2381
X3 = 140, X1 = —-3.0
2.81 4.00
k.1 = 4.00 x exp (—%) 2.72

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 5.00 and a = 4.00.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = aexp (——rllx'gngll )

4.00 2381
X3 = 140, X1 = —-3.0
2.81 4.00
k.1 = 4.00 x exp (—%) 2.72

2.72

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 5.00 and a = 4.00.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = aexp (——rllx'gngll )

400 2381
X3 = 140, X = 1.20
281 4.00
ks = 4.00 x exp (—%) 2.72

2.72

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 5.00 and a = 4.00.
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Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) = aexp (—

X3 = 140, X = 1.20

_ 2
k3 = 4.00 x exp (—%)

|1xi =
Hxi—gllt

2/

4.00

2.81

2.72

2.81

4.00

4.00

2.72

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 5.00 and a = 4.00.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = aexp (——rllx'gngll )

400 281
X3 = 140, X = 1.20
2.81  4.00
k2 = 4.00 x exp (_%) 272 4.00

2.72

4.00

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 5.00 and a = 4.00.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = aexp (——rllx'gngll )

400 281
X3 = 140, X3 = 1.40
2.81  4.00
ks3 = 4.00 x exp (_%) 272 4.00

2.72

4.00

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 5.00 and a = 4.00.
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = aexp (——rllx'gngll )

400 281
X3 = 140, X3 = 1.40
2.81  4.00
ks3 = 4.00 x exp (_%) 272 4.00

2.72

4.00

4.00

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 5.00 and a = 4.00.

Lawrence () GP Introduction
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Covariance Functions

Where did this covariance matrix come from?

w12
k (xi,x;) = aexp (—7”X’22’” )

X3 = 140, X3 = 1.40

_ 2
k33 = 4.00 x exp (—%)

x1 = —3.0, x» = 1.20, and x3 = 1.40 with £ = 5.00 and a = 4.00.

Lawrence () GP Introduction UCLA 21 /41



Outline

© Constructing Covariance
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Constructing Covariance Functions

@ Sum of two covariances is also a covariance function.

k(x,x") = ki(x,x') + ka(x, x")
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Constructing Covariance Functions

@ Product of two covariances is also a covariance function.

k(x,x") = ki(x,x)ko(x, x")
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Multiply by Deterministic Function

o If f(x) is a Gaussian process.
@ g(x) is a deterministic function.
o h(x) = f(x)g(x)
@ Then
kn(x, x') = g(x)ke (x, x')g (x)

where kyp, is covariance for h(-) and k¢ is covariance for f(-).

Lawrence () GP Introduction UCLA 25 /41



Covariance Functions

MLP Covariance Function

T/ b
k (x,x") = aasin wx X+
VwxTx+ b+ 1vVwx' Tx +b+1

@ Based on infinite neural
network model.

w = 40
b=4

Lawrence () GP Introduction UCLA 26 / 41



Covariance Functions

MLP Covariance Function

k (x,x") = aasin (

@ Based on infinite neural
network model.

w = 40
b=4

Lawrence ()

Vwx'x+b+1

GP Introduction

wx'Tx + b+ 1

UCLA

26 / 41



Covariance Functions

Linear Covariance Function

k (x,x) = ax X

@ Bayesian linear regression.

a=1

Lawrence () GP Introduction UCLA 27 / 41



Covariance Functions

Linear Covariance Function

k (x,x) = ax X

@ Bayesian linear regression.

a=1

Lawrence () GP Introduction UCLA
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Gaussian Process Interpolation

3

2 L |

1 . A
X o0 .
S

1k |

oL * |

3 \ ! !

2 10 1 2

Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)). Interpolation
through outputs from slow computer simulations (e.g. atmospheric carbon levels).
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Gaussian Process Interpolation

Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)). Interpolation
through outputs from slow computer simulations (e.g. atmospheric carbon levels).
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Gaussian Process Interpolation

Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)). Interpolation
through outputs from slow computer simulations (e.g. atmospheric carbon levels).
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Gaussian Process Interpolation

Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)). Interpolation
through outputs from slow computer simulations (e.g. atmospheric carbon levels).
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Gaussian Process Interpolation

Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)). Interpolation
through outputs from slow computer simulations (e.g. atmospheric carbon levels).
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Gaussian Process Interpolation

Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)). Interpolation
through outputs from slow computer simulations (e.g. atmospheric carbon levels).
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Gaussian Process Interpolation

Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)). Interpolation
through outputs from slow computer simulations (e.g. atmospheric carbon levels).
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Gaussian Process Interpolation

Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)). Interpolation
through outputs from slow computer simulations (e.g. atmospheric carbon levels).
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Noise Models

Graph of a GP

@ Relates input variables, X, f

to vector, y, through f e /.

given kernel parameters 6.
@ Plate notation indicates
independence of y;|f;.
@ Noise model, p(y;|f;) can i—=1...n
take several forms. S 4

@ Simplest is Gaussian

noise. Figure: The Gaussian process
depicted graphically.
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Gaussian Noise

@ Gaussian noise model,
2
p(yilf) = N (yilfi, %)
where o2 is the variance of the noise.

@ Equivalent to a covariance function of the form

k(xi,x;) = 0; jo?

where 0; ; is the Kronecker delta function.

@ Additive nature of Gaussians means we can simply add this term to
existing covariance matrices.

Lawrence () GP Introduction UCLA 30/ 41



Gaussian Process Regression

Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression

Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression

Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression

Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression

Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression

Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression

Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression

Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression

Figure: Examples include WiFi localization, C14 callibration curve.
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Learning Covariance Parameters

Can we determine covariance parameters from the data?

1 y' Kly
N 07 K) = — . . X I —
(y[0,K) 2K P 5
The parameters are inside the covariance function
(matrix).
k,'J = k(x,-,xj;O)
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Learning Covariance Parameters

Can we determine covariance parameters from the data?

1 y' Kly
N 0, K) = — . . &X e —
(y[0,K) 2nFK 5
The parameters are inside the covariance function
(matrix).
k,'J = k(x,-,xj;O)
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Learning Covariance Parameters

Can we determine covariance parameters from the data?

1 TK!
log NV (y]0, K) = . log 21—~ log \K\—u
2 2 2
The parameters are inside the covariance function
(matrix).
k,'J = k(x,-,xj;O)
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Learning Covariance Parameters

Can we determine covariance parameters from the data?

1 Tw-1

y Ky
E()=-log|K|+21 — 7
(6) = 5 log K| +>—

The parameters are inside the covariance function
(matrix).

k,'J = k(x,-,xj; 0)
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Eigendecomposition of Covariance

A useful decomposition for understanding the objective function.

K = RA’RT

Diagonal of A represents distance
along axes.
R gives a rotation of these axes.

where A is a diagonal matrix and R'R = I.

Useful representation since |K| = |A?| = A
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Capacity control: log|K]

A 0

A1
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Capacity control: log|K]

A 0

A2

A1
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Capacity control: log|K]

A1 0
A2

A1
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Capacity control: log|K]

A1 0
A2

A1

|A| = A2
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Capacity control: log|K]

Lawrence ()
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Al = A2
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Capacity control: log|K]

A1
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Capacity control: log|K]

A0 0
A= 0 X O o
0 0 X
A| = A2
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Capacity control: log|K]

A 0 0
0 0 A , .
1
A = Mo
Lawrence () GP Introduction

UCLA

34 /41



Capacity control: log|K]

A1

Lawrence ()

A2

A2

Al = A2
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Capacity control: log|K]

Lawrence ()

w11

W2 1

wi 2

w2 2

A2

IRA| = A
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

20

15

10

o
¢

107t 10° 10!

X length scale, ¢

1 TK1
EO) =5 K|+ 52
2 2

Lawrence () GP Introduction



Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

20
15
10

107t 10° 10!

X length scale, ¢

1 TK1
EO) =5 K|+ 52
2 2
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

20
15
10

5

-5
-10

107t 10° 10!

X length scale, ¢

1 TK1
EO) =5 K|+ 52
2 2
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

20
15
10

5

-5
-10

107! 10° 10!

X length scale, ¢

y Kly

1
E(6) = 5 K|+ Y
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

20
15
10

5

-5 ~
-10

10~ 100 10!

X length scale, ¢

y Kly

1
E(6) = 5 K|+ Y
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

= . 20 Ve
15 X
1 x 7 10 y
-x\xaﬂ‘_\ / /
0 - x 5 //X
0
a L 1 K _/
R
2 b ! ! ! i -10
2 -1 0 1 2 1071 100 10!
X length scale, ¢
1 y'K-ly
E(0) == K|+ ———
(0) = 5 K|+ 7=

Lawrence () GP Introduction UCLA 36 / 41



Gene Expression Example

Global expression estimation with | = e

Global expression estimation with | = 30
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Global expression estimation with | = 15.6

(b)
Log-marginal likelihood function

log, gene expression
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Data from Della Gatta et al. (2008). Figure from Kalaitzis and Lawrence
(2011).
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Outline

© GP Limitations
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Limitations of Gaussian Processes

o Inference is O(n3) due to matrix inverse (in practice use Cholesky).

e Gaussian processes don't deal well with discontinuities (financial
crises, phosphorylation, collisions, edges in images).

@ Widely used exponentiated quadratic covariance (RBF) can be too
smooth in practice (but there are many alternatives!!).
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Summary

@ Broad introduction to Gaussian processes.

» Started with Gaussian distribution.
» Motivated Gaussian processes through the multivariate density.

Emphasized the role of the covariance (not the mean).

Performs nonlinear regression with error bars.

Parameters of the covariance function (kernel) are easily optimized
with maximum likelihood.
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