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Online Resources

All source code and slides are available online

This talk available from my home page (see talks link on side).

MATLAB examples in the ’oxford’ toolbox (vrs 0.13).

http://www.dcs.shef.ac.uk/~neil/oxford/.

And the ’gpsim’ toolbox (vrs 0.1).

http://www.dcs.shef.ac.uk/~neil/gpsim/.

MATLAB commands used for examples given in typewriter
font.
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Introduction to Gaussian Processes

Inference about functions

Many Machine Learning problems can be reduced to inference
about functions.

We will see some examples later.

Gaussian processes (GPs) are probabilistic models for
functions. [6, 7, 8]

GPs allow inference about functions in the presence of
uncertainty.
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Defining a Distribution over Functions

Gaussian Process

What is meant by a distribution over functions?

Functions are infinite dimensional objects:

Defining a distribution over functions seems non-sensical.

Gaussian Distribution

Start with a standard Gaussian distribution.

Consider the distribution over a fixed number of instantiations
of the function.
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Gaussian Distribution

Zero mean Gaussian distribution

A multi-variate Gaussian distribution is defined by a mean and
a covariance matrix.

N (f|µ,K) =
1

(2π)
N
2 |K|

1
2

exp

(
−(f − µ)T K−1 (f − µ)

2

)
.

We will consider the special case where the mean is zero,

N (f|0,K) =
1

(2π)
N
2 |K|

1
2

exp

(
− fTK−1f

2

)
.
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Sampling a Function

Multi-variate Gaussians

We will consider a Gaussian with a particular structure of
covariance matrix.

Generate a single sample from this 25 dimensional Gaussian
distribution, f = [f1, f2 . . . f25].

We will plot these points against their index.
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Gaussian Distribution Sample

demGPSample
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Figure: (a) 25 instantiations of a function, fn, (b) greyscale covariance
matrix.
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Covariance Function

The covariance matrix

Covariance matrix shows correlation between points fm and fn
if n is near to m.

Less correlation if n is distant from m.

Our ordering of points means that the function appears
smooth.

Let’s focus on the joint distribution of two points form the 25.
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Prediction of f2 from f1

demGPCov2D([1 2])
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]
is K12 =
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]
.
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Prediction of f5 from f1
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Covariance Functions
Where did this covariance matrix come from?

RBF Kernel Function

k (xm, xn) = α exp

(
−||xm − xn||2

2l2

)

Covariance matrix is built
using the inputs to the
function xn.

For the example above it
was based on Euclidean
distance.

The covariance function is
also know as a kernel.
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Different Covariance Functions

MLP Kernel Function

k (xm, xn) = αsin−1

(
wxT

mxn + b√
wxT

mxm + b + 1
√

wxT
n xn + b + 1

)

A non-stationary
covariance matrix [10].

Derived from a multi-layer
perceptron (MLP).
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Different Covariance Functions

Linear Kernel Function

k (xm, xn) = αxT
mxn

Allows for a linear trend.

Derived from a neural
network.

Note the anti-correlations
in the matrix.
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Different Covariance Functions

White noise

k (xm, xn) = αδmn

Where δmn is the
Kronecker delta.

Simply represents
uncorrelated independent
noise.
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with γ = 10, α = 1
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with l = 1, α = 1
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Covariance Samples

demCovFuncSample

−1 −0.5 0 0.5 1
−6

−4

−2

0

2

4

6

Figure: RBF kernel with l = 0.3, α = 4
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Covariance Samples

demCovFuncSample

−1 −0.5 0 0.5 1
−6

−4

−2

0

2

4

6

Figure: linear kernel with α = 16
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Covariance Samples
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Figure: MLP kernel with α = 8, w = 100 and b = 100
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Covariance Samples
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Figure: MLP kernel with α = 8, b = 0 and w = 100
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Covariance Samples
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Figure: bias kernel with α = 1 and
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Covariance Samples
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Figure: summed combination of: RBF kernel, α = 1, l = 0.3; bias
kernel, α =1; and white noise kernel, β = 100
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Joint Distribution

Making Predictions

Covariance function provides the joint distribution over the
instantiations.

Conditional distribution provides predictions.

Denoting the training set as f and test set as f∗.

Predict using p (f∗|f).
This conditional distribution is also Gaussian.
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Gaussian Process Interpolation

demInterpolation
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Figure: Real example: BACCO (see e.g. [5]). Interpolation through
outputs from slow computer simulations (e.g. atmospheric carbon levels).
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Noise Models

Graph of a GP

Relates input variables, X,
to vector, y, through f
given kernel parameters θ.

Plate notation indicates
independence of yn|fn.
Noise model, p (yn|fn) can
take several forms.

Simplest is Gaussian
noise.

Xfnyn N
Figure: The Gaussian process
depicted graphically.
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Figure: Examples include WiFi localization, C14 callibration curve.
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A Paradigm Shift from i.i.d.

Parameteric Model

p (yn|xn,w) = N
(
yn|wTxn, σ

2
)

p (y|X,w) =
N∏

n=1

p (yn|xn,w)

Parameteric models normally
assume independence given
parameters.

Gaussian process

p (y|X) = N (y|0,K)
In GPs no i.i.d. assumption is made
the kernel expresses correlations.Neil Lawrence Gaussian Processes
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Learning Kernel Parameters
Can we determine length scales and noise levels from the data?
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Interpolation with Gaussian Processes
Regression with Gaussian Processes
Parametric Models vs GPs
Learning Kernel Parameters

Learning Kernel Parameters
Can we determine length scales and noise levels from the data?

demOptimiseKern
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Biological Problem

Inference of p53 Concentration

Gene expression levels are controlled by transcription factors.

Transcription factor concentration is difficult to measure

Gene expression can be measured with microarray technology.

Differential Equation model

Simple linear model differential equation model recently used
by Barenco et al [1].

They inferred transcription factor concentrations using Markov
Chain Monte Carlo (107 iterations).

We repeat their experiments with Gaussian processes.
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Simple Linear Model

Linear model of regulation

dxi (t)

dt
= Bi + Si f (t)− Diyi (t)

where:

xi (t) — expression of the ith gene at time t.
f (t) — concentration of the transcription factor at time t.

Di — gene’s decay rate.
Bi — basal transcription rate.
Si — sensitivity to the transcription factor.
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Equation Solution

Solve via Laplace Transforms

Solution to the equation:

xi (t) =
Bi

Di
+ Si exp (−Di t)

∫ t

0
f (u) exp (Diu) du.

If f (t) is a zero mean Gaussian process then xi (t) is also a
Gaussian process with mean Bi

Di
.
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Two Properties of GPs

Integral of Gaussian Process

The integral of a GP is also a GP,

f (t) ∼ N (0,Kff )

and

g (t) =

∫ t

0
f (u) du

then
g (t) ∼ N (0,Kgg ) ,

where

kgg

(
t, t ′
)

=

∫ t

0

∫ t′

0
kff

(
u, u′

)
dudu′
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Two Properties of GPs

Product with deterministic function

The integral of a GP is also a GP,

f (t) ∼ N (0,Kff ) ,

and
g (t) = f (t) h (t)

where h (t) is a deterministic function then,

g (t) ∼ N (0,Kgg ) ,

where
kgg

(
t, t ′
)

= h (t) kff

(
t, t ′
)
h
(
t ′
)
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Covariance for Transcription Model

RBF Kernel function for f (t)

xi (t) =
Bi

Di
+ Si exp (−Di t)

∫ t

0
f (u) exp (Diu) du.

Joint distribution
for x1 (t), x2 (t)
and f (t).

Here:
D1 S1 D2 S2

5 5 0.5 0.5

f (t) x1(t) x2(t)

f (t)

x1(t)
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Joint Sampling of x (t) and f (t) from Covariance

gpsimTest
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Figure: Left: joint samples from the transcription covariance, blue: f (t),
cyan: x1 (t) and red : x2 (t). Right: numerical solution for f (t) of the
differential equation from x1 (t) and x2 (t) (blue and cyan). True f (t)
included for comparison.
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Joint Sampling of x (t) and f (t) from Covariance

gpsimTest
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Figure: Left: joint samples from the transcription covariance, blue: f (t),
cyan: x1 (t) and red : x2 (t). Right: numerical solution for f (t) of the
differential equation from x1 (t) and x2 (t) (blue and cyan). True f (t)
included for comparison.
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Joint Sampling of x (t) and f (t) from Covariance

gpsimTest
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Figure: Left: joint samples from the transcription covariance, blue: f (t),
cyan: x1 (t) and red : x2 (t). Right: numerical solution for f (t) of the
differential equation from x1 (t) and x2 (t) (blue and cyan). True f (t)
included for comparison.
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Results — Transcription Rates

Estimation of Equation Parameters demBarenco1

DDB2 hPA26 TNFRSF20b p21 BIK
0

0.05

0.1

0.15

0.2

0.25

Figure: Basal transcription rates. Our results (black) compared with [1]
(white).
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Results — Transcription Rates

Estimation of Equation Parameters demBarenco1
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Figure: Sensitivities. Our results (black) compared with [1] (white).
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Results — Transcription Rates

Estimation of Equation Parameters demBarenco1
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Figure: Decays. Our results (black) compared with [1] (white).
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Results — Protein Concentration

Prediction with error bars of protein concentration:
p (f|x1, x2, x3, x4, x5)
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Figure: (a) RBF covariance function (b) MLP covariance function. Also
included are results from [1] as crosses.
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Results — Positive Constrained

GP predictions in log space.
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Figure: (a) RBF covariance function (b) MLP covariance function. Also
included are results from [1] as crosses.
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Transcription Model Summary

Progress so far and Future work

Elegant solution of a problem with indirect observations.

Already extended to non-linear response equations (using
Laplace approximation).

Expect to extend it to systems with multiple transcription
factors.

Gives results in 13 minutes vs 107 Monte-Carlo iterations.
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Dimensional Reduction

Low Dimensional Manifolds for High Dimensional Data

Recently proposed approach to probababilistic modelling.

Involves mapping from low dimensional latent space to high
dimensional data space.

Mappings are formed from Gaussian processes.

Several important applications including tracking [9] and
graphics [3].

Approach is a probabilistic non-linear generalisation of PCA
[4].
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A Latent Variable Model
How can a model designed primarily for regression be used as a technique for dimensional
reduction?

Graph of GP-LVM

Now optimise over X as
well as θ.

Relates input variables, X,
to vector, y, through f
given kernel parameters θ.

Plate notation indicates
independence of yn|fn.

Xfnyn N
Figure: The GP-LVM depicted
graphically.
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Probabilistic Model in High Dimensions

Generalization with less Data than Dimensions

Powerful uncertainly handling of GPs leads to suprising
properties.

Non-linear models can be used where there are fewer data
points than dimensions without overfitting.

Example: Modelling a stick man in 102 dimensions with 55
data points!
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Stick Man Results

demStickResults
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(a) (b) (c) (d)

Projection into data space from four points in the latent space. The
inclination of the runner changes becoming more upright.
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Vowel Data

Vocal Joystick System [2] (demVowels3 in fgplvm toolbox)
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The different vowels are shown as follows: /a/ cross /ae/ circle
/ao/ plus /e/ asterix /i/ square /ibar/ diamond /o/ down triangle
/schwa/ up triangle and /u/ left triangle.
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Summary

Gaussian Processes are a powerful flexible way to make
inference about functions.

Can be combined with differential equations:

Facilitates parameter learning, much quicker than Monte Carlo
approaches.
Expected to be vital for larger systems (e.g. several
transcription factors).

GPs can be adapted for probabilistic dimensional reduction.

Non-linear models even when less data points than data
dimensions.
Applications in graphics, vision, speech, robotics ...

And finally ...
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Consistency

Consistency of a Gaussian Process

Predictions remain the same regardless of the number and
location of the test points.

p (f∗|f) =

∫
p (f∗, f+|f) df+,

For the system to be consistent this conditional probability
must be independent of the length of f+.

In other words.

p (f∗|f) =

∫
p (f∗, f+|f) df+ =

∫
p
(
f∗, f̂+|f

)
d f̂+
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Joint Distribution

Joint Distribution

The covariance function provides the joint distribution over
the instantiations.

Write down the conditional distribution provides predictions.

Denote the training set as f and test set as f∗.

Predict using p (f∗|f).
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The Conditional Distribution

Partioned Inverse

Use partitioned inverse to find conditional.

K =

[
Kf,f Kf,∗
K∗,f K∗,∗

]
Partitioned inverse is then

K−1 =

[
K−1

f,f + K−1
f,f Kf,∗Σ

−1K∗,fK
−1
f,f −K−1

f,f Kf,∗Σ
−1

−Σ−1K∗,fK
−1
f,f

−̊1

]

where
Σ = K∗,∗ −K∗,fK

−1
f,f Kf,∗.
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Joint Distribution

Take Log of the Joint

Logarithm of the joint distribution:

log p (f, f∗) = −1

2
fTK−1

f,f f −
1

2
fTK−1

f,f Kf,∗Σ
−1K∗,fK

−1
f,f f

+fK−1
f,f Kf,∗Σ

−1f∗ −
1

2
fT∗ Σ−1f∗ + const1

Conditional is found by dividing joint by the prior,
p (f) = N (f|0,Kf,f).
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Conditional Distribution

Deriving the Conditional

In log space this is equivalent to subtraction of

log p (f) = −1

2
fTK−1

f,f f + const2

giving

log p (f∗|f) = log p (f∗, f)− log p (f) = log N (f∗|—f∗,Σ) .

where f̄ = K∗,fK
−1
f,f f and Σ = K∗,∗ −K∗,fK

−1
f,f Kf,∗.
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Making Predictions

If we observe points from the function, f.

We can predict the locations of functions at as yet unseen
locations.

The prediction is also a Gaussian process, with mean f̄ and
covariance Σ.

Often observe corrupted version of function.
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