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Online Resources

All source code and slides are available online

@ This talk available from my home page (see talks link on side).
o MATLAB examples in the "oxford’ toolbox (vrs 0.13).

e http://www.dcs.shef.ac.uk/ neil/oxford/.
@ And the 'gpsim’ toolbox (vrs 0.1).

e http://www.dcs.shef.ac.uk/"neil/gpsim/.

@ MATLAB commands used for examples given in typewriter
font.
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Different Covariance Functions

Introduction to Gaussian Processes

Inference about functions

@ Many Machine Learning problems can be reduced to inference
about functions.
o We will see some examples later.

@ Gaussian processes (GPs) are probabilistic models for
functions. [6, 7, 8]

@ GPs allow inference about functions in the presence of
uncertainty.
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Defining a Distribution over Functions

Gaussian Process

@ What is meant by a distribution over functions?
@ Functions are infinite dimensional objects:

o Defining a distribution over functions seems non-sensical.

Gaussian Distribution

@ Start with a standard Gaussian distribution.

@ Consider the distribution over a fixed number of instantiations
of the function.
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Gaussian Distribution

Zero mean Gaussian distribution
@ A multi-variate Gaussian distribution is defined by a mean and

a covariance matrix.

(F—p) K (F—p)
2

1
N(f’:U’? K) = N 1 exp | —
(2m)2 [K]2
@ We will consider the special case where the mean is zero,
1 fTK1f
N (FIO,K) = — 3 exp (—) .
(27)2 |K| 2
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Sampling a Function

Multi-variate Gaussians

@ We will consider a Gaussian with a particular structure of
covariance matrix.

@ Generate a single sample from this 25 dimensional Gaussian
distribution, f =[f1, 2 ... fa5].
@ We will plot these points against their index.
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Introduction to Gaussian Processes Distributions over Functions
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Gaussian Distribution Sample

10 15
n

(a) (b)

Figure: (a) 25 instantiations of a function, f,, (b) greyscale covariance

matrix. g
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Covariance Function

The covariance matrix

@ Covariance matrix shows correlation between points f,, and f,
if nis near to m.
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Covariance Function

The covariance matrix

@ Covariance matrix shows correlation between points f,, and f,
if nis near to m.

@ Less correlation if n is distant from m.
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Covariance Function

The covariance matrix

@ Covariance matrix shows correlation between points f,, and f,
if nis near to m.

@ Less correlation if n is distant from m.

@ Our ordering of points means that the function appears
smooth.
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Covariance Function

The covariance matrix

@ Covariance matrix shows correlation between points f,, and f,
if nis near to m.

@ Less correlation if n is distant from m.

@ Our ordering of points means that the function appears
smooth.

@ Let's focus on the joint distribution of two points form the 25.
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Prediction of £, from f;

demGPCov2D (

Distributions over Functions

Samples from a Gaussian Distribution
Covariance functions

Different Covariance Functions
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Covariance Functions

Where did this covariance matrix come from?

RBF Kernel Function

|[Xm _anz

k (Xm,%n) = aexp [ — o7

@ Covariance matrix is built

using the inputs to the
function x,,.
@ For the example above it

was based on Euclidean
distance.

@ The covariance function is
also know as a kernel.
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Different Covariance Functions

MLP Kernel Function

1 WX} X, + b
VWXExy, + b+ 1/ wxIx, + b+ 1

k (Xm,Xp) = asin™

@ A non-stationary
covariance matrix [10].

@ Derived from a multi-layer
perceptron (MLP).
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Different Covariance Functions

Linear Kernel Function

k (Xm,Xn) = ax%xn

@ Allows for a linear trend.

@ Derived from a neural
network.

@ Note the anti-correlations
in the matrix.
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Different Covariance Functions

A
@ Where §,,,, is the 5
Kronecker delta. 1 :
@ Simply represents " ’
uncorrelated independent 20 05
noise. i B
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Covariance Samples

demCovFuncSample

=
6 T

Figure: RBF kernel with v =10, a =1
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Covariance Samples

ovFuncSample
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6 T T T
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Figure: RBF kernel with /=1, a =1
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Covariance Samples

demCovFuncSample

o

Figure: RBF kernel with / =0.3, a =4
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Covariance Samples

ovFuncSample

Figure: linear kernel with o = 16
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Covariance Samples

ovFuncSample

=
6

Figure:  MLP kernel with « = 8, w = 100 and b = 100
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Covariance Samples

ovFuncSample

=
6

Figure:  MLP kernel with « =8, b= 0 and w = 100
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Covariance Samples

ovFuncSample

=
6 T T T

-2
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Figure: bias kernel with =1 and
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Covariance Samples

demCovFuncSample

Figure: summed combination of: RBF kernel, o = 1, / = 0.3; bias
kernel, & =1; and white noise kernel, 5 = 100 g
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Joint Distribution

Making Predictions

@ Covariance function provides the joint distribution over the
instantiations.

e Conditional distribution provides predictions.
@ Denoting the training set as f and test set as f,.

o Predict using p (f.|f).
e This conditional distribution is also Gaussian.
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Interpolation with Gaussian Processes
Prediction with Gaussian Processes Regression with Gaussian Processes

Parametric Models vs GPs

Learning Kernel Parameters

Gaussian Process Interpolation

Figure: Real example: BACCO (see e.g. [5]). Interpolation through
outputs from slow computer simulations (e.g. atmospheric carbon levels).
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Interpolation with Gaussian Processes
Regression with Gaussian Processes
Parametric Models vs GPs

Learning Kernel Parameters
Gaussian Process Interpolation
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Figure: Real example: BACCO (see e.g. [5]). Interpolation through
outputs from slow computer simulations (e.g. atmospheric carbon levels).
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Figure: Real example: BACCO (see e.g. [5]). Interpolation through
outputs from slow computer simulations (e.g. atmospheric carbon levels).
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outputs from slow computer simulations (e.g. atmospheric carbon levels).
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Figure: Real example: BACCO (see e.g. [5]). Interpolation through
outputs from slow computer simulations (e.g. atmospheric carbon levels).
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outputs from slow computer simulations (e.g. atmospheric carbon levels).
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Figure: Real example: BACCO (see e.g. [5]). Interpolation through
outputs from slow computer simulations (e.g. atmospheric carbon levels).

Neil Lawrence Gaussian Processes
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Noise Models

Graph of a GP e 0

@ Relates input variables, X,
to vector, y, through f

given kernel parameters 6. @

@ Plate notation indicates
independence of y,|f,.

@ Noise model, p (ys|fn) can

take several forms. N

@ Simplest is Gaussian

. Figure: The Gaussian process
NoISeE.

/ depicted graphically.
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Figure: Examples include WiFi localization, C14 callibration curve.
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Interpol n with Gaussian Pri es
Prediction with Gaussian Processes Regression with Gaussian Processes
Parametric Models vs GPs

Learning Kernel Parameters

A Paradigm Shift from i.i.d.

Parameteric Model

p (YnlXn,w) =N (y,,]wa,h 02) Paramet.eric models nor.mally
assume independence given

N parameters.
P (Y‘Xa W) = H P (Yn’Xna W)
n=1
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A Paradigm Shift from i.i.d.

Gaussian process

p(y|X) = N(y|0,K) In GPs no i.i.d. assumption is made

the kernel expresses correlations.
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Prediction with Gaussian Processes

Learning Kernel Parameters

Can we determine length scales and noise levels from the data?

e}
ct
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=
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]
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?

log-likelihood

5 k -10;
. >, ¢
Y my D -11
.0, atee 15
_12!
= 0 q
10 10 10
-2 length scale
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Can we determine length scales and noise levels from the data?

log-likelihood
&
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Can we determine length scales and noise levels from the data?
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Can we determine length scales and noise levels from the data?
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Transcription Factor Concentration Inference
Examples Dimensional Reduction

Biological Problem

Inference of p53 Concentration

@ Gene expression levels are controlled by transcription factors.
@ Transcription factor concentration is difficult to measure

@ Gene expression can be measured with microarray technology.

Differential Equation model

@ Simple linear model differential equation model recently used
by Barenco et al [1].

@ They inferred transcription factor concentrations using Markov
Chain Monte Carlo (107 iterations).

@ We repeat their experiments with Gaussian processes. g
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Transcription Factor Concentration Inference
Examples Dimensional Reduction

Simple Linear Model

Linear model of regulation

dyi(t) _ B; + Sif (t) — Diy; (t)

where:

yi(t) — expression of the ith gene at time t.

f(t) — concentration of the transcription factor at time t.
D; — gene's decay rate.
B; — basal transcription rate.
S; — sensitivity to the transcription factor.
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Transcription Factor Concentration Inference
Examples Dimensional Reduction

Equation Solution

Solve via Laplace Transforms

@ Solution to the equation:

o t
yi(t) = % + 5; exp(—D,-t)/ f (u) exp (Diu) du.
i 0

If £ (t) is a zero mean Gaussian process then y; (t) is also a

Gaussian process with mean % :
1
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Transcription Factor Concentration Inference
Examples Dimensional Reduction

Two Properties of GPs

Integral of Gaussian Process

The integral of a GP is also a GP,

f(t) ~ N(O, Kff)

and .
g(t)= [ f(wds
0
then
g(t)~N(0,Kg),
where

t ot/
Keg (t, t') = / / ker (u, u') dudd
o Jo g
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Transcription Factor Concentration Inference
Examples Dimensional Reduction

Two Properties of GPs

Product with deterministic function

The integral of a GP is also a GP,
f (t) ~ N (0, Kff) 5

and
g (t) = f(t)h(t)
where h(t) is a deterministic function then,

g(t) ~ N(0,Kg),

where

keg (t,t") = h(t) ke (t, ') h(t') )
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Examples

Transcription Factor Concentration Inference
Dimensional Reduction

Covariance for Transcription Model

RBF Kernel function for f (t)

yi(t) = 5 + Sjexp (—Djt) /ot f (u)exp (Dju) du.

D;

@ Joint distribution

for y1 (t), y2 (1)
and f (t).

Neil Lawrence

M Ty
.

Ya(t)

@ K@) @)
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Transcription Factor Concentration Inference
Examples Dimensional Reduction

Joint Sampling of y (t) and f (t) from Covariance

2

iL5] 15

1] 1

0.5) 0.5
GO 10 20 30 40 50 OO 10 20 30 40 50

Figure: Left: joint samples from the transcription covariance, blue: f (t),
cyan: y; (t) and red: y> (t). Right: numerical solution for f (t) of the
differential equation from y; (t) and y> (t) (blue and cyan). True f (t)
included for comparison.
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Transcription Factor Concentration Inference
Examples Dimensional Reduction

Joint Sampling of y (t) and f (t) from Covariance

3, 3
215 25

2 2
15 15

10 10 20 30 40 50 10 10 20 30 40 50

Figure: Left: joint samples from the transcription covariance, blue: f (t),
cyan: y; (t) and red: y> (t). Right: numerical solution for f (t) of the
differential equation from y; (t) and y> (t) (blue and cyan). True f (t)
included for comparison.
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Transcription Factor Concentration Inference
Examples Dimensional Reduction

Joint Sampling of y (t) and f (t) from Covariance

2
iL5] 15
1] 1
s
0.5 \/ 0.5
[0} 0
0 10 20 30 40 50 0 10 20 30 40 50

Figure: Left: joint samples from the transcription covariance, blue: f (t),
cyan: y; (t) and red: y> (t). Right: numerical solution for f (t) of the
differential equation from y; (t) and y> (t) (blue and cyan). True f (t)
included for comparison.
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Transcription Factor Concentration Inference
Examples Dimensional Reduction

Results — Transcription Rates

Estimation of Equation Parameters demBarencol

DDB2 hPA26 TNFRSF20b p21 BIK

Figure: Basal transcription rates. Our results (black) compared with [1]

(white). g
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Transcription Factor Concentration Inference
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Results — Transcription Rates

Estimation of Equation Parameters demBa.

2l

DDB2 hPA26 TNFRSF20b p21 BIK

Figure: Sensitivities. Our results (black) compared with [1] (white).
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Transcription Factor Concentration Inference
Examples Dimensional Reduction

Results — Transcription Rates

Estimation of Equation Parameters demBarencol

DDB2 hPA26 TNFRSF20b p21 BIK

Figure: Decays. Our results (black) compared with [1] (white).
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Transcription Factor Concentration Inference
Examples Dimensional Reduction

Results — Protein Concentration

Prediction with error bars of protein concentration:
p(fly1, y2,¥3,Ya,Ys)

Figure: (a) RBF covariance function (b) MLP covariance function. Also
included are results from [1] as crosses. g
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Transcription Factor Concentration Inference
Dimensional Reduction

Examples

Results — Positive Constrained

GP predictions in log space.

(o]

Figure: (a) RBF covariance function (b) MLP covariance function. Also
included are results from Barenco et al [1] as crosses. g
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Transcription Factor Concentration Inference
Examples Dimensional Reduction

Transcription Model Summary

Progress so far and Future work

@ Elegant solution of a problem with indirect observations.

@ Already extended to non-linear response equations (using
Laplace approximation).

@ Expect to extend it to systems with multiple transcription
factors.

@ Gives results in 13 minutes vs 10° Monte-Carlo iterations.
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Transcription Factor Concentration Inference
Examples Dimensional Reduction

Dimensional Reduction

Low Dimensional Manifolds for High Dimensional Data

@ Recently proposed approach to probababilistic modelling.

@ Involves mapping from low dimensional /atent space to high
dimensional data space.

@ Mappings are formed from Gaussian processes.

@ Several important applications including tracking [9] and
graphics [3].

@ Approach is a probabilistic non-linear generalisation of PCA

[4].
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Transcription Factor Concentration Inference
Examples Dimensional Reduction

A Latent Variable Model

How can a model designed primarily for regression be used as a technique for dimensional
reduction?

Graph of GP-LVM X 0

@ Now optimise over X as
well as 6.

@ Relates input variables, X,
to vector, y, through f
given kernel parameters 6.

@ Plate notation indicates
independence of y,|f,.

Figure: The GP-LVM depicted
graphically.
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Transcription Factor Concentration Inference
Examples Dimensional Reduction

Probabilistic Model in High Dimensions

Generalization with less Data than Dimensions

@ Powerful uncertainly handling of GPs leads to suprising
properties.

@ Non-linear models can be used where there are fewer data
points than dimensions without overfitting.

o Example: Modelling a stick man in 102 dimensions with 55
data points!
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Transcription Factor Concentration Inference
Examples Dimensional Reduction

Stick Man Results

demStickResults

-0.6 -04 -02

(a) b) (c) (d)

Projection into data space from four points in the latent space. The g
inclination of the runner changes becoming more upright.
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Transcription Factor Concentration Inference
Examples Dimensional Reduction

Vowel Data

Vocal Joystick System [2] (demvowels3 in fgplvm toolbox)

The different vowels are shown as follows: /a/ cross /ae/ circle
/ao/ plus /e/ asterix /i/ square /ibar/ diamond /o/ down triangle
/schwa/ up triangle and /u/ left triangle. g
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Conclusions

Summary

@ Gaussian Processes are a powerful flexible way to make
inference about functions.

@ Can be combined with differential equations:

e Facilitates parameter learning, much quicker than Monte Carlo
approaches.

o Expected to be vital for larger systems (e.g. several
transcription factors).

@ GPs can be adapted for probabilistic dimensional reduction.

o Non-linear models even when less data points than data
dimensions.
e Applications in graphics, vision, speech, robotics ...

@ And finally ... g
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Consistency of Gaussian Processes

Consistency

Consistency of a Gaussian Process

@ Predictions remain the same regardless of the number and
location of the test points.

p(EIN = [ p(E.0.10)df..

@ For the system to be consistent this conditional probability
must be independent of the length of f,.

@ In other words.

p(EIN = [Pttt = [ p (8. EeiF) of:
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Predictive Distribution

Joint Distribution

Joint Distribution

@ The covariance function provides the joint distribution over
the instantiations.

@ Write down the conditional distribution provides predictions.
@ Denote the training set as f and test set as f,.

e Predict using p (f.|f).
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Predictive Distribution

The Conditional Distribution

Partioned Inverse

@ Use partitioned inverse to find conditional.

| Kes Krs
K= |: K*,f K*,* :|

@ Partitioned inverse is then

Kl _ Kif + KifKe D 'K Kl —K K T
—¥ K, K} il

L = K*,* - K*,fo_fle,*~
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Predictive Distribution

Joint Distribution

Take Log of the Joint

@ Logarithm of the joint distribution:
1 _ _ _ _
logp (f,f.) = —§fTKf’f1f Lerk 1Kf I KK
—i—fo_’fle,*Z* f. — Ef*TZ*lf* + const

e Conditional is found by dividing joint by the prior,
p(F) = N (F]0, Key).
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Predictive Distribution

Conditional Distribution

Deriving the Conditional

@ In log space this is equivalent to subtraction of
1
log p (f) = —EfTKf_’flf + consto
giving
log p(f.|f) = logp(f.,f) —logp(f) =log N (f.1f,X).

where f = K. (K Hf and T = K, . — K, (K K ..
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Predictive Distribution

Making Predictions

o If we observe points from the function, f.

@ We can predict the locations of functions at as yet unseen
locations.

@ The prediction is also a Gaussian process, with mean f and
covariance .

@ Often observe corrupted version of function.
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