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Online Resources

All source code and slides are available online

@ This talk available from my home page (see talks link on side).
o MATLAB examples in the 'oxford" toolbox (vrs 0.13).
e http://www.cs.man.ac.uk/ neill/oxford/

@ And the 'ivm’ toolbox (vrs 0.4) and 'mtivm’ toolbox (vrs
0.14).

e http://www.cs.man.ac.uk/ neill/ivm/.
e http://www.cs.man.ac.uk/ neill/mtivm/.

o MATLAB commands used for examples given in typewriter
font.

Neil Lawrence Gaussian Processes


http://www.cs.man.ac.uk/~neill/oxford/
http://www.cs.man.ac.uk/~neill/ivm/
http://www.cs.man.ac.uk/~neill/mtivm/

Introduction to Gaussian Processes Distributions over Functions
Samples from a Gaussian Distribution
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Introduction to Gaussian Processes

Inference about functions

@ Many Machine Learning problems can be reduced to inference
about functions.

o We will see some examples later.

@ Gaussian processes (GPs) are probabilistic models for
functions. O'Hagan [1978, 1992], Rasmussen and Williams [2006]

@ GPs allow inference about functions in the presence of
uncertainty.
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Defining a Distribution over Functions

Gaussian Process
@ What is meant by a distribution over functions?
@ Functions are infinite dimensional objects:

o Defining a distribution over functions seems non-sensical.

Gaussian Distribution

@ Start with a standard Gaussian distribution.

@ Consider the distribution over a fixed number of instantiations
of the function.
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Gaussian Distribution

Zero mean Gaussian distribution

@ A multi-variate Gaussian distribution is defined by a mean and
a covariance matrix.

(2m)2 K]z

@ We will consider the special case where the mean is zero,

N (10, K) =

. p< fTK_1f>
— 1 &Xp|—7 ).
(2m)? |K|? 2
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Sampling a Function

Multi-variate Gaussians

@ We will consider a Gaussian with a particular structure of
covariance matrix.

@ Generate a single sample from this 25 dimensional Gaussian
distribution, f =[fi, f2 ... fa5].
o We will plot these points against their index.
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Gaussian Distribution Sample

demGPSample
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Figure: (a) 25 instantiations of a function, f,, (b) greyscale covariance
matrix.
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Covariance Function

The covariance matrix

@ Covariance matrix shows correlation between points f,, and f,
if nis near to m.
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Covariance Function

The covariance matrix

@ Covariance matrix shows correlation between points f,, and f,
if nis near to m.

@ Less correlation if n is distant from m.
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Covariance Function

The covariance matrix

@ Covariance matrix shows correlation between points f,, and f,
if nis near to m.

@ Less correlation if n is distant from m.

@ Our ordering of points means that the function appears
smooth.
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Covariance Function

The covariance matrix

@ Covariance matrix shows correlation between points f,, and f,
if nis near to m.

@ Less correlation if n is distant from m.

@ Our ordering of points means that the function appears
smooth.

@ Let's focus on the joint distribution of two points form the 25.

V.
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Prediction of £, from f;

demGPCov2D([1 2])
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o , Ao _
Figure: Covariance for [ f ] is Ko = [ 0.966 1
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Prediction of £, from f;

demGPCov2D([1 2])
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Prediction of £, from f;

demGPCov2D([1 2])

e &
<

Figure: Covariance for [ ’il ] is Kip = [ 1 0.966 }
2

0.966 1
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Prediction of f5 from f;

demGPCov2D([1 5])

1 0.574 }

o . . _
Figure: Covariance for [ £ ] is Kis = [ 0.574 1
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Prediction of f5 from f;

demGPCov2D([1 5])
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Figure: Covariance for [ £ ] is Kis = [ 0.574 1
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Prediction of f5 from f;

demGPCov2D([1 5])
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Figure: Covariance for [ £ ] is Kis = [ 0.574 1

Neil Lawrence Gaussian Processes



Introduction to Gaussian Processes Distributions over Functions
Samples from a Gaussian Distribution
Covariance functions

Covariance Functions

Where did this covariance matrix come from?

RBF Kernel Function

_me—x,,|]2

k (Xm,Xn) = cvexp T

@ Covariance matrix is built

using the inputs to the
function x,,.

@ For the example above it
was based on Euclidean
distance.

@ The covariance function is
also know as a kernel.
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Different Covariance Functions

MLP Kernel Function

1 wxlx, + b
Vwxhxm + b+ 1y/wxFx, + b+ 1

k (Xm,Xp) = asin™

@ A non-stationary s
covariance matrix [Williams, y >
1997]. < o
@ Derived from a multi-layer i o
perceptron (MLP). | .
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Different Covariance Functions

Linear Kernel Function

k (Xm,Xpn) = axtx,

5|
. 0.5
@ Allows for a linear trend. "
@ Note the anti-correlations " ’
in the matrix. " -0
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Different Covariance Functions

k (Xm,Xn) = @dmn

A
@ Where §,,,, is the 5
Kronecker delta. " N
@ Simply represents "1 ’
uncorrelated independent 20 05
noise. i R
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Covariance Samples

demCovFuncSample

6 T T T

Figure: RBF kernel with v =10, a =1
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with / =1, a =1
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Covariance Samples

demCovFuncSample

-1 -05 0 0.5 1

Figure: RBF kernel with / =0.3, a =4
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Covariance Samples

ovFuncSample
6 ; ; ;

4 g
0

Figure: linear kernel with o = 16
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Covariance Samples

demCovFuncSample

6 T T

Figure:  MLP kernel with « = 8, w = 100 and b = 100
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Covariance Samples

demCovFuncSample

6 T T T

Figure:  MLP kernel with « =8, b= 0 and w = 100
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Covariance Samples

ovFuncSample

6 T T T

=
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Figure: bias kernel with & = 1 and
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Covariance Samples

demCovFuncSample

=1 -05 0 0.5 1

Figure: summed combination of: RBF kernel, a = 1, / = 0.3; bias
kernel, a =1; and white noise kernel, 5 = 100
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Joint Distribution

Making Predictions

@ Covariance function provides the joint distribution over the
instantiations.

e Conditional distribution provides predictions.
@ Denoting the training set as f and test set as f,.

o Predict using p (f.|f).
e This conditional distribution is also Gaussian.
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Gaussian Process Interpolation
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Figure: Real example: BACCO (see e.g. [Oakley and O’Hagan, 2002]).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).
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Prediction with Gaussian Processes

Gaussian Process Interpolation

Interpolation with Gaussian Processes
Regression with Gaussian Processes
Learning Kernel Parameters
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Figure: Real example: BACCO (see e.g. [Oakley and O’Hagan, 2002]).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).
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Gaussian Process Interpolation

Figure: Real example: BACCO (see e.g. [Oakley and O’Hagan, 2002]).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).
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Gaussian Process Interpolation

Figure: Real example: BACCO (see e.g. [Oakley and O’Hagan, 2002]).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).
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Gaussian Process Interpolation

Figure: Real example: BACCO (see e.g. [Oakley and O’Hagan, 2002]).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).
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Gaussian Process Interpolation

.
Qoo™

Figure: Real example: BACCO (see e.g. [Oakley and O’Hagan, 2002]).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).
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Gaussian Process Interpolation

.
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Figure: Real example: BACCO (see e.g. [Oakley and O’Hagan, 2002]).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).
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Gaussian Process Interpolation

Figure: Real example: BACCO (see e.g. [Oakley and O’Hagan, 2002]).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).
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Noise Models

Graph of a GP ° 6

@ Relates input variables, X,
to vector, y, through f

given kernel parameters 6. @

@ Plate notation indicates
independence of y,|f,.

@ Noise model, p(yn|f,) can

take several forms. N

@ Simplest is Gaussian
noise.

Figure: The Gaussian process
7 depicted graphically.
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Gaussian Process Regression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression

Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression

Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Prediction with Gaussian Processes

A Paradigm Shift from i.i.d.

Parameteric Model

Parameteric models normally
assume independence given
parameters.

p(.Vn’XnaW) =N (}/n|WTXn>(72)

p (y|xv W) = H p(yn|xnv W)
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Learning Kernel Parameters

A Paradigm Shift from i.i.d.

Gaussian process

p(yIX) = N(y[0,K) In GPs no i.i.d. assumption is made

the kernel expresses correlations.
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?

log-likelihood

10" 10° 10"
-2 length scale
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?

log-likelihood

y -10 f
Y R
NN, -11 : Gt 1
a0, atee -1.5-|
12
-1 0
10 10 10"
-2

length scale
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?

log-likelihood
&

10" 10° 10"
-2 length scale
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?

log-likelihood
&

10" 10° 10"
-2 length scale
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?

T T T
.
s, -1 -05 ,¢ /’05 1 15
. e B0

IOPPT LA}

log-likelihood
&

10" 10° 10"
-2 length scale
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?

log-likelihood
&

10" 10° 10"
-2 length scale
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?

log-likelihood

10’1 0
length scale
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?

log-likelihood
&

15

10" 10° 10"
-2 length scale
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?
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General Noise Models

Graph of a GP ° 0

@ Relates input variables, X,
to vector, y, through f

given kernel parameters 6. 'I
@ Plate notation indicates @
independence of y,|f,.

@ In general p(y,|fy) is

non-Gaussian. N

@ We approximate with ~—
Gaussian P(yln|fn) & Figure: The Gaussian process
N (mn’fmﬁ; ) depicted graphically.
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Expectation Propagation

Local Moment Matching

@ Easiest to consider a single previously unseen data point,
Yy Xs.

@ Before seeing data point, prediction of £, is a GP,
p (ﬁk|ya X7 X*).

o Update prediction using Bayes' Rule,

p (y«lfe) p(fely, X, %)
P(Ya}/*‘xax*)

P(f*‘ya)’*axﬂ*) =

This posterior is not a Gaussian process if p (yi|f;) is
non-Gaussian.
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Classification Noise Model

Probit Noise Model

pw,If)
~

g

Figure: The probit model (classification). The plot shows p (y,|f,) for
different values of y,. For y, =1 p(yalfy) = ¢ (f,) = fjoo N (z|0,1)dz.
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Expectation Propagation |l

Match Moments

@ Idea behind EP — approximate with a Gaussian process at
this stage by matching moments.

@ This is equivalent to minimizing the following KL divergence
where q (f.]y, y«, X, X.) is constrained to be a GP.

~

q (f*lyv)/*xax*) = argminq(f*\y,y*x,x*)KL (P (f*‘y7y*xv X*) ||q(f*|y7y*a X7 X

@ This is equivalent to setting

<ﬂ<>q(f*|y9y*7xzx*) - <£k>P(f*‘YVy*7X9X*)

2 _ 2
<f* >q(f*|y,y*,X,X*) o <f* >P(f*|y7y*7X,x*)
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Expectation Propagation Il

Equivalent Gaussian

@ This is achieved by replacing p (y«|f.) with a Gaussian
distribution

p (v«lf) p(f]y, X, x,)
P(YJ*’X»X*)

p(f*|y,y*,X,X*) =

becomes

N (m.|f., BxY) p(fly, X, x.)
p (Y, y«|X, %) '

Q(f*|y7}/*7xvx*) -
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Classification

Update(’probit’,

=3 -2 =il 0 1 2 3

Figure: An EP style update with a classification noise model. Blue:
P (f X, x4, y).
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Classification

Update(’probit’,

=3 -2 =il 0 1 2 3

Figure: An EP style update with a classification noise model. Blue:
p (X, xx,y), Red: p(y« = 1|£) .
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Classification

=3 -2 =il 0 1 2 3

Figure: An EP style update with a classification noise model. Blue:
p (f|X,x+,y), Red: p(y~ = 1|f) , Magenta: p (fi|X, Xx,y, y«).
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Classification

1.5

1

0.5

93 -2 =il 0 1 2 3

Figure: An EP style update with a classification noise model. Biue:
p(f|X,xx,y), Red: p(y« =1|f.) , Magenta: p (fi|X,x«,Y, yx),
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Ordinal Noise Model

Ordered Categories

p,|f)
S~
~
<

Figure: The ordered categorical noise model (ordinal regression). The
plot shows p (yn|f,) for different values of y,. Here we have assumed
three categories.
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Ordinal Regression

=5 =2 =il 0 1 2 &)

Figure: An EP style update with an ordered category noise model. Blue:
P (f]X; xx,y).
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Ordinal Regression

1
0.5
0

=5 =2 =il 0 1 2 &)

Figure: An EP style update with an ordered category noise model. Blue:
p(f*|x7x*>y)1 REd-‘ p()/* = 0|f*) .
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Ordinal Regression

1,

-3 =2 =il 0 1 2 &)

Figure: An EP style update with an ordered category noise model. Blue:
p (f|X, x«,y), Red: p(y« =0|f) , Magenta: p (fi|X,X«,Y,yx)-
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Ordinal Regression

1,

BA\

=8} -2 =il 0 1 2 3

Figure: An EP style update with an ordered category noise model. Blue:
p (f|X, x«,y), Red: p(y« =0|f) , Magenta: p (fi|X,X«,Y,Yx),
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The Informative Vector Machine

Reduce Complexity

e Including N data points through ADF still leads to an O (N3)
complexity.

@ IVM algorithm resolves these problems with a sparse
representation for the data set.

@ Inspiration: the support vector machine.

@ IVM use a simple selection heuristic to incorporate d most
informative points [Lawrence et al., 2003, Seeger, 2004,
Lawrence et al., 2005]. B

o Computational complexity: O (N3) to O (d?N) .

@ Infromation theoretic [Chaloner and Verdinelli, 1995] criteria
used to select points.
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Data Point Selection

Entropy Criterion

@ Original IVM criterion inspired by support vectors being those
that reduce the size of the ‘version space’ most.

@ The equivalent Bayesian interpretation is volume of the
posterior: measured by entropy.

@ Entropy change associted with a data point is simple and
quick to compute.

@ For ith inclusion of nth data point:

1 1
AHip, = 3 log |Z),n| + 3 log [>;—1]

f% log || — X;_1diag (vi)|

1
—5 |0g (1 - Vingifl,n) . (1)

Neil Lawrence Gaussian Processes



Sparse Approximations
Semi-supervised Learning
Building on Regression Multi-task Learning

IVM Parameter Updates

Optimising Kernel Parameters

@ Need to express the marginal likelihood for optimization.

@ Seeger [2004] achieves by expressing the likelihood in terms of
both the active and inactive sets.

@ We simply express the likelihood in terms of the active set
only.

@ Given the active set, /, and the site parameters, m and 3,
optimise approximation wrt kernel parameters using gradient
methods.

@ Active set and kernel parameters are interdependent: active
set is reselected between optimisations of kernel parameters.
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Toy Problems

@ Two toy data sets for classification with probit noise. First
uses an ARD set up and one irrelevant direction.

@ A second demonstation: sampled 500 data points uniformly
from a unit square in two dimensions.

e Sample then made from a GP prior of a function at these
points.

o This function was 'squashed’ by a cumulative Gaussian and a
class assigned according to this probability.
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IVM Classification
dered Categorical

1

-5 oo o°°o
oﬁ 2 X x
D) .
- et
=il ax e x"
-4 -2 038 1

Figure: Contours: Red solid line at p (y|x) = 0.5 , blue dashed lines at
p(y|x) = 0.25 and p(y|x) = 0.75. Active points are blue dots. Left: data
sampled from from a mixture of Gaussians. Right: Data uniformly sampled on
the 2—dimensional unit square. Class labels are assigned by sampling from a
known Gaussian process prior.
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Ordered Categories

Ordered Categories

@ Two results from two problems on ordered categorical data.
@ First example the categories are separable linearly.

@ Second example: sampled ordered categorical data in polar
co-ordinates.
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Ordered Categories

Figure: .Left: a linear solution is found. Right: this categories in this
example were sampled in polar co-ordinates.
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USPS digits

Large Data Set

o USPS digit data set of 16 x 16 greyscale images.
o Contains 7291 training images and 2007 test images.
@ Three different kernels with the IVM algorithm.

e For each data-set we used a ‘base kernel' consisting of a linear
part, a white noise term and a bias part.

e Three variations on this base kernel were then used: it was
changed by adding first an RBF kernel, then an MLP kernel
and finally a variant of the RBF ARD kernel.

e Set d = 500. )
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USPS digits

Classification error %

| el ool ol ow)
RBF 0.65 0.70 1.40 1.05 1.49 1.25 0.75 0.60 1.20 0.75 4.58
MLP 0.55 0.70 1.49 1.20 1.64 1.25 0.80 0.60 1.20 0.75 4.78
RBF ARD 0.55 0.60 1.49 1.10 1.79 1.20 0.80 0.60 1.20 0.85 4.68

Table: Table of results on the USPS digit data. A comparison with a
summary of results on this data-set Scholkopf and Smola [2001, Table
7.4] shows that the IVM is in line with other results on this data.
Furthermore these results were achieved with fully automated model
selection.
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Incorporating Invariances

Virtual Support Vectors

@ Invariances present: rotations, translations.

@ Could augment the original data set with transformed data
points.

This leads to a rapid expansion in the size of the data set.

Scholkopf et al. [1996] suggest augmenting only support
vectors.

Augmented points known as ‘virtual support vectors'.

This algorithm gives state-of-the-art performance on the
USPS data set.
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USPS with Virtual Informative Vectors

Virtual Informative Vectors

@ Scholkopf et al. [1996]: biggest improvement using translation
invariances.

@ Applied standard IVM classification algorithm to the data set
using an RBF kernel combined with a linear term.
@ Took the active set from these experiments and aumented it:
e original active set plus four translations: up down lweft and
right
e results in an augmented active set of 2500 points.

@ Reselect active set of size d = 1000 for final results.
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Performance on USPS

Classification Error %

0 1 2 3 4
0.648 £ 0.00 0.389 4 0.03 0.967 £ 0.06 0.683 £ 0.05 1.06 £ 0.02
5 6 7 8 9 Overall

0.747 £ 0.06 0.523 4 0.03 0.399 + 0.00 0.638 £ 0.04 0.523 £ 0.04 3.30 +0.03

Table: Experiments are summarised by the mean and variance of the %
classification error across ten runs with different random seeds. Results
match those given by the virtual SVM but model selection was automatic
here.
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Probabilistic Model

Semi-supervised Noise Model

@ New noise model: the null category noise model.

@ Derives from the general class of ordered categorical models
(or ordinal regression).

¢(— (f,,+g)) for y, = —1
p()/n|fn): ¢(fn+%) Qs(fn_%) fory, =0 ,
(b(f,,—g) for y, =1

Neil Lawrence Gaussian Processes



Sparse Approximations
Semi-supervised Learning
Building on Regression Multi-task Learning

Ordinal Noise Model

Ordered Categories

pO,l7,)
>

Figure: The ordered categorical noise model (ordinal regression). The
plot shows p (y,|f,) for different values of y,. Here we have assumed
three categories.
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Null Category Noise Model

Noise Model for Semi-supervised Learning

@ Indicator variable, z, = 1 if data point is unlabeled.

@ We impose the constraint:p (z, = 1|y, = 0) = 0.

@ Assign missing label probabilities p(z, = 1|y, = 1) = 74 and
p(zn=1ly,=-1)=_.
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Null Category Noise Model

Noise Model for Semi-supervised Learning

@ From the graphical representation z, is d-separated from x,.

e When y, is observed, the posterior process is updated by using

P (¥alfa)-
o When the data point is unlabeled the posterior process is

updated by

zp = 1|fn) ZP (vnlfa) P (20 = 1lyn).

@ The “effective likelihood function” for a single data point,
L (f,), therefore takes one of three forms:

H (— (fn + %)) for y,=-1,2z,=0
L(f) 'y,H(f (f,,+%)) +1'7+H(fnf%) for zn=1
H(f,,—E) for Yan=12z,=0
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Null Category Noise Model

Noise Model for Semi-supervised Learning

@ The constraint imposed by p(z, = 1|y, = 0) = 0 implies that:
@ An unlabeled data point never comes from the class y, = 0.

o This is equivalent to a hard assumption that no data comes
from the region around the decision boundary.

e The labeled data only comes from the classes y, =1 and
¥n = —1, so we never obtain any evidence for data with
y¥n = 0. We therefore refer to this category as the null category
and the overall model as a null category noise model (NCNM).
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Null Category Noise Model

Null Category

1)
<

Figure: The null category noise model (semi-supervised
classification).Standard noise model for labelled points (y, = 0 is never
observed). y, marginalised for unlabelled points.
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Null Category Noise Model

\
\
\/
.

Figure: The null category noise model (semi-supervised classification).
Effective noise model with y, marginalised for unlabelled points.

pw,lf)
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Sparse Approximations

Z5

1.5

0.5

=5 =2 =il 0 1 2 &)

Figure: An EP style update with a classification noise model. Biue:
P (f]X; xx,y).
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Sparse Approximations

epPointUpdate

93 =2 =il 0 1 2 &)

Figure: An EP style update with a classification noise model. Biue:
p (f|X,x«,y), Red: p(y« # 0|f) .
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Sparse Approximations

epPointUpdate

93 =2 =il 0 1 2 &)

Figure: An EP style update with a classification noise model. Biue:
p (f|X, x«,y), Red: p(y« # 0|f) , Magenta: p (fi|X,Xx,Y, yx)-

Neil Lawrence Gaussian Processes



Sparse Approximations
Semi-supervised Learning
Building on Regression Multi-task Learning

Sparse Approximations

Figure: An EP style update with a classification noise model. Blue:
p(fi|X,xx,y), Red: p(y« #0|f.) , Magenta: p (fi|X,x«,y, yx),
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Sparse Approximations
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Figure: An EP style update with a classification noise model. Biue:
P(f*|x7x*7y)'
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Sparse Approximations

NaN, 0, .1, 0, 1le-2)
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Figure: An EP style update with a classification noise model. Biue:
p (flX, x«,y), Red: p(y« # 0|f.) .
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Sparse Approximations
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Figure: An EP style update with a classification noise model. Biue:
P (fx|X,x«,y), Red: p(y« # O|f.) , Magenta: p(fi|X,x«,y, y«).
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Sparse Approximations
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Figure: An EP style update with a classification noise model. Biue:
p (fX,xx,y), Red: p(y« # 0[f.) , Magenta: p (fi|X,x«,¥,yx),
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The Null Category

Low Data Density at Decision Boundary

@ When a data point is unlabeled the effect will depend on the
mean and variance of p (fp|x,).

@ If this Gaussian has little mass in the null category region, the
posterior will be similar to the prior.

o If the Gaussian has significant mass in the null category region,
the outcome may be loosely described in two ways:

@ If p(fa]xn) “spans the likelihood”, leading to a bimodal

posterior: the variance of the posterior will be greater than the
variance of the prior.

@ If p(fu]xns) is “rectified by the likelihood”, then the mass of the
y
posterior will be pushed in to one side of the null category.

@ Note that the posterior is pushed out to one side or both sides
of the null category region.
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Toy Problem

Crescent Data

@ We considered two-dimensional data in which two
class-conditional densities interlock.

@ There were 400 points in the original data set. Each point was
labeled with probability 0.1, leading to 37 labeled points.

@ A standard IVM classifier was trained on the labeled data only.

@ We then used the null category approach to train a classifier
that incorporates the unlabeled data.

@ The resulting decision boundary finds a region of low data

density and more accurately reflects the underlying data
distribution.

Neil Lawrence Gaussian Processes



Sparse Approximations
Semi-supervised Learning
Building on Regression Multi-task Learning

Crescent Data

Standard IVM vs Semi-supervised

1 1

=10 =5 0 5 10 =10

Figure: Data points: small blue dots, are labeled with probability 0.1.
Labelled data-points: red circles and green crosses. Active set: large blue
dots. Left: Learning with standard IVM. Right: Learning with the
NCNM. Lines show centre and edge of null category.

Neil Lawrence Gaussian Processes



Sparse Approximations
Semi-supervised Learning
Building on Regression Multi-task Learning

High-dimensional example

USPS Data 3 vs b

@ As a higher dimensional example we return to the USPS data
set.

@ Separate the digit 3 from 5: vary probability of unlabelled
data between 0.2 and 1.25 x 1072,

@ Compare four classifiers:

e standard IVM

e standard SVM

e semi-supervised VM,

e transductive SVM.

@ Each run was completed ten times with different random
seeds.
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USPS Data

"

8 0.9~

=

® 0.8~

10° 10
prob. of label present

Figure: Mean and standard errors shown. IVM (red solid line), the
NCNM (blue dotted line), the SVM (green dash-dot line) and the
transductive SVM (pink dashed line).
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USPS Data

Digits Results

@ Below a label probability of 2.5 x 1072 both the SVM and
transductive SVM outperform the NCNM.

@ In this region the estimate #; provided by the NCNM was
sometimes very low leading to occasional very poor results
(note the large error bar).

@ Above 2.5 x 1072 a clear improvement is obtained for the
NCNM over the other models. )
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Multi-task Learning

Multiple Independent Tasks

@ We extend the IVM to handle multiple independent tasks.
@ Given M training sets each with input matrix X, .

@ Model the target data for each task, y,,, as a GP

M
p(Y‘X,O) = H p(Ym’vao)

m=1

where each p (ym|Xm, @) is a Gaussian process.
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Multi-task Gaussian Process

Graph of a Multi-task GP

@ The entire likelihood is a x,) p
GP over a vector,
y=[yT. . .yh" @'
Ki 0 0 0
K — 0 K 0 0 @
0 0 0 y

0 0 0 Ky

Figure: Plate notation: independence
across the M tasks. [Lawrence and
Platt, 2004]

@ IVM: Point selection is
now performed across
models.
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MT-IVM Simple Example

Regression Example

@ Three tasks, each contains 30 data-points sampled from sine
waves.

@ Each task uses a different distributions for the input data.

@ Select points using an MT-IVM.
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Example Results
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e

Task 1 Task 2 Task 3

Figure: Three different learning tasks sampled from sine waves. The input
distribution for each task is different. Points used by the MT-IVM are circled.
Note that more points are taken from tasks which give more information about

the function.
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Figure: Three different learning tasks sampled from sine waves. The input
distribution for each task is different. Points used by the MT-IVM are circled.
Note that more points are taken from tasks which give more information about

the function.
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Example Results
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Figure: Three different learning tasks sampled from sine waves. The input
distribution for each task is different. Points used by the MT-IVM are circled.
Note that more points are taken from tasks which give more information about

the function.
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Example Results
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Figure: Three different learning tasks sampled from sine waves. The input
distribution for each task is different. Points used by the MT-IVM are circled.
Note that more points are taken from tasks which give more information about

the function.
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Example Results
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Figure: Three different learning tasks sampled from sine waves. The input
distribution for each task is different. Points used by the MT-IVM are circled.
Note that more points are taken from tasks which give more information about

the function.
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Example Results
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Figure: Three different learning tasks sampled from sine waves. The input
distribution for each task is different. Points used by the MT-IVM are circled.
Note that more points are taken from tasks which give more information about

the function.
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Example Results
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Figure: Three different learning tasks sampled from sine waves. The input
distribution for each task is different. Points used by the MT-IVM are circled.
Note that more points are taken from tasks which give more information about

the function.
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Figure: Three different learning tasks sampled from sine waves. The input
distribution for each task is different. Points used by the MT-IVM are circled.
Note that more points are taken from tasks which give more information about

the function.
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Example Results
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Figure: Three different learning tasks sampled from sine waves. The input
distribution for each task is different. Points used by the MT-IVM are circled.
Note that more points are taken from tasks which give more information about

the function.
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Phoneme Classification Example

Classification

@ The MT-IVM for phoneme recognition.
@ Treat speakers as tasks, independent given 6.

o Will MT-IVM converge faster than a speaker-independent
IVM?
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Phoneme Classification

Classification

@ UCI repository phoneme example.

@ 15 speakers, 11 phonemes: treat each speaker as a separate
task.

@ Use 14 speakers to learn kernel parameters.

@ Evaluate model on remaining speaker.
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Phoneme Classification Results

Time vs Error rate

30t
S
;\E 20|
10t :
10° 10° 10*
time/s

Figure: MT-IVM (solid line with circles) , sub-sampled ADF-GP (dashed
line with crosses) — consider each speaker to be an independent task.
Standard IVM — consider all points to belong to the same task (dotted
line with pluses).
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Classification Discussion

Faster Convergence
@ MT-IVM reaches = 10% error roughly 10 x faster than IVM.
@ This independence structure:

@ Speeds up training.
@ Allows for speaker dependent recognisers.
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Conclusions

Faster GPs through Sparsity

@ We have reviewed GPs and EP briefly.

@ We've introduced the IVM for sparsification.

@ We've shown how we can:

e learn invariances
o do semi-supervised learning
o do multi-task learning
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Consistency of Gaussian Processes

Consistency

Consistency of a Gaussian Process

@ Predictions remain the same regardless of the number and
location of the test points.

p(EIN = [ p(E..0.IF)df..

@ For the system to be consistent this conditional probability
must be independent of the length of f,.

@ In other words.

p(F.IF) = / p (£, £ [F) df, = / p (5B IF) o,
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Predictive Distribution

Joint Distribution

Joint Distribution

@ The covariance function provides the joint distribution over
the instantiations.

@ Write down the conditional distribution provides predictions.
@ Denote the training set as f and test set as f,.

o Predict using p (f.|f).
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Predictive Distribution

The Conditional Distribution

Partioned Inverse

@ Use partitioned inverse to find conditional.

_ | Kere K
K= |: K*,f K*,* :|

@ Partitioned inverse is then

Kl Kif + KiK. D 'K K —K K 271
—5 K, Ky =1

where

> = K*,* - K*,fKEfle,*-
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Predictive Distribution

Joint Distribution

Take Log of the Joint

@ Logarithm of the joint distribution:
Lere—1 Lere—1 -1 —il
logp(f,f) = —§f Keef— §f K KX K gKe e f
1
—l—fo_fle’*Z_lf* = EfEZ_lf* + constq

e Conditional is found by dividing joint by the prior,
P (f) =N (f]O, Kf7f).
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Predictive Distribution

Conditional Distribution

Deriving the Conditional

@ In log space this is equivalent to subtraction of
1
log p (f) = —EfTKEflf + consto
giving
log p(f[f) = logp(fs.f)—logp(f) =logN(f.If:,X).

where f = K, (K} and © = K., — K, fK 'K ..
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Predictive Distribution

Making Predictions

@ If we observe points from the function, f.

@ We can predict the locations of functions at as yet unseen
locations.

@ The prediction is also a Gaussian process, with mean f and
covariance .

@ Often observe corrupted version of function.
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