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Online Resources

All source code and slides are available online

This talk available from my home page (see talks link on side).

MATLAB examples in the ’oxford’ toolbox (vrs 0.13).

http://www.cs.man.ac.uk/~neill/oxford/.

And the ’ivm’ toolbox (vrs 0.4) and ’mtivm’ toolbox (vrs
0.14).

http://www.cs.man.ac.uk/~neill/ivm/.
http://www.cs.man.ac.uk/~neill/mtivm/.

MATLAB commands used for examples given in typewriter
font.

Neil Lawrence Gaussian Processes

http://www.cs.man.ac.uk/~neill/oxford/
http://www.cs.man.ac.uk/~neill/ivm/
http://www.cs.man.ac.uk/~neill/mtivm/


Introduction to Gaussian Processes
Prediction with Gaussian Processes

Building on Regression

Distributions over Functions
Samples from a Gaussian Distribution
Covariance functions

Introduction to Gaussian Processes

Inference about functions

Many Machine Learning problems can be reduced to inference
about functions.

We will see some examples later.

Gaussian processes (GPs) are probabilistic models for
functions. O’Hagan [1978, 1992], Rasmussen and Williams [2006]

GPs allow inference about functions in the presence of
uncertainty.
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Defining a Distribution over Functions

Gaussian Process

What is meant by a distribution over functions?

Functions are infinite dimensional objects:

Defining a distribution over functions seems non-sensical.

Gaussian Distribution

Start with a standard Gaussian distribution.

Consider the distribution over a fixed number of instantiations
of the function.
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Gaussian Distribution

Zero mean Gaussian distribution

A multi-variate Gaussian distribution is defined by a mean and
a covariance matrix.

N (f|µ,K) =
1

(2π)
N
2 |K|

1
2

exp

(
−(f − µ)T K−1 (f − µ)

2

)
.

We will consider the special case where the mean is zero,

N (f|0,K) =
1

(2π)
N
2 |K|

1
2

exp

(
− fTK−1f

2

)
.
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Sampling a Function

Multi-variate Gaussians

We will consider a Gaussian with a particular structure of
covariance matrix.

Generate a single sample from this 25 dimensional Gaussian
distribution, f = [f1, f2 . . . f25].

We will plot these points against their index.
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Gaussian Distribution Sample

demGPSample
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Figure: (a) 25 instantiations of a function, fn, (b) greyscale covariance
matrix.
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Covariance Function

The covariance matrix

Covariance matrix shows correlation between points fm and fn
if n is near to m.

Less correlation if n is distant from m.

Our ordering of points means that the function appears
smooth.

Let’s focus on the joint distribution of two points form the 25.
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Prediction of f2 from f1

demGPCov2D([1 2])
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Prediction of f5 from f1
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Covariance Functions
Where did this covariance matrix come from?

RBF Kernel Function

k (xm, xn) = α exp

(
−||xm − xn||2

2l2

)

Covariance matrix is built
using the inputs to the
function xn.

For the example above it
was based on Euclidean
distance.

The covariance function is
also know as a kernel.
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Different Covariance Functions

MLP Kernel Function

k (xm, xn) = αsin−1

(
wxT

mxn + b√
wxT

mxm + b + 1
√

wxT
n xn + b + 1

)

A non-stationary
covariance matrix [Williams,

1997].

Derived from a multi-layer
perceptron (MLP).
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Different Covariance Functions

Linear Kernel Function

k (xm, xn) = αxT
mxn

Allows for a linear trend.

Note the anti-correlations
in the matrix.
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Different Covariance Functions

White noise

k (xm, xn) = αδmn

Where δmn is the
Kronecker delta.

Simply represents
uncorrelated independent
noise.
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with γ = 10, α = 1
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Figure: RBF kernel with l = 1, α = 1
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with l = 0.3, α = 4
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Covariance Samples

demCovFuncSample

−1 −0.5 0 0.5 1
−6

−4

−2

0

2

4

6

Figure: linear kernel with α = 16
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Figure: MLP kernel with α = 8, w = 100 and b = 100
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Figure: MLP kernel with α = 8, b = 0 and w = 100
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Covariance Samples
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Figure: bias kernel with α = 1 and
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Figure: summed combination of: RBF kernel, α = 1, l = 0.3; bias
kernel, α =1; and white noise kernel, β = 100
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Joint Distribution

Making Predictions

Covariance function provides the joint distribution over the
instantiations.

Conditional distribution provides predictions.

Denoting the training set as f and test set as f∗.

Predict using p (f∗|f).
This conditional distribution is also Gaussian.
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demInterpolation

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Real example: BACCO (see e.g. [Oakley and O’Hagan, 2002]).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).
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Noise Models

Graph of a GP

Relates input variables, X,
to vector, y, through f
given kernel parameters θ.

Plate notation indicates
independence of yn|fn.
Noise model, p (yn|fn) can
take several forms.

Simplest is Gaussian
noise.

Xfnyn N
Figure: The Gaussian process
depicted graphically.
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Figure: Examples include WiFi localization, C14 callibration curve.
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A Paradigm Shift from i.i.d.

Parameteric Model

p (yn|xn,w) = N
(
yn|wTxn, σ

2
)

p (y|X,w) =
N∏

n=1

p (yn|xn,w)

Parameteric models normally
assume independence given
parameters.
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A Paradigm Shift from i.i.d.

Gaussian process

p (y|X) = N (y|0,K)
In GPs no i.i.d. assumption is made
the kernel expresses correlations.
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Learning Kernel Parameters
Can we determine length scales and noise levels from the data?

demOptimiseKern
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Learning Kernel Parameters

Learning Kernel Parameters
Can we determine length scales and noise levels from the data?

demOptimiseKern
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General Noise Models

Graph of a GP

Relates input variables, X,
to vector, y, through f
given kernel parameters θ.

Plate notation indicates
independence of yn|fn.
In general p (yn|fn) is
non-Gaussian.

We approximate with
Gaussian p (yn|fn) ≈
N
(
mn|fn, β−1

n

)
.

Xfnyn N
Figure: The Gaussian process
depicted graphically.
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Expectation Propagation

Local Moment Matching

Easiest to consider a single previously unseen data point,
y∗, x∗.

Before seeing data point, prediction of f∗ is a GP,
p (f∗|y,X, x∗).

Update prediction using Bayes’ Rule,

p (f∗|y, y∗,X, x∗) =
p (y∗|f∗) p (f∗|y,X, x∗)

p (y, y∗|X, x∗)
.

This posterior is not a Gaussian process if p (y∗|f∗) is
non-Gaussian.
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Classification Noise Model

Probit Noise Model

fnp(y
n|f n) yn=1yn=-1

Figure: The probit model (classification). The plot shows p (yn|fn) for

different values of yn. For yn = 1 p (yn|fn) = φ (fn) =
∫ fn
−∞ N (z |0, 1) dz .
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Expectation Propagation II

Match Moments

Idea behind EP — approximate with a Gaussian process at
this stage by matching moments.

This is equivalent to minimizing the following KL divergence
where q (f∗|y, y∗,X, x∗) is constrained to be a GP.

q (f∗|y, y∗X, x∗) = argminq(f∗|y,y∗X,x∗)KL (p (f∗|y, y∗X, x∗) ||q (f∗|y, y∗,X, x∗))

This is equivalent to setting

〈f∗〉q(f∗|y,y∗,X,x∗)
= 〈f∗〉p(f∗|y,y∗,X,x∗)〈

f 2
∗
〉
q(f∗|y,y∗,X,x∗)

=
〈
f 2
∗
〉
p(f∗|y,y∗,X,x∗)
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Expectation Propagation III

Equivalent Gaussian

This is achieved by replacing p (y∗|f∗) with a Gaussian
distribution

p (f∗|y, y∗,X, x∗) =
p (y∗|f∗) p (f∗|y,X, x∗)

p (y, y∗|X, x∗)

becomes

q (f∗|y, y∗,X, x∗) =
N
(
m∗|f∗, β−1

m

)
p (f∗|y,X, x∗)

p (y, y∗|X, x∗)
.
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Classification

epPointUpdate(’probit’, 1, -1, .1, .6, 1e-2)

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

Figure: An EP style update with a classification noise model. Blue:

p (f∗|X, x∗, y).
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Classification

epPointUpdate(’probit’, 1, -1, .1, .6, 1e-2)
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Figure: An EP style update with a classification noise model. Blue:

p (f∗|X, x∗, y), Red: p (y∗ = 1|f∗) .
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Classification

epPointUpdate(’probit’, 1, -1, .1, .6, 1e-2)
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3

Figure: An EP style update with a classification noise model. Blue:

p (f∗|X, x∗, y), Red: p (y∗ = 1|f∗) , Magenta: p (f∗|X, x∗, y, y∗).
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Classification

epPointUpdate(’probit’, 1, -1, .1, .6, 1e-2)

−3 −2 −1 0 1 2 3
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3

Figure: An EP style update with a classification noise model. Blue:

p (f∗|X, x∗, y), Red: p (y∗ = 1|f∗) , Magenta: p (f∗|X, x∗, y, y∗), Green:

q (f∗|X, x∗, y).

Neil Lawrence Gaussian Processes



Introduction to Gaussian Processes
Prediction with Gaussian Processes

Building on Regression

Sparse Approximations
Semi-supervised Learning
Multi-task Learning

Ordinal Noise Model

Ordered Categories

fnp(y
n|f n) yn=1

yn=0yn=-1
Figure: The ordered categorical noise model (ordinal regression). The
plot shows p (yn|fn) for different values of yn. Here we have assumed
three categories.
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Ordinal Regression

epPointUpdate(’ordered’, 1, -1, .1, .6, 1e-3)
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Figure: An EP style update with an ordered category noise model. Blue:

p (f∗|X, x∗, y).
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Ordinal Regression

epPointUpdate(’ordered’, 1, -1, .1, .6, 1e-3)
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Figure: An EP style update with an ordered category noise model. Blue:

p (f∗|X, x∗, y), Red: p (y∗ = 0|f∗) .
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Ordinal Regression

epPointUpdate(’ordered’, 1, -1, .1, .6, 1e-3)
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Figure: An EP style update with an ordered category noise model. Blue:

p (f∗|X, x∗, y), Red: p (y∗ = 0|f∗) , Magenta: p (f∗|X, x∗, y, y∗).
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Ordinal Regression

epPointUpdate(’ordered’, 1, -1, .1, .6, 1e-3)
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Figure: An EP style update with an ordered category noise model. Blue:

p (f∗|X, x∗, y), Red: p (y∗ = 0|f∗) , Magenta: p (f∗|X, x∗, y, y∗), Green:

q (f∗|X, x∗, y).
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The Informative Vector Machine

Reduce Complexity

Including N data points through ADF still leads to an O
(
N3
)

complexity.

IVM algorithm resolves these problems with a sparse
representation for the data set.

Inspiration: the support vector machine.

IVM use a simple selection heuristic to incorporate d most
informative points [Lawrence et al., 2003, Seeger, 2004,
Lawrence et al., 2005]. B

Computational complexity: O
(
N3
)

to O
(
d2N

)
.

Infromation theoretic [Chaloner and Verdinelli, 1995] criteria
used to select points.
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Data Point Selection

Entropy Criterion

Original IVM criterion inspired by support vectors being those
that reduce the size of the ‘version space’ most.

The equivalent Bayesian interpretation is volume of the
posterior: measured by entropy.

Entropy change associted with a data point is simple and
quick to compute.

For ith inclusion of nth data point:

∆Hin = −1

2
log |Σi,n| +

1

2
log |Σi−1|

= −1

2
log |I − Σi−1diag (ν i )|

= −1

2
log (1 − νinςi−1,n) . (1)
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IVM Parameter Updates

Optimising Kernel Parameters

Need to express the marginal likelihood for optimization.

Seeger [2004] achieves by expressing the likelihood in terms of
both the active and inactive sets.

We simply express the likelihood in terms of the active set
only.

Given the active set, I , and the site parameters, m and β,
optimise approximation wrt kernel parameters using gradient
methods.

Active set and kernel parameters are interdependent: active
set is reselected between optimisations of kernel parameters.
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Results

Toy Problems

Two toy data sets for classification with probit noise. First
uses an ARD set up and one irrelevant direction.

A second demonstation: sampled 500 data points uniformly
from a unit square in two dimensions.

Sample then made from a GP prior of a function at these
points.
This function was ’squashed’ by a cumulative Gaussian and a
class assigned according to this probability.
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IVM Classification

Ordered Categorical
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Figure: Contours: Red solid line at p (y |x) = 0.5 , blue dashed lines at

p (y |x) = 0.25 and p (y |x) = 0.75. Active points are blue dots. Left: data

sampled from from a mixture of Gaussians. Right: Data uniformly sampled on

the 2–dimensional unit square. Class labels are assigned by sampling from a

known Gaussian process prior.
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Ordered Categories

Ordered Categories

Two results from two problems on ordered categorical data.

First example the categories are separable linearly.

Second example: sampled ordered categorical data in polar
co-ordinates.
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Ordered Categories

Toy Problems
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Figure: .Left: a linear solution is found. Right: this categories in this
example were sampled in polar co-ordinates.
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USPS digits

Large Data Set

USPS digit data set of 16× 16 greyscale images.

Contains 7291 training images and 2007 test images.

Three different kernels with the IVM algorithm.

For each data-set we used a ‘base kernel’ consisting of a linear
part, a white noise term and a bias part.
Three variations on this base kernel were then used: it was
changed by adding first an RBF kernel, then an MLP kernel
and finally a variant of the RBF ARD kernel.
Set d = 500.
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USPS digits

Classification error %

0 1 2 3 4 5 6 7 8 9 Overall

RBF 0.65 0.70 1.40 1.05 1.49 1.25 0.75 0.60 1.20 0.75 4.58

MLP 0.55 0.70 1.49 1.20 1.64 1.25 0.80 0.60 1.20 0.75 4.78

RBF ARD 0.55 0.60 1.49 1.10 1.79 1.20 0.80 0.60 1.20 0.85 4.68

Table: Table of results on the USPS digit data. A comparison with a
summary of results on this data-set Schölkopf and Smola [2001, Table
7.4] shows that the IVM is in line with other results on this data.
Furthermore these results were achieved with fully automated model
selection.
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Incorporating Invariances

Virtual Support Vectors

Invariances present: rotations, translations.

Could augment the original data set with transformed data
points.

This leads to a rapid expansion in the size of the data set.

Schölkopf et al. [1996] suggest augmenting only support
vectors.

Augmented points known as ‘virtual support vectors’.

This algorithm gives state-of-the-art performance on the
USPS data set.
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USPS with Virtual Informative Vectors

Virtual Informative Vectors

Schölkopf et al. [1996]: biggest improvement using translation
invariances.

Applied standard IVM classification algorithm to the data set
using an RBF kernel combined with a linear term.

Took the active set from these experiments and aumented it:

original active set plus four translations: up down lweft and
right
results in an augmented active set of 2500 points.

Reselect active set of size d = 1000 for final results.
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Performance on USPS

Classification Error %

0 1 2 3 4

0.648 ± 0.00 0.389 ± 0.03 0.967 ± 0.06 0.683 ± 0.05 1.06 ± 0.02

5 6 7 8 9 Overall

0.747 ± 0.06 0.523 ± 0.03 0.399 ± 0.00 0.638 ± 0.04 0.523 ± 0.04 3.30 ± 0.03

Table: Experiments are summarised by the mean and variance of the %
classification error across ten runs with different random seeds. Results
match those given by the virtual SVM but model selection was automatic
here.
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Probabilistic Model

Semi-supervised Noise Model

New noise model: the null category noise model.

Derives from the general class of ordered categorical models
(or ordinal regression).

p (yn|fn) =


φ
(
−
(
fn + w

2

))
for yn = −1

φ
(
fn + w

2

)
− φ

(
fn − w

2

)
for yn = 0

φ
(
fn − w

2

)
for yn = 1

,
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Ordinal Noise Model

Ordered Categories

fnp(y
n|f n) yn=1

yn=0yn=-1
Figure: The ordered categorical noise model (ordinal regression). The
plot shows p (yn|fn) for different values of yn. Here we have assumed
three categories.
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Null Category Noise Model

Noise Model for Semi-supervised Learning

Indicator variable, zn = 1 if data point is unlabeled.

We impose the constraint:p (zn = 1|yn = 0) = 0.

Assign missing label probabilities p (zn = 1|yn = 1) = γ+ and
p (zn = 1|yn = −1) = γ−.xn fn znyn
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Null Category Noise Model

Noise Model for Semi-supervised Learning

From the graphical representation zn is d-separated from xn.

When yn is observed, the posterior process is updated by using
p (yn|fn).
When the data point is unlabeled the posterior process is
updated by

p (zn = 1|fn) =
∑
yn

p (yn|fn) p (zn = 1|yn) .

The“effective likelihood function” for a single data point,
L (fn), therefore takes one of three forms:

L (fn) =

8<:
H

`
−

`
fn + 1

2

´´
for yn = −1, zn = 0

γ−H
`
−

`
fn + 1

2

´´
+ γ+H

`
fn − 1

2

´
for zn = 1

H
`
fn − 1

2

´
for yn = 1 zn = 0

.
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Null Category Noise Model

Noise Model for Semi-supervised Learning

The constraint imposed by p (zn = 1|yn = 0) = 0 implies that:

An unlabeled data point never comes from the class yn = 0.

This is equivalent to a hard assumption that no data comes
from the region around the decision boundary.
The labeled data only comes from the classes yn = 1 and
yn = −1, so we never obtain any evidence for data with
yn = 0. We therefore refer to this category as the null category
and the overall model as a null category noise model (NCNM).
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Null Category Noise Model

Null Category

fnp(y
n|f n) yn=1

yn=0yn=-1
Figure: The null category noise model (semi-supervised
classification).Standard noise model for labelled points (yn = 0 is never
observed). yn marginalised for unlabelled points.
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Null Category Noise Model

Null Category

fnp(y
n|f n) yn=1

yn=0yn=-1
Figure: The null category noise model (semi-supervised classification).
Effective noise model with yn marginalised for unlabelled points.
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Sparse Approximations

epPointUpdate(’ncnm’, NaN, -0.3, .1, 0, 1e-2)
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Figure: An EP style update with a classification noise model. Blue:

p (f∗|X, x∗, y).
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Sparse Approximations

epPointUpdate(’ncnm’, NaN, -0.3, .1, 0, 1e-2)
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Figure: An EP style update with a classification noise model. Blue:

p (f∗|X, x∗, y), Red: p (y∗ 6= 0|f∗) .
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Sparse Approximations

epPointUpdate(’ncnm’, NaN, -0.3, .1, 0, 1e-2)
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Figure: An EP style update with a classification noise model. Blue:

p (f∗|X, x∗, y), Red: p (y∗ 6= 0|f∗) , Magenta: p (f∗|X, x∗, y, y∗).
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Sparse Approximations

epPointUpdate(’ncnm’, NaN, -0.3, .1, 0, 1e-2)
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Figure: An EP style update with a classification noise model. Blue:

p (f∗|X, x∗, y), Red: p (y∗ 6= 0|f∗) , Magenta: p (f∗|X, x∗, y, y∗), Green:

q (f∗|X, x∗, y).
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Sparse Approximations

epPointUpdate(’ncnm’, NaN, 0, .1, 0, 1e-2)
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Figure: An EP style update with a classification noise model. Blue:

p (f∗|X, x∗, y).
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Sparse Approximations

epPointUpdate(’ncnm’, NaN, 0, .1, 0, 1e-2)
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Figure: An EP style update with a classification noise model. Blue:

p (f∗|X, x∗, y), Red: p (y∗ 6= 0|f∗) .
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Sparse Approximations

epPointUpdate(’ncnm’, NaN, 0, .1, 0, 1e-2)
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Figure: An EP style update with a classification noise model. Blue:

p (f∗|X, x∗, y), Red: p (y∗ 6= 0|f∗) , Magenta: p (f∗|X, x∗, y, y∗).
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Sparse Approximations

epPointUpdate(’ncnm’, NaN, 0, .1, 0, 1e-2)
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Figure: An EP style update with a classification noise model. Blue:

p (f∗|X, x∗, y), Red: p (y∗ 6= 0|f∗) , Magenta: p (f∗|X, x∗, y, y∗), Green:

q (f∗|X, x∗, y).
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The Null Category

Low Data Density at Decision Boundary

When a data point is unlabeled the effect will depend on the
mean and variance of p (fn|xn).

If this Gaussian has little mass in the null category region, the
posterior will be similar to the prior.

If the Gaussian has significant mass in the null category region,
the outcome may be loosely described in two ways:

1 If p (fn|xn) “spans the likelihood”, leading to a bimodal
posterior: the variance of the posterior will be greater than the
variance of the prior.

2 If p (fn|xn) is “rectified by the likelihood”, then the mass of the
posterior will be pushed in to one side of the null category.

Note that the posterior is pushed out to one side or both sides
of the null category region.
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Toy Problem

Crescent Data

We considered two-dimensional data in which two
class-conditional densities interlock.

There were 400 points in the original data set. Each point was
labeled with probability 0.1, leading to 37 labeled points.

A standard IVM classifier was trained on the labeled data only.

We then used the null category approach to train a classifier
that incorporates the unlabeled data.

The resulting decision boundary finds a region of low data
density and more accurately reflects the underlying data
distribution.
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Crescent Data

Standard IVM vs Semi-supervised
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Figure: Data points: small blue dots, are labeled with probability 0.1.
Labelled data-points: red circles and green crosses. Active set: large blue
dots. Left: Learning with standard IVM. Right: Learning with the
NCNM. Lines show centre and edge of null category.
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High-dimensional example

USPS Data 3 vs 5

As a higher dimensional example we return to the USPS data
set.

Separate the digit 3 from 5: vary probability of unlabelled
data between 0.2 and 1.25× 10−2.

Compare four classifiers:

standard IVM
standard SVM
semi-supervised IVM,
transductive SVM.

Each run was completed ten times with different random
seeds.
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USPS Data

AUC Results
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Figure: Mean and standard errors shown. IVM (red solid line), the
NCNM (blue dotted line), the SVM (green dash-dot line) and the
transductive SVM (pink dashed line).
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USPS Data

Digits Results

Below a label probability of 2.5× 10−2 both the SVM and
transductive SVM outperform the NCNM.

In this region the estimate θ1 provided by the NCNM was
sometimes very low leading to occasional very poor results
(note the large error bar).

Above 2.5× 10−2 a clear improvement is obtained for the
NCNM over the other models.
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Multi-task Learning

Multiple Independent Tasks

We extend the IVM to handle multiple independent tasks.

Given M training sets each with input matrix Xm .

Model the target data for each task, ym, as a GP

p (Y|X,θ) =
M∏

m=1

p (ym|Xm,θ)

where each p (ym|Xm,θ) is a Gaussian process.
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Multi-task Gaussian Process

Graph of a Multi-task GP

The entire likelihood is a
GP over a vector,
y =

[
yT
1 . . . yT

M

]T
K =

26664
K1 0 0 0
0 K2 0 0

0 0
. . . 0

0 0 0 KM

37775
IVM: Point selection is
now performed across
models.

Xmfn,myn,m Nm M
Figure: Plate notation: independence

across the M tasks. [Lawrence and

Platt, 2004]
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MT-IVM Simple Example

Regression Example

Three tasks, each contains 30 data-points sampled from sine
waves.

Each task uses a different distributions for the input data.

Select points using an MT-IVM.
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Example Results

demToySine

−15 −5 5 15

−1

1

−15 −5 5 15

−1

1

−15 −5 5 15

−1

1

Task 1 Task 2 Task 3

Figure: Three different learning tasks sampled from sine waves. The input

distribution for each task is different. Points used by the MT-IVM are circled.

Note that more points are taken from tasks which give more information about

the function.
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Phoneme Classification Example

Classification

The MT-IVM for phoneme recognition.

Treat speakers as tasks, independent given θ.

Will MT-IVM converge faster than a speaker-independent
IVM?
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Phoneme Classification

Classification

UCI repository phoneme example.

15 speakers, 11 phonemes: treat each speaker as a separate
task.

Use 14 speakers to learn kernel parameters.

Evaluate model on remaining speaker.
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Phoneme Classification Results

Time vs Error rate
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Figure: MT-IVM (solid line with circles) , sub-sampled ADF-GP (dashed
line with crosses) — consider each speaker to be an independent task.
Standard IVM — consider all points to belong to the same task (dotted
line with pluses).
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Classification Discussion

Faster Convergence

MT-IVM reaches ≈ 10% error roughly 10 × faster than IVM.

This independence structure:

1 Speeds up training.
2 Allows for speaker dependent recognisers.
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Conclusions

Faster GPs through Sparsity

We have reviewed GPs and EP briefly.

We’ve introduced the IVM for sparsification.

We’ve shown how we can:

learn invariances
do semi-supervised learning
do multi-task learning
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Consistency

Consistency of a Gaussian Process

Predictions remain the same regardless of the number and
location of the test points.

p (f∗|f) =

∫
p (f∗, f+|f) df+,

For the system to be consistent this conditional probability
must be independent of the length of f+.

In other words.

p (f∗|f) =

∫
p (f∗, f+|f) df+ =

∫
p
(
f∗, f̂+|f

)
d f̂+
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Joint Distribution

Joint Distribution

The covariance function provides the joint distribution over
the instantiations.

Write down the conditional distribution provides predictions.

Denote the training set as f and test set as f∗.

Predict using p (f∗|f).
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The Conditional Distribution

Partioned Inverse

Use partitioned inverse to find conditional.

K =

[
Kf,f Kf,∗
K∗,f K∗,∗

]
Partitioned inverse is then

K−1 =

[
K−1

f,f + K−1
f,f Kf,∗Σ

−1K∗,fK
−1
f,f −K−1

f,f Kf,∗Σ
−1

−Σ−1K∗,fK
−1
f,f

−̊1

]

where
Σ = K∗,∗ −K∗,fK

−1
f,f Kf,∗.
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Joint Distribution

Take Log of the Joint

Logarithm of the joint distribution:

log p (f, f∗) = −1

2
fTK−1

f,f f −
1

2
fTK−1

f,f Kf,∗Σ
−1K∗,fK

−1
f,f f

+fK−1
f,f Kf,∗Σ

−1f∗ −
1

2
fT∗ Σ−1f∗ + const1

Conditional is found by dividing joint by the prior,
p (f) = N (f|0,Kf,f).
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Conditional Distribution

Deriving the Conditional

In log space this is equivalent to subtraction of

log p (f) = −1

2
fTK−1

f,f f + const2

giving

log p (f∗|f) = log p (f∗, f)− log p (f) = log N (f∗|—f∗,Σ) .

where f̄ = K∗,fK
−1
f,f f and Σ = K∗,∗ −K∗,fK

−1
f,f Kf,∗.
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Making Predictions

If we observe points from the function, f.

We can predict the locations of functions at as yet unseen
locations.

The prediction is also a Gaussian process, with mean f̄ and
covariance Σ.

Often observe corrupted version of function.
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