
Large Scale Learning with the Gaussian Process Latent

Variable Model

Neil D. Lawrence

December 16, 2008

Abstract

In this paper we apply the latest techniques in sparse Gaussian process regression (GPR)
to the Gaussian process latent variable model (GP-LVM). We review three techniques and
discuss how they may be implemented in the context of the GP-LVM. We briefly consider a
GPR toy problem to highlight the strengths and weaknesses of the different approaches before
studying the perfomance of these techniques on a benchmark visualisation data set.

1 Introduction

The Gaussian process latent variable model (GP-LVM) [Lawrence, 2004, 2005] is a flexible ap-
proach to probabilistic modelling in high dimensional spaces. It has been succesfully applied in a
range of application domains including graphics [Grochow et al., 2004] and visual tracking [Urtasun
et al., 2005]. A major advantage of the approach is its ability to effectively model probabilistically
data of high dimensionality, however a major weakness with the approach is that computation of
gradients and the likelihood are cubic in the number of data points. In the original GP-LVM paper
the informative vector machine algorithm (IVM) [Lawrence et al., 2003] was used for obtaining a
sparse representation. However, in the context of the GP-LVM, this approach suffers from several
weakness. In this paper we show how recent developments in sparse Gaussian process regression
[Snelson and Ghahramani, 2006, Quiñonero Candela and Rasmussen, 2005] can be adapted to
work with the GP-LVM.

2 Gaussian Process Latent Variable Models

The Gaussian process latent variable model [Lawrence, 2004, 2005] is a flexible, non-linear di-
mensionality reduction technique which also provides a probabilistic representation of a data set.
Given a data set Y ∈ <N×d containing N data points and d dimensions we seek a q-dimensional
embedding of the data given by X ∈ <N×q. A standard probabilistic approach taken to this
problem is to first define a mapping between X and Y,

ynj = f (xn,wj) + εnj ,

where εn is a noise term, ynj is the element from the nth row and jth column of Y, xn is a vector
taken from the nth row of X and the parameters of the mapping are given by the vectors {wj}dj=1.
If the noise is drawn independently from a Gaussian distribution we can write down the condtional
for yn given xn as,

p (yn|xn,W) =
d∏

j=1

N
(
ynj |f (xn,wj) , β−1

)
,

1

where W = [w1 . . .wd]Tand we have introduced β for the precision (inverse variance) of the noise.
The distribution of the full matrix Y given X and W is then

p (Y|X,W) =
N∏

n=1

d∏
j=1

N
(
ynj |f (xn,wj) , β−1

)
.

In most traditional approaches to this problem [Tipping and Bishop, 1999, MacKay, 1995, Bishop
et al., 1998] the next step is to treat the embeddings as latent variables by selection of an appro-
priate prior distribution, p (X), and marginalisation. The model is then optimised by maximising
the marginal likelihood p (Y|W). A key innovation in the GP-LVM is to, instead, place a prior
distribution over the mappings, p (W) and maximise the marginal likelihood with respect to the
embeddings, p (Y|X). If the mappings are linear,

ynj = xT
nwj ,

and a Gaussian prior over wj is used, the model is equivalent to principal component analysis.
However by considering a process prior directly on the function f (xi,w) we can obtain non-linear
mappings. An appropriate, and tractable, process prior is a Gaussian Process (GP). If the GP
prior over each of the d functions is the same we obtain the following likelihood,

p (Y|X,θ) =
d∏

j=1

N
(
y(j)|0,K

)
where y(j) is the jth column of Y and K ∈ <N×N is the covariance function or kernel of the
Gaussian process which we assume is additionally parameterised by θ.

3 Learning in GP-LVMs

Learning in the GP-LVM consists of maximising the likelihood with respect to the positions of
the embeddings, X, and the parameters of the kernel θ. We therefore consider the log-likelihood
given by,

L (X,θ) = log p (Y|X,θ)

= −dN
2

log 2π − d

2
log |K| − 1

2
tr
(
K−1YYT

)
.

Gradients of L (X,θ) are then easily obtained through combining gradients of ∂L(X,θ)
∂K with gradi-

ents given by ∂K:
∂X: and ∂K:

∂θ: . In general1, it is not possible to obtain a fixed point solution for X and θ,
to make progress we must turn to gradient based iterative optimisation of the log-likelihood. Such
algorithms rely on multiple re-evaluations of the log-likelihood and its gradients. Each evaluation
has O

(
N3
)

complexity due to the inverse of K. In Lawrence [2004, 2005] a sparse approximation
based on active set selection through the informative vector machine (IVM) was proposed. How-
ever, there are two key problems with this approach. Firstly the resulting posterior distribution
over mappings depends only on the active set. Secondly the optimal active set changes as the
optimisation proceeds. The active set must, therefore, be re-selected regularly causing fluctua-
tions in the objective function. It can therefore be diffcult to determine when convergence has
occured. In this paper we show how the latest methods for sparse Gaussian process regression
can be used with the GP-LVM to reduce the complexity of gradient and likelihood evaluations
to O

(
k2N

)
while retaining a convergent algorithm in which the posterior distributions over the

mappings depend on the entire data set.
1A special case that is an exception is when K = XXT + β−1I, i.e. when the process constrains the model to

linear functions. In this case the principal component analysis solution is recovered.

2

4 Sparse Approximations in Gaussian Process Regression

By exploiting a sparse approximation to the full Gaussian process it is usually possible to reduce
the computational complexity from an often prohibitive O

(
N3
)

to a more manageable O
(
k2N

)
,

where k is the number of points retained in the sparse representation. A large body of recent
work has been focussed on approximating the covariance function with a low rank approximation
[Smola and Bartlett, 2001, Williams and Seeger, 2001, Tresp, 2000, Schwaighofer and Tresp, 2003,
Csató and Opper, 2002, Seeger et al., 2003], recently several of these approaches were unified by
Quiñonero Candela and Rasmussen [2005]. The advantage of the unified viewpoint is that we
can discuss approximations within the same context. Quiñonero Candela and Rasmussen [2005]
also provide a consistent terminology for these approximations (which we will refer to as QR-
terminology) which we will make use of in this paper. The approximations all involve augmenting
the function values at the training points, F ∈ <N×d, and the function values at the test points,
F∗ ∈ <∞×d, by an additional set of variables, U ∈ <k×d. The number of these variables, k, can
be specified by the user. The augmenting variables have been variously called the ‘active points’,
‘pseudo-inputs’ or ‘support points’; in QR-terminology they are known as the inducing variables.

The factorisation of the likelihood across the columns2 of Y allows us to focus on one column
of F without loss of generality. We therefore consider function values at f ∈ <N×1, f∗ ∈ <∞×1

and u ∈ <k×1 These variables are considered to be jointly Gaussian distributed with f and f∗ such
that

p (f , f∗) =
∫
p (f , f∗|u) p (u) du,

where the prior distribution over the inducing variables is given by a Gaussian process,

p (u) = N (u|0,Ku,u) ,

with a covariance function given by Ku,u. This covariance is constructed on a set of inputs3 Xu

which may or may not be a subset of X. For the full Gaussian process the presence or absence of
these inducing variables is irrelevant, however through their introduction we can motivate most of
the sparse approximations listed above. The key concept in unifying the different approximations
[Quiñonero Candela and Rasmussen, 2005] is to consider that the variables associated with the
training data, f , are conditionally independent of those associated with the test data, f∗, given
the inducing variables, u:

p (f , f∗,u) = p (f |u) p (f∗|u) p (u) ,

where
p (f |u) = N

(
f |Kf ,uK−1

u,uu,Kf ,f −Kf ,uK−1
u,uKu,f

)
(1)

is the training conditional in QR-terminology and

p (f∗|u) = N
(
f∗|K∗,uK−1

u,uu,K∗,∗ −K∗,uK−1
u,uKu,∗

)
is the test conditional. Kf ,u is the covariance function computed between the training inputs, X,
and the inducing variables, Xu, Kf ,f is the symmetric covariance between the training inputs,
K∗,u is the covariance function between the test inputs and the inducing variables and K∗,∗ is the
symmetric covariance function the test inputs. This decomposition does note in itself entail any
approximations: the approximations are introduced through assumptions about the form of these
distributions.

2Much of our analysis may hold even if a factorisation assumption isn’t made, but it simplifies the exposition if
we constrain ourselves to the factorising case.

3There is nothing to prevent us from allowing a different set of inducing variables, X
(i)
u , for each of the d

dimensions of the data, but we shall consider only one set for all data dimensions to keep the derivations simple.

3

4.1 Deterministic Training Conditional

The first approximation we consider in the context of the GP-LVM is known as the ‘deterministic
training conditional’ approximation in QR-terminology. It is so called because it involves replacing
the true training conditional (1) with a deterministic approximation of the form

q
(
f(j)|u

)
= N

(
f(j)|Kf ,uK−1

u,uu,0
)
,

where we introduced the index on f to indicate the column of F from which it comes. This
approximation was first proposed by Csató and Opper [2002] in the context of on-line learning of
Gaussian processes and was further used by Seeger et al. [2003]. Re-introducing the prior over the
inducing variables we find that the functional prior for this approximation is given by

q (f) = N
(
f |0,Kf ,uK−1

u,uKu,f

)
.

This prior may be combined with the likelihood,

p
(
y(j)|f(j), β

)
= N

(
y(j)|f(j), β−1I

)
to give a marginal log likelihood of the form

log p (Y|X+,θ) = −d
2

log (2π)− d

2
log
∣∣Kf ,uK−1

u,uKu,f + β−1I
∣∣

−tr
(
YYT

(
Kf ,uK−1

u,uKu,f + β−1I
)−1
)

= L (X+,θ) ,

where we have used X+ = {Xu,X} to represent the augmented set of training inputs and inducing
inputs. Gradients with respect to the X+ and θ may all be determined through first seeking
gradients with respect to Kf ,u and Ku,u and combining them with gradients of a given kernel.
Details of how these gradients may be arrived at are given in Appendix C. Having optimised with
respect to these parameters predictions can be made for test points using

p
(
f∗(j)|y(j)

)
= N

(
f∗(j)|K∗,uA−1Ku,fy(j),K∗,∗ −K∗,u

(
K−1

u,u − β−1A−1
)
Ku,∗

)
,

where A =
(
β−1Ku,u + Ku,fKf ,u

)
.

4.2 Fully and Partially Independent Training Conditionals

Much of the recent insight into sparse Gaussian process regression was triggered by the work of
Snelson and Ghahramani [2006]. Their paper proposed two orthogonal ideas. The first was to
optimise with respect to the positions of the inducing variables (or pseudo-inputs as they term
them)4 and the second was a richer form of approximation to the training conditional. In QR-
terminology it is refered to as the ‘fully independent training conditional’ (FITC) approximation
and involves an independence assumption for the training conditional. Csató [2005] has pointed
out that the Bayesian Committee Machine [Tresp, 2000, Schwaighofer and Tresp, 2003] makes
similar block diagonal independence assumptions, in QR-terminology this is refered to as the
‘partially independent training conditional’. Both approaches can be specified considered through
the following form for the training conditional,

q (f |u) = N
(
f(j)|Kf ,uK−1

u,uu,mask
(
Kf ,f −Kf ,uK−1

u,uKu,f ,M
))
,

4This idea is reminicent of adaptive basis models, such as multi-layer perceptrons and radial basis functions (see
Bishop, 1995). It is indeed possible to represent such networks as Gaussian processes and to adapt the location
of the basis by treating them as hyper parameters: however the resulting models would correspond to the Subset
of Regressors approximation [Poggio and Girosi, 1990, Luo and Wahba, 1997, Williams et al., 2002, Quiñonero
Candela and Rasmussen, 2005] rather than the more advanced approximations we are reviewing here.

4

where the function V = mask (Z,M), with M a matrix of ones and zeros, returns a matrix V
of dimension matching that of Z with elements vij = zij iff mij = 1 and zero otherwise. In the
case that M = I the training conditional has a diagonal covariance as is specified for the FITC
approxixmation and if M is block diagonal the training conditional also has a block diagonal
covariance structure as is specified for the PITC approximation.

Again we can reintroduce the prior over the inducing variables to recover a marginal distribution
of the form

q (f) = N
(
f |0,Kf ,uK−1

u,uKu,f + mask
(
Kf ,f −Kf ,uK−1

u,uKu,f ,M
))
,

which may again be combined with p (Y|F, β) to obtain the log-likelihood

log p (Y|X+,θ) = −d
2

log (2π)− d

2
log
∣∣Kf ,uK−1

u,uKu,f + D
∣∣− 1

2
tr
(
YYT

(
Kf ,uK−1

u,uKu,f + D
)−1
)

= L (X+,θ) .

where D = mask
(
β−1 + Kf ,f −Kf ,uK−1

u,uKu,f ,M
)
. Derivatives of the likelihood with respect to

Kf ,f , Ku,f and Ku,u are given in Appendix D.

4.3 Application in the GP-LVM

As we mentioned in the previous section, Snelson and Ghahramani [2006] not only suggested the
use of the FITC approximation but they also suggested optimisation of the inducing inputs jointly
with the parameters of the covariance function. There are several reasons why this is an attractive
idea, but in the context of the GP-LVM, perhaps foremost amoungst them is the fact that by
jointly optimising over X, Xu and θ convergence can be monitored in a straightforward manner.
If, rather than optimising with respect to them, the inducing variables are being chosen as a sub-
set of X then the likelihood fluctuates as they are reselected. This problem manifests itself in the
IVM-based sparsification of the GP-LVM [Lawrence, 2005]. In this paper we will aim to improve
performance through following Snelson and Ghahramani’s suggestion of optimising the inducing
variable inputs in the context of the approximations outlined above.

4.3.1 Inducing Variables in Multiple Output Regressions

Snelson and Ghahramani focus on Gaussian process regression with a single target vector (in the
context of the GP-LVM, d = 1). They do not address the issue of whether to represent the inducing
variables separately for each column of Y target or to share the same inducing variables across
columns of Y. Arguments could be made in favour of either approach, however allowing different
sets of Xu for each data dimension will cause the number of inducing variables to scale with d. For
high dimensional data sets this could make the optimisation prohibitive. Furthermore, Snelson
and Ghahramani have some concerns about overfitting when k is large: normally overfitting isn’t a
concern for Gaussian processes, but by using inducing variables we are introducing a large number
of parameters into the system. The possibility of overfitting would be compounded by allowing
different active sets for each column of d.

5 Experiments

To evaluate the new sparse GP approximations in the GP-LVM we devised a small series of
experiments that allow us to compare the performance of the new sparse algorithm to the original,
IVM-based sparse algorithm and the model without sparse approximation. First of all we will
briefly study a toy regression model to gain a better intuition about how these models perform.

5

Approximation DTC FITC PITC
β−

1
2 1.18 0.895 0.964

γ−
1
2 1.19 0.978 0.951

Table 1: Estimates of the standard deviation of the noise, β−
1
2 , and the length scale, γ−

1
2 , for

the different approximations, the true noise level is β−
1
2 = 0.1 and the true length scale is γ−

1
2 =

1√
20

= 0.224. Below we show the estimated values for each method divided by the true value.

DTC FITC PITC
KL (p||q) 42.9 12.3 7.50
KL (q||p) 1.31× 104 46.7 51.7

Table 2: The Kullback-Leibler divergence between the true posterior and each of the approxima-
tions as calculated at each of the training inputs. Two KL divergences are presented, KL (p||q) is
the divergence with the expectation under the true distribution, KL (q||p) is the divergence with
the expectation taken under the approximating distribution.

5.1 1-D Regression Toy Problem

To illustrate the different models we first consider them in the context of a simple 1-dimensional
regression problem. We sampled a 1-dimensional vector of 500 inputs uniformly from between -1
and 1. We then sampled a function from a Gaussian process with an RBF kernel,

k (xi, xj) = exp
(
−γ (xi − xj)2

)
+ β−1δij ,

with γ = 20 and β = 100 a vector of targets. We then optimised a Gaussian process model with
each of the sparse approximations described above taking k = 9 in each case. The results of
optimisation of each approximation through conjugate gradients are given in Figure 1. We note
that there is a major difference between the result from the DTC (Figure 1(a)) and the other two
approximations. The quality of the error bars for the DTC approximation is much worse than that
of the FITC and PITC approximations. Another interesting difference is found between the level
of noise and the length scale each method estimates (Table 1). The DTC overestimates both the
noise and the length scale by close to 20 percentage points. The FITC underestimates the noise
(by 11 percentage points) but obtains a much better estimate of the length scale. The PITC5

improves over FITC on both the estimate of noise and has a slightly worse estimate of the length
scale.

Finally we summarise the quality of each approximating method by considering the Kullback-
Leibler (KL) divergence,

KL (p||q) =
∫
p (f) log

p (f)
q (f)

df

between the posterior predictions of the function at the training points under the true model
and that from each approximation. This measure takes into account correlations in the posterior
covariance which cannot be shown in the plots in Figure 1.

The KL divergence is asymmetric, the expectation can taken either under the true distribution
or the approximating distribution. It is often implicitly considered that taking the expectation un-
der the true distribution is the ‘right’ way round, however this is a fallacy. The two KL divergences
measure different things: KL (p||q) penalises stongly approximating distributions that fail to put
probability mass where there is mass under the true distribution. KL (q||p) penalises strongly
approximating distributions that put mass where there is no mass under the true distribution. In
legal terms we wish the approximation to represent the truth, the whole truth and nothing but the
truth, KL (p||q) asseses wether we have the whole truth; whereas KL (q||p) asseses whether we have

5For the PITC approximation, as suggested by Tresp [2000], Quiñonero Candela and Rasmussen [2005], we used
block sizes of 9× 9 which keeps the computational complexity of the algorithm at O

`
k2N

´
.

6

−1.5 −1 −0.5 0.5 1 1.5

−1

−0.5

0.5

1

1.5

2

(a)

−1.5 −1 −0.5 0.5 1 1.5

−1

−0.5

0.5

1

1.5

2

(b)

−1.5 −1 −0.5 0.5 1 1.5

−1

−0.5

0.5

1

1.5

2

(c)

−1.5 −1 −0.5 0.5 1 1.5

−1

−0.5

0.5

1

1.5

2

(d)

Figure 1: One dimensional regression toy problem with N = 500 and k = 9. (a) The DTC
approximation, (b) the FITC approximation and (c) the PITC approximation. (d) The posterior
prediction from the full Gaussian process with the correct hyperparameters. The data is marked
as dots, the posterior mean prediction is given as a solid line and error bars at two standard
deviations are given as dashed lines. The final locations of the inducing variables are show as
crosses at the bottom of each plot (in each case not all of the inducing variables can be seen as
some have drifted out of the range of the plot).

7

DTC FITC PITC IVM Full In Y
Errors 3 6 6 24 1 2

Table 3: Nearest neighbour errors in latent space for the oil data. For reference we include the
result obtained when nearest neighbour classification is undertaken in the original high-dimensional
data space (labelled ‘In Y’).

nothing but the truth. With this in mind we can interpret Table 2 as follows, under both criteria
DTC performs the worst; the PITC approximation appears better at telling the whole truth than
the FITC approximation and the FITC approximation appears better at telling nothing but the
truth than the PITC approximation. In conclusion, it seems that we should expect considerably
better performance from the FITC and PITC approximations when they are used in the GP-LVM
than the DTC approximation. In the next section we will attempt to assess if this is indeed the
case using a well known benchmark data set.

5.2 Oil Data

In this section we present results on three phase oil flow data [Bishop and James, 1993] . The data
consists of twelve dimensional measurements of oil flow within a pipeline. There are three phases
of flow associated with the data: stratified, annular and homegenous and 1000 points in the data
set. The data is visualised by optimisation of GP-LVMs with two dimensional latent spaces using
the three different approximations we have outlined in Figure 2. As well as the embeddings of
the data in the latent space we also show the uncertainty associated with the Gaussian processes
as a function of the latent space. This is shown as a greyscale image with white representing low
variance (or high precision) and black representing high variance (low precision).

There is a noticable difference in the pattern associated with the uncertainty for each plot. In
particular for the DTC approximation the variances are low along spray-paint-like streaks across
the latent space. This effect becomes less pronounced with the FITC approximation and is almost
non-existent with the PITC approximation.

The quality of the models can be objectively assesed through computing the nearest neighbour
classification error in the latent space. The results from doing so are shown in Table 3. Also
included is a result obtained by using a sparse algorithm based on the IVM approximation from
Lawrence [2005]. Each of the presented sparse algorithms strongly outperforms the IVM-based
sparsification while not quite reaching the performance of the full algorithm.

6 Discussion

In this report we have reviewed sparse approximations for Gaussian process regression from the
perspective of a unifying framework proposed by Quiñonero Candela and Rasmussen [2005]. We
combined each of the different approximations summarised by Quiñonero Candela and Rasmussen
[2005] with the suggestion of Snelson and Ghahramani [2006] to optimise the locations of the
inducing variables (described as pseudo inputs by Snelson and Ghahramani). The resulting ap-
proximations were combined with the Gaussian process latent variable model and results were
then presented on a benchmark visualisation data set.

All the experiments detailed here may be recreated with code available on-line from http:
//www.dcs.shef.ac.uk/~neil/fgplvm.

Acknowledgements

We would like to acknowledge the European FP6 PASCAL Network of Excellence which provided
support for the Gaussian Process Round Table where many of the ideas presented in this paper
were first presented and discussed.

8

−3 −2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

(a)

−2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b)

−2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

(c)

−1 −0.5 0 0.5 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d)

Figure 2: The oil data visualised using a GP-LVM with (a) the DTC approximation, (b) the FITC
approximation, (c) the PITC approximation and (d) no approximation. Red crosses, green circles
and blue plus signs represent stratified, annular and homogenous respectively. The greyscale
background to the plots visualises the precision with which the posterior process is mapped in the
data space.

9

References

C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995. ISBN
0-198-53864-2.

C. M. Bishop and G. D. James. Analysis of multiphase flows using dual-energy gamma densitome-
try and neural networks. Nuclear Instruments and Methods in Physics Research, A327:580–593,
1993. doi: 10.1016/0168-9002(93)90728-Z.

C. M. Bishop, M. Svensén, and C. K. I. Williams. GTM: the Generative Topographic Mapping.
Neural Computation, 10(1):215–234, 1998. doi: 10.1162/089976698300017953.

M. Brookes. The matrix reference manual. Available on-line., 2005. http://www.ee.ic.ac.uk/
hp/staff/dmb/matrix/intro.html.

L. Csató. Sparsity in Gaussian processes: Questions. Talk at the Sheffield Gaussian Pro-
cess Round Table., June 2005. Slides available from http://www.dcs.shef.ac.uk/ml/gprt/
slides/lehelcsato.pdf.

L. Csató and M. Opper. Sparse on-line Gaussian processes. Neural Computation, 14(3):641–668,
2002.

K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popovic. Style-based inverse kinematics. In ACM
Transactions on Graphics (SIGGRAPH 2004), pages 522–531, 2004. doi: 10.1145/1186562.
1015755.

N. D. Lawrence. Gaussian process models for visualisation of high dimensional data. In S. Thrun,
L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing Systems, vol-
ume 16, pages 329–336, Cambridge, MA, 2004. MIT Press.

N. D. Lawrence. Probabilistic non-linear principal component analysis with Gaussian process
latent variable models. Journal of Machine Learning Research, 6:1783–1816, 11 2005.

N. D. Lawrence, M. Seeger, and R. Herbrich. Fast sparse Gaussian process methods: The infor-
mative vector machine. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural
Information Processing Systems, volume 15, pages 625–632, Cambridge, MA, 2003. MIT Press.

Z. Luo and G. Wahba. Hybrid adaptive splines. Journal of the American Statistical Association,
92:107–116, 1997.

D. J. C. MacKay. Bayesian neural networks and density networks. Nuclear Instruments and
Methods in Physics Research, A, 354(1):73–80, 1995. doi: 10.1016/0168-9002(94)00931-7.

T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of the IEEE, 78
(9):1481–1497, 1990.

J. Quiñonero Candela and C. E. Rasmussen. A unifying view of sparse approximate Gaussian
process regression. Journal of Machine Learning Research, 6:1939–1959, 2005.

A. Schwaighofer and V. Tresp. Transductive and inductive methods for approximate Gaussian
process regression. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural
Information Processing Systems, volume 15, pages 953–960, Cambridge, MA, 2003. MIT Press.

M. Seeger, C. K. I. Williams, and N. D. Lawrence. Fast forward selection to speed up sparse
Gaussian process regression. In C. M. Bishop and B. J. Frey, editors, Proceedings of the Ninth
International Workshop on Artificial Intelligence and Statistics, Key West, FL, Jan 3–6 2003.

A. J. Smola and P. L. Bartlett. Sparse greedy Gaussian process regression. In T. K. Leen,
T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems,
volume 13, pages 619–625, Cambridge, MA, 2001. MIT Press.

10

E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Y. Weiss,
B. Schölkopf, and J. C. Platt, editors, Advances in Neural Information Processing Systems,
volume 18, Cambridge, MA, 2006. MIT Press.

M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. Journal of the Royal
Statistical Society, B, 6(3):611–622, 1999. doi: doi:10.1111/1467-9868.00196.

V. Tresp. A Bayesian committee machine. Neural Computation, 12(11):2719–2741, 2000.

R. Urtasun, D. J. Fleet, A. Hertzmann, and P. Fua. Priors for people tracking from small training
sets. In IEEE International Conference on Computer Vision (ICCV), pages 403–410, Bejing,
China, 17–21 Oct. 2005. IEEE Computer Society Press. doi: 10.1109/ICCV.2005.193.

C. K. I. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In
T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing
Systems, volume 13, pages 682–688, Cambridge, MA, 2001. MIT Press.

C. K. I. Williams, C. E. Rasmussen, A. Schwaighofer, and V. Tresp. Observations of the Nyström
method for Gaussian process prediction. Technical report, University of Edinburgh, 2002.

A On-line Source Code

Matlab source code for repeating the experiments described in Section 5 and ?? is available on-
line from http://www.dcs.shef.ac.uk/~neil/fgplvm, the version number is 0.13. The three
one dimensional regression problems may be re-run with the scripts demSpgp1d1.m for DTC,
demSpgp1d2.m for FITC and demSpgp1d3.m for PITC. The ground truth is given by demSpgp1d4.m
and the KL divergences are computed in demSpgp1dKlDiv.m .

The oil experiments were created using the scripts demOil3.m for DTC, demOil1.m for FITC
and demOil5.m for PITC (demOil2.m, demOil4.m and demOil6.m are results that use back con-
straints and are not presented here). The full GP-LVM was created using C++ code available from
http://www.dcs.shef.ac.uk/~neil/gplvmcpp, see instructions on that site for how to recreate
it.

B Matrix Derivatives

In what follows we will make use of matrix derivatives. Broadly speaking we follow the notation
suggest in the The Matrix Reference Manual [Brookes, 2005]. We consider the derivative of one
vector with respect to another as da

db ∈ <
m×n if a ∈ <m×1 and b ∈ <n×1. To obtain matrix-

matrix derivatives we make use of C: to indicate a vector formed from the matrix C by stacking
the columns of C to form a <mn×1 vector if C ∈ <m×n. Under this notation we can write the
derivative of a matrix E ∈ <p×q with respect to C as dE:

dC: ∈ <
pq×mn. This notation makes it easier

to apply the chain rule while maintaining matrix notation. This entails the use of Kronecker
products, we denote the Kronecker product of F and G as F⊗G. In most cases where they arise
below they are later removed using this relationship

(E:)T F⊗G =
((

GTEF
)
:
)T
, (2)

this form typically arises whenever the chain rule is applied,

dL

dH:
dH:
dJ:

=
dL

dJ:
,

as we normally find that dH:
dJ: has the form of a Kronecker product, dH:

dJ: = F⊗G and we expect the
result of dL

dH: and dL
dJ: to be in the form (L:)T. The following two identities for Kronecker products

will also prove useful.
FT ⊗GT = (F⊗G)T

11

and
(E⊗G) (F⊗H) = EF⊗GH.

In what we present below there are two ways of writing the derivative of a scalar with respect to a
matrix, dL

dJ: and dL
dJ , the first being a row vector and the second is a matrix of the same dimension

of J. The second representation is more convenient for summarising the result, the first is easier
to wield when computing the result. The equivalence of the representations is given by

dL

dJ:
=
((

dL

dJ

)
:
)T

.

Any other results used for matrix differentiation and not explicitly given here may be found in
Brookes [2005].

C The Deterministic Training Conditional

Up to constant terms, the deterministic training conditional leads to a likelihood for the training
data of the following form,

L (X+,θ) = −d
2

log
∣∣Kf ,uK−1

u,uKu,f + β−1I
∣∣− 1

2
tr
((

Kf ,uK−1
u,uKu,f + β−1I

)−1
YYT

)
We deal with the inverse in the trace through the matrix inversion lemma giving,(

Kf ,uK−1
u,uKu,f + β−1I

)−1
= βI− βKf ,u

(
β−1Ku,u + Ku,fKf ,u

)−1
Ku,f .

Similarly the determinant can be re-expressed as∣∣Kf ,uK−1
u,uKu,f + β−1I

∣∣ = β−N |Ku,u|−1 |Ku,u + βKu,fKf ,u|

= β−(N−k) |Ku,u|−1 ∣∣β−1Ku,u + Ku,fKf ,u

∣∣
where k is the size of the active set. This leads to a more efficient-to-compute form of the likelihood,

L (X+,θ) =
d (N − k)

2
log β − β

2
tr
(
YYT

)
+
d

2
log |Ku,u|

−d
2

log |A|+ β

2
tr
(
A−1Ku,fYYTKf ,u

)
where we have defined

A = β−1Ku,u + Ku,fKf ,u.

We wish to find the derivative of the likelihood with respect to X, θ and Xu. We will aim to
recover these derivatives by first considering the derivatives with respect to Ku,u and Ku,f . The
derivative with respect to Ku,u is

dL (X+,θ)
dKu,u:

=
d

2
((

K−1
u,u

)
:
)T − 1

2
(C:)T

dA:
dKu,u:

where we have defined
C = dA−1 + βA−1Ku,fYYTKf ,uA−1.

Given our definition of A we have
dA:

dKu,u:
= β−1I⊗ I

which, applying (2) and undoing the vec operation on both sides gives,

12

dL (X+,θ)
dKu,u

=
d

2
K−1

u,u −
β−1

2
C

The next gradient of interest is that with respect to Ku,f . First we may write

dL (X+,θ)
dKu,f:

= dLA(X+,θ)
dKu,f:

+β
((

A−1Ku,fYYT
)
:
)T

where LA (X+,θ) is those terms of L (X+,θ) which depend on A. Consider the gradient of
LA (X+,θ) with respect to A,

dLA (X+,θ) = −1
2

(C:)T dA: . (3)

The gradients of A with respect to Ku,f are given by

dA:= (Ku,f ⊗ I) dKu,f: + (I⊗Ku,f) dKf ,u:,

substituting into (3) we have

dLA (X+,θ) = −1
2

(C:)T ((Ku,f ⊗ I) dKu,f: + (I⊗Ku,f) dKf ,u:)

= −1
2

((CKu,f):)
T − 1

2
((Kf ,uC):)T dKf ,u:,

where we have made use of (2) to obtain the second line. Due to the left-hand-side being a scalar,
we can remove the stack operators from the right hand side without loss of generality recovering

dLA (X+,θ) = −1
2
CKu,fdKu,f −

1
2
Kf ,uCdKf ,u

which implies that
dLA (X+,θ)

dKu,f
= −CKu,f ,

therefore the gradient with respect to Ku,f is given by

dL (X+,θ)
dKu,f

= −CKu,f + βA−1Ku,fYYT.

Finally we need the gradient with respect to β,

dL (X+,θ)
dβ

=
d (N − k)

2β
− 1

2
tr
(
YYT

)
+
dLA (X+,θ)

dβ

where
dLA (X+,θ)

dβ
=

1
2

tr
(
A−1Ku,fYYTKf ,u

)
− 1

2
(C:)T

dA:
dβ

and
dA:
dβ

= −β−2Ku,u

giving

dL (X+,θ)
dβ

=
d (N − k)

2β
− 1

2
tr
(
YYT −A−1Ku,fYYTKf ,u

)
+
β−2

2
(C:)T Ku,u: .

Each of these gradients can be computed in O
(
k2N

)
. It remains to compute the gradients of Ku,f

and Ku,u with respect to X, Xuand θ. Since the nature of these gradients is dependent on the
choice of kernel we leave this for the reader.

13

D Fully and Partially Independent Training Conditional

For both the fully independent and partially independent training conditional, we construct a
matrix D which is chosen such that it replaces portions of the DTC approximation with elements
from the original covariance matrix. This complicates computation of the gradients slightly over
those obtained for the DTC approximation as the matrix D depends on Ku,f , Ku,u and some
elements of Kf ,f . The log likelihood of the training data is given by:

L (X+,θ) = −d
2

log
∣∣Kf ,uK−1

u,uKu,f + β−1D
∣∣− 1

2
tr
((

Kf ,uK−1
u,uKu,f + β−1D

)−1
YYT

)
.

Once again we can apply the matrix inversion lemma to the term within the trace to obtain

(
Kf ,uK−1

u,uKu,f + β−1D
)−1

= β

[
D−1 −D−1Kf ,u

(
1
β
Ku,u + Ku,fD−1Kf ,u

)−1

Ku,fD−1

]

and the determinant can be re-expressed as

∣∣Kf ,uK−1
u,uKu,f + β−1D

∣∣ = |D| |Ku,u|−1

∣∣∣∣ 1βKu,u + Ku,fD−1Kf ,u

∣∣∣∣ .
We now define6 A to be

A =
(

1
β
Ku,u + Ku,fD−1Kf ,u

)
leading to the following expression for the log likelihood of the training data

L (X,U,θ) = −d
2

log |D| − β

2
tr
(
D−1YYT

)
+
d

2
log |Ku,u|

−d
2

log |A|+ β

2
tr
(
A−1Ku,fD−1YYTD−1Kf ,u

)
.

We first consider gradients with respect to A.

dL (X+,θ)
dA

= −1
2
C

where C = A−1d+ βA−1Ku,fD−1YYTD−1Kf ,uA−1. Gradients with respect to D are given by

dL (X+,θ)
dD:

= −1
2
((

D−1HD−1
)
:
)T − 1

2
(C:)T

dA:
dD:

(4)

where H =
(
D−1d− βYYT + 2βKf ,uA−1Ku,fD−1YYT

)
. The gradient of A: with respect to D:

is given by

∂A:
∂D:

= − (Ku,f ⊗Ku,f)
(
D−1 ⊗D−1

)
= −

(
Ku,fD−1 ⊗Ku,fD−1

)
. (5)

which allows us to combine (4) with (2) to write

dL (X+,θ)
dD:

= −1
2
D−1JD−1

6Another possible definition for A would be Â =
“
Ku,u + Ku,f D̂

−1Kf ,u

”
where D̂ = β−1D, our original im-

plementation used this representation which is in line with the notation used by Quiñonero Candela and Rasmussen
[2005]. However in implementation Snelson and Ghahramani [2006] used something more akin to the representation
we gave here. We found this representation to be much more numerically stable.

14

where J = H−Kf ,uCKu,f . We are now in a position to write

dL (X+,θ)
dKu,u:

=
d

2
((

K−1
u,u

)
:
)T − 1

2
(C:)T

dA:
dKu,u:

− 1
2
((

D−1JD−1
)
:
)T dD:

dKu,u:
(6)

and

dL (X+,θ)
dKu,f:

= −1
2

(C:)T
dA:
dKu,f:

− 1
2
((

D−1JD−1
)
:
)T dD:

dKu,f:

+β
((

A−1Ku,fD−1YYTD−1
)
:
)T

(7)

gradients with respect to Kf ,f can be found through

dL (X+,θ)
dKf ,f:

= −1
2
((

D−1JD−1
)
:
)T dD:

dKf ,f:
(8)

with a similar result holding for β. It remains to compute the derivatives of D and A with respect
to Ku,u, Kf ,u and Kf ,f .

We define D as
D = I + βmask

(
Kf ,f −Kf ,uK−1

u,uKu,f ,M
)
.

Now we note that
dmask (Z,M):

dZ:
= diag (M:)

where the function diag (z) takes a vector z and returns a diagonal matrix whose diagonal elements
are given by z. These definitions allow us to write

dD:= −βdiag (M:)
((

I⊗Kf ,uK−1
u,u

)
dKu,f: +

(
Kf ,uK−1

u,u ⊗ I
)
dKf ,u:

)
(9)

and

∂D:
∂Ku,u:

= βdiag (M:) (Kf ,u ⊗Kf ,u)
(
K−1

u,u ⊗K−1
u,u

)
= βdiag (M:)

(
Kf ,uK−1

u,u ⊗Kf ,uK−1
u,u

)T
with

∂D:
∂Kf ,f:

= βdiag (M:) (10)

and
∂D:
∂β

= mask
(
Kf ,f −Kf ,uK−1

u,uKu,f ,M
)
: . (11)

We can now use these equations in combination with gradients of A to obtain gradients of L (X+,θ)
with respect to Ku,u, Ku,f and Kf ,f .

dA:
dKu,u:

=
1
β
I,

where we have ignored the dependence of D on Ku,u as we already accounted for that in (6).
Combining the gradient of A and those of D with (6) above we obtain

dL (X+,θ)
dKu,u:

=
1
2

(
K−1

u,ud−
1
β
C− βK−1

u,uKu,fQKf ,uK−1
u,u

)
,

where Q = mask
(
D−1JD−1,M

)
and we have made use of the fact that

(E:)T diag (M:) (F⊗G)T =
(
GTmask (E,M) FT

)
: .

15

Similarly with respect to Ku,f we find

dA: =
(
Ku,fD−1 ⊗ I

)
dKu,f +

(
I⊗Ku,fD−1

)
dKf ,u. (12)

Substituting (9) and (12) into (7) above we obtain

dL (X+,θ) = −1
2
((

CKu,fD−1
)
:
)T
dKu,f −

1
2
((

D−1Kf ,uC
)
:
)T
dKf ,u

+
β

2
((

K−1
u,uKu,fQ

)
:
)T
dKu,f +

β

2
((

QKf ,uK−1
u,u

)
:
)
dKf ,u

+β
((

A−1Ku,fD−1YYTD−1
)
:
)T
dKu,f

which leads to

dL (X+,θ)
dKu,f

= −CKu,fD−1 + βK−1
u,uKu,fQ + βA−1Ku,fD−1YYTD−1.

By substituting (10) into (8) we obtain

dL (X+,θ)
dKf ,f

= −β
2
Q

and finally by substituting (11) into (8) we have

dL (X+,θ)
dβ

=
1
2

tr (Q) .

Once again these gradients may be combined with gradients of the kernel with respect to X, Xu

and θ to obtain the relevant gradients for their optimisation.

16

