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Abstract

The Gaussian process latent variable model (GP-LVM) is a recently proposed probabilistic
approach to obtaining a reduced dimension representation of a data set. In this tutorial we
motivate and describe the GP-LVM, giving reviews of the model itself and some of the concepts
behind it.

1 Introduction

The Gaussian process latent variable model (GP-LVM) is a powerful approach to probabilistic
non-linear dimensionality reduction. It was inspired by, and is related to, a class of probabilistic
dimensionality reduction techniques known as latent variable models. In this tutorial we will
review in detail a linear dimensionality reduction technique known as probabilistic PCA [Tipping
and Bishop, 1999]. As we shall see, by taking an alternative view point of the latent variable
model behind PCA we can develop a novel, alternative, interpretation of probabilistic PCA. One
that, as it turns out, will lend itself to an elegant non-linearisation through Gaussian processes.
However before discussing the resulting model in detail we will conduct a brief review of Gaussian
processes, discussing what it means to have a prior over functions and what Gaussian distributed
functions can look like.

Finally we shall round off by discussing the characteristics of the GP-LVM and by mentioning
some extensions of the model.

In the notes we will make use of examples that can be recreated through code downloaded
from http://wuw.dcs.shef.ac.uk/"neil/fgplvm. An additional package of demonstrations as-
sociated with this presentation has been placed at http://www.dcs.shef.ac.uk/ neil/oxford.

2 Motivation

Many data sets we deal with are high dimensional. The ‘curse of dimensionality’ implies that
to correctly understand the structure of a high dimensional data set we need many data points,
exponentially many in the number of dimensions. However, in practice we find that we often do
very well with much smaller data sets than we might expect to need. One possible reason for this is
that many data sets of interest, while seemingly high dimensional, have an intrinsic dimensionality
which is much lower. Let us consider the example of handwritten digits.

In Figure 1 we show a hand-written 6 taken from the USPS Cedar CD-ROM handwritten
digits training set. The data point is 3,648 dimensional as it is printed in a 64 pixel by 57 pixel
image. However, if our data is based on a few simple transformations of this digit, it may not
span all 3,648 dimensions of the space. To see this consider Figure 2. Here we have created a data
set by rotating the original digit 360 times, each time by one degree. The data is then projected
onto its second and third principal components. The resulting projection clearly shows a circular
shape. There is some noise (presumably associated with the nearest neighbour interpolation used
in the rotation of the image) but the structure of the space is clear. Further examination of the
principal components (which is possible with the software on line) also reveals that the dataset is
inherently one dimensional.
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Figure 1: Digit 6 from the USPS Cedar CD-ROM. The digit is 64 pixels by 57 pixels giving it

3,648 dimensions.
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Figure 2: Rotation of handwritten 6. A data set is generated by rotating the original image 360
times (prepDemManifold). The data set is then visualised by projecting into the second and third
principal component. In (a) the full rotation is visualised (demManifoldPrint([2 3], ’all’)),
in (b) some rotations are assumed to be associated with the digit 6 and others from the digit 9

(demManifoldPrint([2 3], ’sixnine’)).



In practice of course real data sets will not be generated by a simple rotation of a one dimen-
sional space. However, it seems reasonable to assume that a data set might consist of a fixed
number of ‘prototypes’ which undergo a limited number of transformations and then are, perhaps,
corrupted by some noise. If this is the case, then it makes sense to model high dimensional data by
seeking a low dimensional representation. In statistics the standard approach to this problem is
multi-dimensional scaling (MDS, see e.g. Mardia et al. [1979]). More recently in machine learning
several spectral approaches have been proposed [Tenenbaum et al., 2000, Roweis and Saul, 2000,
Weinberger et al., 2004] some of which may be seen as classical MDS with a particular approach
to learning a distance matrix. We wish to focus on probabilistically inspired approaches. Having
an algorithm with a probabilistic interpretation allows the algorithm to be extended in a logical
manner and eases integration of the approach in a larger system. All currently published exten-
sions and applications of the GP-LVM take advantage of its probabilistic interpretation in one
form or another [Grochow et al., 2004, Urtasun et al., 2005, Wang et al., 2006, Shon et al., 2006].

In the next section we discuss, perhaps, the simplest latent variable model that can be used for
dimensional reduction, probabilistic PCA. The model is fundamentally linear, but it illustrates the
basic concepts behind latent variable models. We will then briefly review Gaussian processes (in
Section 4) after which we will introduce the fundamental re-thinking of the latent variable model
behind PCA that enables dual probabilistic PCA and leads to the GP-LVM (Section 5). We will
then show various results achieved with the GP-LVM and briefly mention some enhancements.

3 Probabilistic PCA

Probabilistic PCA is a simple latent variable model where the latent space, X = [x1, ... ,XN]T is
assumed to be related to the centred data set, Y = [y1,.. .,yN]T through a linear mapping that
is corrupted by noise,

yn = Wx, +1n,,

where the mapping is given by W € RP*4 with D the dimension of the data space and ¢ the
dimension of the latent space and m,, is a vector of noise terms. For the particular case of
probabilistic PCA | the noise is taken to be Gaussian distributed,

p(m,18) = N (n,10,37'T),

with a mean of zero and a spherical covariance given by 8~'I. The parameter 3 is an inverse
variance and is therefore referred to as a precision.
The conditional probability of the data given the latent space can be written as

P (Ynl%n, W, 8) = N (yn|Wx,,, 57'T),

and assuming independence across data points we have

N
p(Y|X,W,ﬁ) = H N (ynlwxnaﬁ_lI) . (1)
n=1

Following the Bayesian nomenclature, in anticipation of a prior distribution over the latent space,
this term can be seen as the likelihood of the data Y given X. We note in passing that it is also the
likelihood associated with a least-squares multi-variate regression: if we are given X and maximise
the likelihood with respect to W we recover

WXTX = YTX,

which may be solved for W to obtain the least squares regression estimate of W. In probabilistic
PCA however, the values of X aren’t given, they are nuisance parameters. The standard approach
when dealing with these parameters is to consider a prior distribution over the latent space, p (X),
and seek to marginalise the values of X.



3.1 Gaussian Prior

The choice of prior distribution will clearly have an effect on the optimum value of W. If the latent
distributions are chosen to be independent across ¢ and non-Gaussian, the latent variable model
behind independent component analysis [Bell and Sejnowski, 1995, MacKay, 1996] is recovered
in the limit as § — oo. It has also long been known that if the latent distribution is chosen to
be Gaussian then PCA is recovered in the limit as 8 — oo (this observation inspired sensible
PCA [Roweis, 1998]). More interestingly Tipping and Bishop [1999] showed that if the latent
distribution is taken to be Gaussian then the maximum likelihood solution for W can span the
principal subspace of the data even when 3 is finite. The form of the Gaussian prior is chosen by
convention! to be zero mean and unit covariance,

N N
p(X) = H p(xn) = H N (x,]0,T). (2)

The marginal likelihood can then be computed as follows

p(YIW,0)

N
11 /N (¥ Wxn, 57 I) N (x40,1) dx,, (3)
n;l 1

N
o H exp (—% (yz (61 - *°W (QWTW + 1)71 WT) yn)) (5)
n=1

where the first line (3) is obtained through multiplying (1) and (2) to obtain the joint likelihood,
and introducing the intergrad to marginalise X. The second line (4) is obtained by expanding the
squares, (5) is then obtained by standard integrals on Gaussians (see Appendix B on Gaussian
integrals in Bishop [1995] for a proof). We can obtain the final solution through inspection of (5):
the matrix associated with the quadratic term has the form of the matrix inversion lemma? and
there are no linear terms in y,, implying that the solution is a product of zero mean Gaussians,

N
p(Y[W,5) = [[ N (val0.C), (6)

n=1

where the covariance is given by C = WWT 4+ 8711, This is immediately recognised as a reduced
rank representation of the covariance. Since W € RP*9 the matrix WWT € RPXP will have rank
of at most g. For finite 3 the term 37 'I then acts as a ‘regulariser’ to ensure that the resulting
covariance has full rank and the distribution is thereby properly defined.

This model was suggested simultaneously by Roweis [1998], Tipping and Bishop [1999], but
Tipping and Bishop [1999] also provided the proof that the maximum likelihood solution for W
spans the principal sub-space of the data. The proof for the dual probabilistic PCA we introduce
in Section 5 closely tracks the proof of Tipping and Bishop [1999] so we omit the details here,
merely giving the result. The optimum value for W is given by

W=Uv"

where U; are the ¢ eigenvectors of the covariance matrix N~'Y 1Y associated with the ¢ largest

eigenvalues, {\;}7_; which may be obtained by solving

N-YYTYyU = UA. (7)

1 Using non-zero mean and non-unit covariance merely leads to a redundant parameterisation of the model. How-
ever this redundant parameterisation can be exploited in certain circumstances to give faster converging algorithms
[Sanguinetti et al., 2005].

2In  its most general form the matrix inversion lemma is (A +BCD)"! = AT —

A-'B(C~!4+DA"'B) 'DAL



The matrix L is diagonal and its ith diagonal element is given by I; = ()\1- — 6’1) %.

The principal components of a data set are the eigenvectors of the covariance matrix, and the
principal sub-space is the space spanned by those eigenvectors. We therefore see that the solution
for probabilistic PCA spans the g-dimensional principal sub-space of the data.

We will revisit probabilistic principal component analysis in Section 5 when we discuss the
Gaussian process latent variable model. First we will briefly review Gaussian processes.

4 Gaussian Processes

Gaussian processes [O’Hagan, 1978, 1992, Williams and Rasmussen, 1996, Williams, 1998, MacKay,
1998, Rasmussen and Williams, 2006] are probability distributions over functions. We can combine
a Gaussian process prior with a likelihood (or noise model) to obtain a posterior over functions.
If the likelihood is also Gaussian the form of the posterior will also be a Gaussian process. In
practice the likelihood is often non-Gaussian but even in this case we typically approximate the
posterior process with a Gaussian process.

4.1 A Prior Over Functions

A distribution over functions is seemingly non-sensical as functions are infinite dimensional objects.
However, let us proceed by considering a finite Gaussian distribution over some values instantiated
from a function f = {fn}f:’:l € RV*L If we assume that these values are drawn from a Gaussian
distribution with mean zero and covariance K, then we can write

p(flK) = N(f[0,K)

1 1
emT K\ 2

To illustrate the form of this function we now consider a particular covariance matrix. We will
take one sample from a Gaussian with this covariance matrix. Within this single sample there
will be N = 25 instantiations.

The covariance matrix we used is shown as a greyscale image in Figure 3(b). Note that the
covariance function shows correlation between points f,, and f, if n is near to m. There is less
correlation if n is distant from m. The sample from the Gaussian is plotted in Figure 3(a). Note
that points that have nearby indices have similar f, . If the plot is seen as a function of n the
function appears smooth. This smoothness comes from the fact that nearby points are correlated
in the covariance.

In practice the covariance will not be a function of the indices, but of an input space X.
However, each point in that input space, x,, will also be indexed by n so for the moment it is
convenient to ignore this relationship.

To see how it is possible to make predictions given the covariance matrix, let us first consider the
covariance of two points. Marginalising the remaining points leads to a two dimensional Gaussian
whose covariance is made up of the rows and columns from the original covariance associated with
those points. This allows us to plot a contour and visualise the joint probability over these points.
First we take the points indexed as f1 and f3. A contour of the joint probability distribution over
this space is shown in Figure 4(a). Also, in Figure 4(c) we visualise the conditional distribution
for p (f2|f1,K). This can be viewed as the predictive distribution for f; having observed f;. The
strong correlation induced by the covariance, K, means that the conditional distribution for fs
has a mean that is close to fi.

A similar plot is shown in Figure 5 but this time for the joint distribution between f; and
f5. The correlation induced by the covariance function is now much weaker, the conditional
distribution for fs; has a mean much closer to zero than that for f; had.

The obvious question is, where does this covariance matrix come from? In this case the
covariance matrix is built using the inputs to the function x,,. The covariance shown in Figure (b)
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Figure 3: In (a) we show 25 instantiations of a function, f,,, as sampled from a zero mean Gaussian
with the covariance matrix given in (b). In (b) we show the covariance matrix as a greyscale plot.
Each element square in the plot gives the covariance between two points of the function f,, and
fm- The plots can be recreated with the command demGPSample.

Figure 4: Joint distribution between the values of f; and fo: (a) shows the a single contour (one
standard deviation from the mean) of the Gaussian distribution; (b) shows the instantiated value
of f1 as aline dashed in the plot and (¢) shows the conditional distribution of p (f2|f1) as a dotted
line rotated to be a function of the fs-axis of the plot. These plots can be recreated through the
script demGPCov2D([1 2]). The portion of the covariance function as computed between these
1 0.966 ]

two points is given by Kio = [ 0.966 1



Figure 5: Joint distribution between the values of f; and f5: (a) shows the a single contour (one
standard deviation from the mean) of the Gaussian distribution; (b) shows the instantiated value
of f1 as aline dashed in the plot and (¢) shows the conditional distribution of p (f5|f1) as a dotted
line rotated to be a function of the fs-axis of the plot. These plots can be recreated through
the script demGPCov2D([1 5]). The portion of the covariance function as computed by these two
1 0574 }

points is given by K5 = [ 0.574 1

is based on Euclidean distance between the points. The input points used were one dimensional
and equally spaced along a line between -1 and 1. The covariance between points m and n was
given by

k (Xm,Xn) = exp (—% (Xm — Xn)T (Xm — Xn)) ) (8)

where the inverse width parameter v was taken to be 10. Note that if m = n then the variance of
the point is 1. This is why the furthest extent of the contour at one standard deviation in each of
Figures 4 and 5 is also one. This covariance function is known as the radial basis function (RBF),
squared exponential, or Gaussian covariance function. We note that it shares the same form as
the RBF kernel used in support vector machines [Scholkopf and Smola, 2001]. In fact the class
of valid covariance functions is the same as the class of Mercer kernels. We will therefore use the
terms covariance function and kernel interchangeably in what follows.

The covariance function provides the joint distribution over the instantiations of the functions.
The conditional distribution provides predictions for as yet unseen locations given points at known
locations. This is analogous to a training set/test set situation in machine learning. The predic-
tions are locations are on the left hand side of the conditional, the training data is on the right
hand side of the conditional, if we denote instantiations from the training set as f and positions in
the test set as f, we can denote this conditional as p (f,|f). Since the joint distribution is Gaussian,
we known this conditional distribution must also be Gaussian. To find the conditional distribution
we make use of a partitioned version of the kernel matrix,

_ | Ker K
K o |: K*,f K*,* :|

where Ky ¢ is the covariance matrix for the training data points, f, the sub-matrix K, . is the
covariance matrix for the test data points, f,, and the sub-matrix K, ¢ = KfT* is the cross correla-
tions between training and test data. We are now in a position to write down the joint distribution
of the data via the partition inverse,

Kip + KeeKe  ST'KL Ky —Kp K 571

-1 _
K= [ —S K, Ky »-t

where

Y= K*,* - K*,foT%Kf,*-



Through the partitioned inverse we can re-express the joint distribution, for convenience we write
it below as the logarithm of the joint distribution,

1 1
logp(f,£) = —5f'Kpef — 2 K iKe, D7 KoK f
1
+fo_}Kf,*E_1f* - §f*TE_1f* + consty

where the constant term contains portions that are not dependent on f or f,. Strictly speaking,
the joint distribution is also conditioned on the parameters of the covariance function, the training
input locations, X, and the test input locations, X,. This dependence occurs through the kernel
functions. However we are dropping this dependence in what follows to avoid cluttering the
notation.

The conditional distribution is found by dividing joint distribution by the prior distribution
on f, p(f) = N (£]0,K¢¢). In log space this is equivalent to subtraction of

1
logp (f) = —§fTK;}f + consty
giving

logp (f./f) = logp (f.,f) —logp (f)
1
= 5 F K Ko XK (K of + 1K K S,

1
—§f3271f* + const; — consty (9)

1 T
= 5 (L KK i) 57 (5 - KoK )

“+constg (10)
= logN (£|,%). (11)

where f = K*ﬁfo_}f, consts = const; — conste and (10) is derived from (9) by completing the
square.

So we can see that if we observe points from the function, f, directly for a given set of training
data X then we can predict the locations of functions at as yet unseen locations whose inputs
are given by X,. The resulting distribution is also a Gaussian process, but with a mean given
by f and a covariance given by ¥. In general though, we will not make direct observations of the
function, our observations are more likely to be corrupted by noise. We therefore also define a
noise model p (y|f) which relates our actual observations, y, to the function f (see Figure 77). A
standard noise model for regression is independent Gaussian random noise. In this case we can
write the noise model as

N N
pIE) =[] pWalfa) = T N (vnl fn. 871), (12)
n=1 n=1

i.e. we are assuming that the function becomes corrupted by the addition of independent Gaus-
sian noise with a precision of 37! at each observation. Given the Gaussian noise model in (12)
computation of the marginal likelihood,

p(y) =/p(ylf)p(f) df,



is straightforward,

p0) o [en(~L -0 -0 5Kt ) dt

o /exp (—gyTy — %fT (Kf_% + BI) f+ ﬁny) df (13)
X exp (—%yT (BI — 32 (K;; + BI)I) y) (14)
X exp (-%YT (Kee + 5_11)71 }’) (15)
= N(y0,Kgs+67'1), (16)

where the integral in (13) can again be undertaken through standard Gaussian results [Bishop,
1995, Appendix B| and we move from (14) to (15) through inspection by recognising the form of
the matrix inversion lemma in (14). The resulting marginal likelihood is then a Gaussian process
on y with a modified covariance function of the form Ky7y =Ker+ 37 'L

4.2 Summing Covariance Functions

As an aside we note that the form of p(y|f) can also be seen as a Gaussian process over y with
a given mean f and a covariance function Ky y = 7'I. The particular form of this covariance
function is that all points are uncorrelated, i.e. the process is just white noise. However regardless
of the form of the covariance function the result of the marginalisation above would remain the
same,

N(y|0,Krr + Ky ) = /N (vlf, Ky y) N (£]0, K¢ ¢) df,

so we see that a new covariance function can be generated by adding two different covariance
functions together. This has the interpretation of a hierarchical Gaussian process, where the
mean of each process is itself treated as a Gaussian process.

4.3 Parameters of the Covariance Function

The covariance function we described in (8) has a parameter: the inverse width. We also saw from
the contour plots of the correlation between the points, that the maximum standard deviation
was unity. If we wish to have a covariance function that existed on a non unit scale we need to
introduce a further parameter, o,

k (Xpm,Xn) = aexp (—% (Xm — xn)T (Xm — xn)) , (17)

which controls the variance of the function. Note that this parameter « is analogous to 3~ (which
controls the variance of the white noise process). Here « is controlling the variance of the function
generated by the RBF kernel. In the context of the marginal distribution over y,

p(yla,B,7) = N (y]0,Kee + 57'T), (18)

where we have made explicit the dependence of the marginal likelihood on «, § and ~. This
dependence occurs through Kg ¢, the elements of which are given by (17), we can view y/af as
a signal to noise ratio. The standard deviation of the signal is \/a and the standard deviation
of the noise is 1/3~1. In many kernel methods, these parameters must be selected through cross
validation. An advantage of the Gaussian process point of view is that they can be optimised by
maximisation of the marginal likelihood p (y|a, 8,v). This is known as empirical Bayes or type
II maximum likelihood. Priors can also be placed over these parameters and sampling used to
estimate their posteriors (see e.g.Williams and Rasmussen 1996).



4.4 Different Covariance Functions

By changing the characteristics of the covariance function we can sample different functions from
the prior. For example, setting each element of the kernel matrix to an inner product between the
points,

k(Xpm,Xn) = axﬁxn,

produces functions that are linear. Note that this kernel function can also be written as
Kee = XXT.

Williams [1997] showed that a multi-layer perceptron with infinite hidden nodes has a covariance
function of the form

T b
k(Xpm,%n) = asin™! ( WX X+ ) ,

\/wx%xm + b+ 1\/wxzxn +b+1

where a Gaussian prior over the weights from the input to hidden units is used with a variance w
and a prior over the locations of the activation functions with variance b.
Finally a constant offset in the function can be accounted for by adding a kernel function which
is constant in value.
k(Xm, Xn) = @,

we will refer to this as the bias kernel. We show some examples of samples associated with tese
covariance functions in Figure 6

4.5 Consistency

Gaussian processes are consistent in that the posterior predictions at each point remain the same
regardless of the number and location of the test points. To see this we first consider an additional
set of test points fi which is disjoint from f.. The conditional probability of our original test
points can be expressed as

p(E]f) = / p (£, £.|£) dE,.

for the system to be consistent this marginal likelihood must be the same regardless of ;. In
other words, if we replaced f; with f; we would require

p(£f) = /P(f*af+|f) dfy = /p (f*uf-i-'f) le'+
where f+ # f+.

4.6 Summary

We have reviewed some of the salient points of Gaussian processes, in particular we have shown
how a Gaussian process arises from the specification of a covariance function. Given a sub-set of
observations of a function, and an associated covariance, we can make predictions about the the
likely location of the function in regions where we hadn’t previously observed data.

The parameters of the covariance function can be found through maximisation of the marginal
likelihood (18).

5 The GP-LVM

The standard probabilistic interpretation of PCA we reviewed in Section 3 combines a Gaussian
likelihood,

N
p(YIW,X,8) = [[ N (yn|Wx,, 37'T)
n=1

10



Figure 6: Samples from different covariance functions. (a) RBF kernel with v = 10, a = 1, (b)
RBF kernel with v =1, a = 1 (¢) RBF kernel with v = 10, a = 4, (d) linear kernel with o = 16,
(e) MLP kernel with o = 8, w = 100 and b = 100, (f) MLP kernel with &« = 8, b = 0 and
w = 100, (g) bias kernel with & = 1 and (h) Summed combination of: RBF kernel, o = 1, v = 10;
bias kernel, & =1; and white noise kernel, 3 = 100. Samples can be recreated with the script
demCovFuncSample.
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Figure 7: Graphical representation of (a) the standard probabilistic PCA model and (b) its dual
representation which also leads to a probabilistic interpretation of PCA. The nodes are shaded
to represent different treatments. Black shaded nodes are optimised, white shaded nodes are
marginalised and grey shaded nodes are observed variables.

with a Gaussian prior on the latent variables, X. The GP-LVM takes a different perspective on
the model. Rather than marginalising the latent variables, we seek to marginalise the mapping.
Graphically, we can depict the two different approaches as shown in Figure 7.

As we shall see this approach will lead to a dual representation of probabilistic PCA. The
required marginalisation now takes the form

N
p(Y1X.5) = [ TLo vl W) p (W) aw.
n=1
By specifying a Gaussian prior distribution over the parameters of the mapping,

p(W) =N (wilo.)

where w; is the ¢th row of the matrix W and then integrating over W we obtain a marginalised
likelihood for Y,
1 1
p(YIX,8) = ——F2x—pexp <——tr (K_lYYT)) ; (19)
(2m) 2 K= 2
where K = XX" 4+ 37T and X = [x] .. .x]TV]T. The structure of this model is shown in 7(b).

Note that with our earlier definition of C = WWT 4+ 37T we can write the marginal likelihood
for standard PPCA (6) as

1 1
YIW.08) = ——5——= —str (CT'Y'Y ) ;
POYIW,) = o (i (YY)

which highlights to a greater extent the duality between (19) and (6). Optimisation of (19) is
clearly highly related to optimisation of (6). Tipping and Bishop [1999] showed how to optimise
(6), in the next section we review this optimisation for DPPCA, but generalise it slightly so that it
applies for any positive definite matrix S, rather than only the inner product matrix YY'. First
though we make the connection to Gaussian processes by highlighting the fact that (19) can be

written as
D

P(YIX,5) = [[ —o— exp (—%EKly:,i) , (20)
=1 (2m) 7 [K|? 2

here y. ; is the i¢th column of Y. This likelihood is thus recognised as a product of D independent
Gaussian processes, each process being associated with a different dimension of the data set.
However, here we are suggesting maximising over X as well as the kernel parameters. If ¢ > D
this maximisation would not be well determined, but as long as ¢ < D we are obtaining a reduced
dimensional representation of our data. We will now show how, for the case of a linear covariance
matrix, this model is equivalent to PCA.

12



5.1 Maximisation of the Marginal Likelihood

The proof of the maximum likelihood solution for dual probabilistic PCA closely mirrors that
given in Tipping and Bishop [1999], we include it here for completeness. For a more general proof
see Lawrence and Sanguinetti [2004]. Maximising (19) is equivalent to minimising its negative
logarithm,

N 1 1
L= 2+ n[K[+5tr (K7'S), (21)

where S = D7'YYT. The gradient of the negative log likelihood with respect to X can be found

as
L
— = K 'SK'X+ K 'X
X + )

setting the equation to zero and pre-multiplying by K gives
11
s [5*11+xx } X = X.
We substitute X with its singular value decomposition, X = ULV, giving
SU[L+4 'L VT = ULv”

Right multiplying both sides by V (note that the solution is invariant to V) we have, after some
rearrangement,

SU=U (7 'I+L?),

which, since (ﬁ_ll + L2) is diagonal can be solved by an eigenvalue problem where U are eigen-
vectors of S and A = (ﬁ_ll + L2) are the eigenvalues. This implies that the elements from the
diagonal of L are given by

1
2

L= -8 (22)

5.2 The Retained Eigenvalues

If ¢ < D we must select which eigenvectors to retain, all eigenvectors are associated with stationary
points, so how do we choose which to retain? For convenience let us ignore our previously defined
ordering of the eigenvalues in terms of their magnitude and assume that we keep the first ¢
eigenvalues.
First note that
K=U[L*+p3'1]U"

where U is all the eigenvectors of S. The Kullback Leibler (KL) divergence between zero mean
Gaussians with covariances given by K and S given by (21) minus the log determinant of S, which
is constant in X. Minimising this KL divergence is thus equivalent to minimising (21).

1 1 1 N
KL (S||K) = §1n|K|—§ln|S|+§tr (K*ls)—3
1< N—gq 1 1 el
- Egln)\i——2 1nﬁ—§;1nxi+§tr([L + 7] A)

N N
3 ln/\i—N;qlnﬁ—N;q—l—é Y

1=q+1 1=q+1

N =

where we have used the fact that S = UAU?". Differentiating with respect to 3 and setting the
result to zero to obtain a fixed point equation then gives

N —q

p= N
Zi:qﬂ Ai

13



which when substituted back leads to

N N

N — i= )\z 1

KL (S||K) = — 4 1m Z}\;Q_“q - N > |, (23)
i=q+1

which is recognised as the difference between the log ratio of the arithmetic and geometric means
of the discarded eigenvalues. This difference will be zero if and only if the discarded eigenvalues
are constant (when the arithmetic and geometric means become equal) otherwise it is positive.
The difference is minimised by ensuring that the eigenvalues we discard are adjacent to each other
in terms of magnitude.

Which eigenvalues should we then discard? From (22) we note that the retained eigenvalues
must be larger than 3, otherwise [; will be complex. The only way this can be true is if we discard
the smallest N — ¢ eigenvalues.

5.3 Equivalence of Eigenvalue Problems

In Section 3 we reviewed probabilistic PCA, here we have introduced a new dual version of prob-
abilistic PCA which leads to a different eigenvalue problem. However, these eigenvalue problems
are equivalent as we shall now show. For DPPCA the eigenvalue problem is of the form

YY'U = UA.

Premultiplying by YT then gives
Y'YY'U=YTUA (24)

Since U is the eigenvectors of YYT (see the previous section) the matrix UTYYTU = A, therefore
matrix U’ = YTUA "% is orthonormal. Post multiplying both sides of (24) by A2 gives

YT'YU =UA

which is recognised as the form of the eigenvalue problem associated with PPCA as given in (7),
where the eigenvectors of Y'Y are given by U’ = YTUA 2 and the eigenvalues are given by A
(as they were for DPPCA).

6 Non-linear GP-LVM

We saw in the previous section how PCA can be interpreted as a product of Gaussian processes that
maps latent-space points to points in data-space. The positions of the points in the latent-space
can be determined by maximising the process likelihood with respect to X. It is natural, therefore,
to consider alternative GP-LVMs by introducing covariance functions which allow for non-linear
processes. The resulting models will not, in general, be optimisable through an eigenvalue problem.

6.1 Optimisation of the Non-linear Model

In Section 5 we saw for the linear kernel that a closed form solution for dual PPCA could be
obtained up to an arbitrary rotation matrix. For non-linear kernels, such as the RBF kernel and
MLP kernel discussed in Section 4.4 there will be no such closed form solution and there are likely
to be multiple local optima. To use a particular kernel in the GP-LVM we first note that gradients
of (18) with respect to the latent points can be found through first taking the gradient with respect

to the kernel,

L
g—K =K 'YY'K™! - DK™}, (25)
K

and then combining it with 52— through the chain rule. As computation of (25) is straightforward
n,j

and independent of the kernel choice we only require that the gradient of the kernel with respect

14
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Figure 8: The Gaussian process as a latent variable model, now both kernel parameters, 8 and
latent positions are optimised.

to the latent points can be computed. These gradients may then be used in combination with
(18) in a non-linear optimiser to obtain a latent variable representation of the data. Furthermore,
gradients with respect to the parameters of the kernel matrix may be computed and used to jointly
optimise X and the kernel’s parameters.

The log-likelihood is a highly non-linear function of the embeddings and the parameters. We
are therefore forced to turn to gradient based optimisation of the objective function. In all our
experiments we made use of conjugate gradients or the scaled conjugate gradient [Mgller, 1993|
algorithm.

6.2 Illustration of GP-LVM via SCG

To illustrate the Gaussian process latent variable model we now make use of the ‘multi-phase oil
flow’ data [Bishop and James, 1993]. This is a twelve dimensional data set containing data of
three known classes corresponding to the phase of flow in an oil pipeline: stratified, annular and
homogeneous. In Bishop et al. [1998] this data was used to demonstrate the GTM algorithm. Here
we use a sub-sampled version of the data (containing 100 data points) to demonstrate the fitting
of a GP-LVM with a simple radial basis function (RBF) kernel.

As we saw in Section 5, seeking a lower dimensional embedding with PCA is equivalent to a
GP-LVM model with a linear kernel,

k (Xnvxm) = ngm + 671577,7717

where §;; is the Kronecker delta function.

For comparison we visualised the data set using several of the approaches mentioned in the
introduction. In Figure 9(a) we show the first two principal components of the data. Figure 9(b)
then shows the visualisation obtained using the GP-LVM with the RBF kernel,

k (Xi,Xj) = Qirbf €XP (—% (Xi — Xj)T (Xi — Xj)) =+ (lbias + 6715”‘.

To obtain this visualisation the log likelihood was optimised jointly with respect to the latent
positions X and the kernel parameters apias, b, G and . The kernel was initialised using PCA
to set X, the kernel parameters were initialised as caupr =y = 1 and 871 = auias = exp (—1).
Note that there is a redundancy in the representation between the overall scale of the matrix
X and the value of . This redundancy was removed by penalising the log likelihood with half the
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Method || PCA | GP-LVM | Non-metric MDS | Metric MDS | GTM* | kernel PCA*
Errors 20 4 13 6 7 13

Table 1: Errors made by the different methods when using the latent-space for nearest neighbour
classification in the latent space. Both the GTM and kernel PCA are given asterisks as the result
shown is the best obtained for each method from a range of different parameterisations.

sum of the squares of each element of X: this implies we were actually seeking a MAP solution?®

with a Gaussian prior for X,
N

p(X) = J] N (xal0,1).
n=1

The likelihood for the RBF kernel was optimised using scaled conjugate gradient (see http:
//www.dcs.shef.ac.uk/"neil/gplvmcpp/ for the C++ code used).

In Figure 9(c) we show the result of non-metric MDS using the stress criterion of Kruskal
[1964]. Figure 9(d) shows the result from the ‘Sammon mapping’ [Sammon, 1969]. To objectively
evaluate the quality of the visualisations we classified each data point according to the class of its
nearest neighbour in the two dimensional latent-space supplied by each method. The errors made
by such a classification are given in Table 1. For the GTM and kernel PCA some selection of
parameters is required. For GTM we varied the size of the latent grid between 3 x 3 and 15 x 15,
and the number of hidden nodes in the RBF network was varied between 4 and 36. The best result
was obtained for a 10 x 10 latent grid with 25 nodes in the RBF network, it is shown in Figure 9(e).
Note the characteristic gridding effect in the GTM’s visualisation which arises from the layout of
the latent points. For kernel PCA we used the RBF kernel and varied the kernel width between
0.01 and 100. The best result was obtained for a kernel width of 0.75, the associated visualisation
is shown in Figure 9(f).

The gradient based optimisation of the RBF based GP-LVM’s latent-space shows results which
are clearly superior (in terms of separation between the different flow phases) to those achieved
by the linear PCA model. The GP-LVM approach leads to a number of errors that is the smallest
of all the approaches used. Additionally the use of a Gaussian process to perform our ‘mapping’
means that we can express uncertainty about the positions of the points in the data space. For
our formulation of the GP-LVM the level of uncertainty is shared across all D dimensions and
thus may be visualised in the latent-space.

6.2.1 Visualising the Uncertainty

Recall that the likelihood (20) is a product of D separate Gaussian processes. In all that has
followed we have retained the implicit assumption in PCA that a priori each dimension is iden-
tically distributed by assuming that the processes shared the same covariance/kernel function K.
Sharing of the covariance function also leads to an a posteriori shared level of uncertainty in each
process. While it is possible to use different covariance functions for each dimension and may be
necessary when each of the data’s attributes have different characteristics*; the more constrained
model implemented here allows us to visualise the uncertainty in the latent space and will be pre-
ferred for our empirical studies®. In Figure 9(b) (and subsequently) the uncertainty is visualised
by varying the intensity of the background pixels. The lighter the pixel the higher the precision
of the mapping.

3Multiplying the likelihood by this prior leads to a joint distribution over data points and latent points. As a
function of X this joint distribution is proportional to the posterior distribution p (X|Y), therefore maximising the
joint distribution is equivalent to seeking a MAP solution.

4 A simple example of this is given by Grochow et al. [2004] with the ‘scaled GP-LVM’, where a scale parameter
is associated with each dimension of the data.

5The two approaches, constraining each data direction to the same kernel and allowing each data dimension to
have its own kernel are somewhat analogous to the difference between probabilistic PCA, where each output data
shares a variance, and factor analysis, where each data dimension maintains its own variance.
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Figure 9: Visualisation of the Oil data with (a) PCA (a linear GP-LVM) and (b) A GP-LVM
which uses an RBF kernel, (c) Non-metric MDS using Kruskal’s stress, (d) M ‘Sammon Mapping’,
(e) GTM and (f) kernel PCA. Red crosses, green circles and blue plus signs represent stratified,
annular and homogeneous flows respectively. The greyscales in plot (b) indicate the precision with
which the manifold is expressed in data-space for that latent point.
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Figure 10: The full oil flow data set visualised with an RBF based kernel using sub-set of data
approximations.

Model || PCA | Sparse GP-LVM (IVM) | GP-LVM (RBF) | GTM | Y
Errors 162 24 1 11 2

Table 2: Number of errors for nearest neighbour classification in the latent-space for the full oil
data set (1000 points). Far right column contains result for nearest neighbour in the data space,
also presented is a result for the GTM algorithm.

6.2.2 Computational Complexity

While the quality of the results seem good, a quick analysis of the algorithmic complexity shows
that each gradient step requires an inverse of the kernel matrix (see (25)), an O (N3) operation,
rendering the algorithm impractical for many data sets of interest.

6.3 Large Data Sets

The sparse approximation suggested in Lawrence [2004, 2005] is a sub-set of data approach
[Lawrence et al., 2003, Rasmussen and Williams, 2006, pg. 177]. Whilst this approach leads
to somewhat simple algorithms for optimisation of the GP-LVM, it suffers from the lack of a
convergence criterion and discards information in the data set. A more promising approach to
sparsification is suggested for Gaussian process regression by Snelson and Ghahramani [2006]
and has recently be placed in a more general framework by Quinonero Candela and Rasmussen
[2005]. The application of this approach in the GP-LVM is available on-line and is the subject of
a forthcoming paper [Lawrence, 2006, in preparation].

In Figure 10 we present visualisations of the oil data using a sub-set of data based sparse
GP-LVM algorithm with the RBF kernel. In Figure 11 we show the data visualised with the non-
sparse GP-LVM algorithm. Again we considered a nearest neighbour classifier in the latent-space
to quantify the quality of the visualisations. We note that there appears to be a degradation in
the quality of the GP-LVM model associated with the sparsification, in comparision to the full
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Figure 11: The full GP-LVM algorithm with RBF kernel on the oil flow data (uses the GPLVMCPP
toolbox).

GP-LVM algorithm and the sub-set of data based sparse GP-LVM performs worse.

6.4 Back Constraints

An interesting characteristic of the GP-LVM is that it provides a smooth mapping from latent
space to the data space. This implies that points which are close in latent space will be close in
data space. However, it does not imply that points which are close in data space will be necessarily
mapped as close together in latent space. In recent work [Lawrence and Quinofiero Candela, 2006,
in preparation| the use of back constraints is suggested. Back constraints constrain each latent
points to be a smooth function of its corresponding data point. This forces points which are close
in data space to be close in latent space.

6.4.1 Motion Capture Data

A neat illustration of the issues that arise when the GP-LVM is used without back constraints is
given by a simple motion capture data set. The data consists of a subject breaking into a run
from standing®. There are approximately three full strides in the sequence. The mean of the data
is removed from each frame so in effect the subject is running ‘in place’. The data is therefore
somewhat periodic in nature, however the subject changes the angle of the run throughout the
sequence becoming more upright as it proceeds. Our experimental set up was as follows. For both
models a GP-LVM with an RBF kernel for a covariance function was used. The back constraint was
implemented through an RBF based kernel mapping for which we set v = 1 x 1073, Both models
were initialised using PCA. For the RBF model this is straightforward, but for the kernel model
this was achieved by setting the kernel parameters, A, to minimise the squared distance between
the latent positions given by the mapping and those given by PCA. The latent positions/mapping

6Data made available by the Ohio State University Advanced Computing Centre for the Arts and Design,
available from http://accad.osu.edu/research/mocap/mocap_data.htm, sequence ‘Figure Run 1’ in unprocessed
.txt format.
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Figure 12: Visualisation of the motion capture data. (a) The regular GP-LVM, log likelihood 1,543
(demStickl in the FGPLVM toolbox) and (b) the GP-LVM with back constraints (demStick3),
log likelihood 1,000. The paths of the sequences through latent space are shown as solid lines.The
back constraint used was an RBF kernel mapping with v = 1 x 1072. In both cases the start of
the sequence is towards the top left and the end is towards the bottom centre-left. The grey scale
background image indicates the precision with which the mapping is expressed.

parameters and the GP covariance function parameters were then jointly optimised using conjugate
gradients. Scripts for re-implementing these experiments are available on line in the FGPLVM
toolbox.

The results from visualisation using the GP-LVM both in unconstrained and back constrained
forms are shown in Figure 12. The data is temporal in nature (although the GP-LVM is not taking
advantage of this fact) and we have connected points in the plots that are neighbours in time. In
Figure 12(a) the sequence does not clearly show the periodic nature of the data. The likelihood of
this model is higher, as we should expect given that the other model is constrained, however the
sequence is split across several sub-sequences’. To reflect the periodic nature of the sequence it
is necessary to use a circular structure. Such a structure will be of the form of a squashed spiral
which will either have less representational power in the inner rings (analogous to inner groove
distortion in gramophone records) or will cross over itself in a manner which is not consistent with
the data. The higher likelihood solution turns out to be placing points far apart which are actually
close together. Note that the problem arises because the latent space is too constrained. Using
a three dimensional latent space alleviates the problem® and we expect a two dimensional latent
space which is topologically cylindrical would also resolve the issue. The back constrained model
shows a squashed spiral structure which reflects the periodic nature of the data and maintains a
representation of the angle of the run. The changing angle of the run as the sequence proceeds is
depicted in Figure 13.

6.4.2 Vowel Data

As a further example we considered a single speaker vowel data set. The data consists of the
cepstral coefficients and deltas of ten different vowel phonemes and is acquired as part of a vocal
joystick system Bilmes et al. [2006]. A particular characteristic of this data set is that PCA, which
is used as the initalisation when the back constraints aren’t used, fails to separate the data at all.
As a result the non-back constrained model tends to fragment the different vowels. The results
with the back constrianed model tend to keep like vowels closer together (Figure 14).

"Note this is not due to overfitting: the model provides a smooth representation of the data which generalises
well across the latent space.
8 A script to run the experiment is available on line (demStick4 in the FGPTVM toolbox).
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(a) (b) (c) (d)

Figure 13: Projection into data space from four points in the latent space. Note how the position
in the cycle is the same but the inclination of the runner differs becoming more upright as the
sequence proceeds.
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(b)

Figure 14: Visualisation of the vowel data (a) without back constraints and (b) with back con-
straints. The different vowels are shown as follows: /a/ red cross /ae/ green circle /ao/ blue
plus /e/ cyan asterix /i/ magenta square /ibar/ yellow diamond /o/ red down triangle /schwa/
green up triangle and /u/ blue left triangle (demVowels2 and demVowels3 in the FGPLVM toolbox).
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6.5 GP-LVM with Dynamics

Recently Wang et al. [2006] described an approach to applying dynamics to the GP-LVM. To see
how this is done, we assume the data is presented in temporal order (i.e. y; is the first data point
in the series and yy is the last). The obvious route to augmenting the model with dynamics is
to place a Markov chain distribution over the latent space by defining p (x,|x,—1), which gives a
prior distribution p (X) = p(x1) Hgﬁp (xn|Xn—1). Of course, combining this prior with p (Y|X)
to obtain the marginal likelihood p (Y) is in general not tractable. However, it is straightforward
to obtain maximum a posteriori (MAP) estimates of the solution. Instead of a simple Markov
chain, Wang et al. [2006] suggest a Gaussian process to relate x,, to x,,—1. If this GP predicts, at
each time step, the change in position for the next time step, the joint likelihood over the latent
variables and Y is given by

DN D 1
p(Y,X) = —Tlog27—510g|K|—§tr (K'YY"?)

N g L (et (%) (% =)\ "

> log 27 — 2 log [K, | - 5tr (Km (X X) (X X) : (26)

where X = [x2.. .XN]T and X = [x71.. .xN_l]T the kernel K is that associated with the dynamics
Gaussian process and is constructed on the matrix X.

6.5.1 Sampling from Dynamics

Consider a dynamics Gaussian process based on an RBF kernel and a white noise term,

/
k (Xpn,Xm) = alps€Xp (—% (xp — Xm)T (xp, — Xm)> + 6 6nm,

where d,,, is the Kronecker delta function. Rather than learning the parameters of the dynamics
model we suggest an alternative approach of selecting the dynamics model parameters by hand.
Such an approach may seem unwieldy, but there are only three parameters in the covariance
function, each of which has a clear interpretation. The signal variance is given by o/, and
the noise variance by 8'~!, thus the signal to noise ratio is given by Vol 8. The remaining
parameter controls the smoothness of the function, taking its square root and inverting, [ = %,
gives a parameter known as the characteristic length scale. In each dimension the mean level of
zero up-crossings in a unit interval is given by (27rl)_1 = ‘2/—: [Rasmussen and Williams, 2006], this
is related to the number of times the dynamics switches direction. For the example given below
we used v = 0.2 , aypr = 0.01 and 37! = 1 x 10~ which is equivalent to a signal to noise ratio
of 100. In Figure 15 we show some examples of two dimensional dynamics fields sampled using
parameters in the neighbourhood of those given above.

6.5.2 Motion Capture Data

By selecting a sensible dynamics prior in the latent space the motion capture data again reflects
the period nature of the paces (Figure 16).

6.6 Loop Closure in Robotics

In on-going work with Dieter Fox and Brian Ferris at the University of Washington we are in-
terested in loop closure for robotic navigation, included as a final example is a data set of a
robot completing a loop while reading signal strengths from 30 different wireless access points.
To produce a neat track and close the loop it turns out it is necessary to use dynamics and back
constraints as seen in Figure 17. When the GP-LVM is used without dynamics (Figure 17(a)
and (b)) the path in the latent space is noisy. Dynamics forces a tighter path in latent space
(Figure 17(c)) but there is no loop closure. Finally by combining back constraints with dynamics
we can obtain loop closure (Figure 17(d)).
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Figure 16: Visualisation of the motion capture data using the GP-LVM with dynamics (demStick2

in the FGPLVM toolbox)
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Figure 17: Use of back constraints and dynamics to obtain loop closure in a robot navigation
example. (a) GP-LVM without back constraints or dynamics, (b) GP-LVM with back constraints,
no dynamics, (¢) GP-LVM with dynamics, no back constraints, (d) GP-LVM with back con-
straints and dynamics. These results can be recreated with scripts demRobotWireless1 through
demRobotWireless4.
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7 Conclusion

This tutorial has aimed to give an overview of the Gaussian process latent variable model, start-
ing from the perspective of a simple linear latent variable model, and through the introduction
of Gaussian processes, finishing with a fully probabilistic approach to non-linear dimensionality
reduction. In the results section we showed some simple visualisations achieved with the algorithm
and gave an overview of some of the extensions to the algorithm. Code for recreating all the results
we presented is available on-line: (http://www.dcs.shef.ac.uk/ neil/gpsoftware.html) and
in many cases we have referred to the specific scripts in captions of figures.
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