
The Gaussian Process Latent Variable ModelNeil D. Lawrence27th January 2006AbstractThe Gaussian process latent variable model (GP-LVM) is a recently proposed probabilisticapproach to obtaining a reduced dimension representation of a data set. In this tutorial wemotivate and describe the GP-LVM, giving reviews of the model itself and some of the conceptsbehind it.1 IntroductionThe Gaussian process latent variable model (GP-LVM) is a powerful approach to probabilisticnon-linear dimensionality reduction. It was inspired by, and is related to, a class of probabilisticdimensionality reduction techniques known as latent variable models. In this tutorial we willreview in detail a linear dimensionality reduction technique known as probabilistic PCA [Tippingand Bishop, 1999]. As we shall see, by taking an alternative view point of the latent variablemodel behind PCA we can develop a novel, alternative, interpretation of probabilistic PCA. Onethat, as it turns out, will lend itself to an elegant non-linearisation through Gaussian processes.However before discussing the resulting model in detail we will conduct a brief review of Gaussianprocesses, discussing what it means to have a prior over functions and what Gaussian distributedfunctions can look like.Finally we shall round o� by discussing the characteristics of the GP-LVM and by mentioningsome extensions of the model.In the notes we will make use of examples that can be recreated through code downloadedfrom http://www.dcs.shef.ac.uk/~neil/fgplvm. An additional package of demonstrations as-sociated with this presentation has been placed at http://www.dcs.shef.ac.uk/~neil/oxford.2 MotivationMany data sets we deal with are high dimensional. The `curse of dimensionality' implies thatto correctly understand the structure of a high dimensional data set we need many data points,exponentially many in the number of dimensions. However, in practice we �nd that we often dovery well with much smaller data sets than we might expect to need. One possible reason for this isthat many data sets of interest, while seemingly high dimensional, have an intrinsic dimensionalitywhich is much lower. Let us consider the example of handwritten digits.In Figure 1 we show a hand-written 6 taken from the USPS Cedar CD-ROM handwrittendigits training set. The data point is 3,648 dimensional as it is printed in a 64 pixel by 57 pixelimage. However, if our data is based on a few simple transformations of this digit, it may notspan all 3,648 dimensions of the space. To see this consider Figure 2. Here we have created a dataset by rotating the original digit 360 times, each time by one degree. The data is then projectedonto its second and third principal components. The resulting projection clearly shows a circularshape. There is some noise (presumably associated with the nearest neighbour interpolation usedin the rotation of the image) but the structure of the space is clear. Further examination of theprincipal components (which is possible with the software on line) also reveals that the dataset isinherently one dimensional. 1



Figure 1: Digit 6 from the USPS Cedar CD-ROM. The digit is 64 pixels by 57 pixels giving it3,648 dimensions.
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Figure 2: Rotation of handwritten 6. A data set is generated by rotating the original image 360times (prepDemManifold). The data set is then visualised by projecting into the second and thirdprincipal component. In (a) the full rotation is visualised (demManifoldPrint([2 3], 'all')),in (b) some rotations are assumed to be associated with the digit 6 and others from the digit 9(demManifoldPrint([2 3], 'sixnine')).
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In practice of course real data sets will not be generated by a simple rotation of a one dimen-sional space. However, it seems reasonable to assume that a data set might consist of a �xednumber of `prototypes' which undergo a limited number of transformations and then are, perhaps,corrupted by some noise. If this is the case, then it makes sense to model high dimensional data byseeking a low dimensional representation. In statistics the standard approach to this problem ismulti-dimensional scaling (MDS, see e.g. Mardia et al. [1979]). More recently in machine learningseveral spectral approaches have been proposed [Tenenbaum et al., 2000, Roweis and Saul, 2000,Weinberger et al., 2004] some of which may be seen as classical MDS with a particular approachto learning a distance matrix. We wish to focus on probabilistically inspired approaches. Havingan algorithm with a probabilistic interpretation allows the algorithm to be extended in a logicalmanner and eases integration of the approach in a larger system. All currently published exten-sions and applications of the GP-LVM take advantage of its probabilistic interpretation in oneform or another [Grochow et al., 2004, Urtasun et al., 2005, Wang et al., 2006, Shon et al., 2006].In the next section we discuss, perhaps, the simplest latent variable model that can be used fordimensional reduction, probabilistic PCA. The model is fundamentally linear, but it illustrates thebasic concepts behind latent variable models. We will then brie�y review Gaussian processes (inSection 4) after which we will introduce the fundamental re-thinking of the latent variable modelbehind PCA that enables dual probabilistic PCA and leads to the GP-LVM (Section 5). We willthen show various results achieved with the GP-LVM and brie�y mention some enhancements.3 Probabilistic PCAProbabilistic PCA is a simple latent variable model where the latent space, X = [x1, . . . ,xN ]
T isassumed to be related to the centred data set, Y = [y1, . . . ,yN ]

T through a linear mapping thatis corrupted by noise,
yn = Wxn + ηn,where the mapping is given by W ∈ <D×q with D the dimension of the data space and q thedimension of the latent space and ηn is a vector of noise terms. For the particular case ofprobabilistic PCA, the noise is taken to be Gaussian distributed,

p (ηn|β) = N
(

ηn|0, β−1I
)

,with a mean of zero and a spherical covariance given by β−1I. The parameter β is an inversevariance and is therefore referred to as a precision.The conditional probability of the data given the latent space can be written as
p (yn|xn,W, β) = N

(

yn|Wxn, β−1I
)

,and assuming independence across data points we have
p (Y|X,W, β) =

N
∏

n=1

N
(

yn|Wxn, β−1I
)

. (1)Following the Bayesian nomenclature, in anticipation of a prior distribution over the latent space,this term can be seen as the likelihood of the data Y given X. We note in passing that it is also thelikelihood associated with a least-squares multi-variate regression: if we are given X and maximisethe likelihood with respect to W we recover
ŴXTX = YTX,which may be solved for Ŵ to obtain the least squares regression estimate of W. In probabilisticPCA however, the values of X aren't given, they are nuisance parameters. The standard approachwhen dealing with these parameters is to consider a prior distribution over the latent space, p (X),and seek to marginalise the values of X. 3



3.1 Gaussian PriorThe choice of prior distribution will clearly have an e�ect on the optimum value of W. If the latentdistributions are chosen to be independent across q and non-Gaussian, the latent variable modelbehind independent component analysis [Bell and Sejnowski, 1995, MacKay, 1996] is recoveredin the limit as β → ∞. It has also long been known that if the latent distribution is chosen tobe Gaussian then PCA is recovered in the limit as β → ∞ (this observation inspired sensiblePCA [Roweis, 1998]). More interestingly Tipping and Bishop [1999] showed that if the latentdistribution is taken to be Gaussian then the maximum likelihood solution for W can span theprincipal subspace of the data even when β is �nite. The form of the Gaussian prior is chosen byconvention1 to be zero mean and unit covariance,
p (X) =

N
∏

n=1

p (xn) =

N
∏

n=1

N (xn|0, I) . (2)The marginal likelihood can then be computed as follows
p (Y|W, β) =

N
∏

n=1

∫

N
(

yn|Wxn, β−1I
)

N (xn|0, I) dxn (3)
∝

N
∏

n=1

∫

exp

(

−1

2

(

βyT
n yn − 2βyT

nWxn + xT
n

(

βWTW + I
)

xn

)

)

dxn (4)
∝

N
∏

n=1

exp

(

−1

2

(

yT
n

(

βI − β2W
(

βWTW + I
)−1

WT)yn

)

) (5)where the �rst line (3) is obtained through multiplying (1) and (2) to obtain the joint likelihood,and introducing the intergrad to marginalise X. The second line (4) is obtained by expanding thesquares, (5) is then obtained by standard integrals on Gaussians (see Appendix B on Gaussianintegrals in Bishop [1995] for a proof). We can obtain the �nal solution through inspection of (5):the matrix associated with the quadratic term has the form of the matrix inversion lemma2 andthere are no linear terms in yn, implying that the solution is a product of zero mean Gaussians,
p (Y|W, β) =

N
∏

n=1

N (yn|0,C) , (6)where the covariance is given by C = WWT +β−1I. This is immediately recognised as a reducedrank representation of the covariance. Since W ∈ <D×q the matrix WWT ∈ <D×D will have rankof at most q. For �nite β the term β−1I then acts as a `regulariser' to ensure that the resultingcovariance has full rank and the distribution is thereby properly de�ned.This model was suggested simultaneously by Roweis [1998], Tipping and Bishop [1999], butTipping and Bishop [1999] also provided the proof that the maximum likelihood solution for Wspans the principal sub-space of the data. The proof for the dual probabilistic PCA we introducein Section 5 closely tracks the proof of Tipping and Bishop [1999] so we omit the details here,merely giving the result. The optimum value for W is given by
Ŵ = U′

qLV
Twhere U′

q are the q eigenvectors of the covariance matrix N−1YTY associated with the q largesteigenvalues, {λi}q
i=1

which may be obtained by solving
N−1YTYU′ = U′Λ. (7)1Using non-zero mean and non-unit covariance merely leads to a redundant parameterisation of the model. How-ever this redundant parameterisation can be exploited in certain circumstances to give faster converging algorithms[Sanguinetti et al., 2005].2In its most general form the matrix inversion lemma is (A + BCD)−1 = A−1 −

A−1B
`

C−1 + DA−1B
´

−1
DA−1. 4



The matrix L is diagonal and its ith diagonal element is given by li =
(

λi − β−1
)

1

2 .The principal components of a data set are the eigenvectors of the covariance matrix, and theprincipal sub-space is the space spanned by those eigenvectors. We therefore see that the solutionfor probabilistic PCA spans the q-dimensional principal sub-space of the data.We will revisit probabilistic principal component analysis in Section 5 when we discuss theGaussian process latent variable model. First we will brie�y review Gaussian processes.4 Gaussian ProcessesGaussian processes [O'Hagan, 1978, 1992,Williams and Rasmussen, 1996,Williams, 1998,MacKay,1998, Rasmussen and Williams, 2006] are probability distributions over functions. We can combinea Gaussian process prior with a likelihood (or noise model) to obtain a posterior over functions.If the likelihood is also Gaussian the form of the posterior will also be a Gaussian process. Inpractice the likelihood is often non-Gaussian but even in this case we typically approximate theposterior process with a Gaussian process.4.1 A Prior Over FunctionsA distribution over functions is seemingly non-sensical as functions are in�nite dimensional objects.However, let us proceed by considering a �nite Gaussian distribution over some values instantiatedfrom a function f = {fn}N
n=1

∈ <N×1. If we assume that these values are drawn from a Gaussiandistribution with mean zero and covariance K, then we can write
p (f |K) = N (f |0,K)

=
1

(2π)
N
2 |K|

1

2

exp

(

−1

2
fK−1f

)

.To illustrate the form of this function we now consider a particular covariance matrix. We willtake one sample from a Gaussian with this covariance matrix. Within this single sample therewill be N = 25 instantiations.The covariance matrix we used is shown as a greyscale image in Figure 3(b). Note that thecovariance function shows correlation between points fm and fn if n is near to m. There is lesscorrelation if n is distant from m. The sample from the Gaussian is plotted in Figure 3(a). Notethat points that have nearby indices have similar fn . If the plot is seen as a function of n thefunction appears smooth. This smoothness comes from the fact that nearby points are correlatedin the covariance.In practice the covariance will not be a function of the indices, but of an input space X.However, each point in that input space, xn, will also be indexed by n so for the moment it isconvenient to ignore this relationship.To see how it is possible to make predictions given the covariance matrix, let us �rst consider thecovariance of two points. Marginalising the remaining points leads to a two dimensional Gaussianwhose covariance is made up of the rows and columns from the original covariance associated withthose points. This allows us to plot a contour and visualise the joint probability over these points.First we take the points indexed as f1 and f2. A contour of the joint probability distribution overthis space is shown in Figure 4(a). Also, in Figure 4(c) we visualise the conditional distributionfor p (f2|f1,K). This can be viewed as the predictive distribution for f2 having observed f1. Thestrong correlation induced by the covariance, K, means that the conditional distribution for f2has a mean that is close to f1.A similar plot is shown in Figure 5 but this time for the joint distribution between f1 and
f5. The correlation induced by the covariance function is now much weaker, the conditionaldistribution for f5 has a mean much closer to zero than that for f1 had.The obvious question is, where does this covariance matrix come from? In this case thecovariance matrix is built using the inputs to the function xn. The covariance shown in Figure (b)5
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(b)Figure 3: In (a) we show 25 instantiations of a function, fn, as sampled from a zero mean Gaussianwith the covariance matrix given in (b). In (b) we show the covariance matrix as a greyscale plot.Each element square in the plot gives the covariance between two points of the function fn and
fm. The plots can be recreated with the command demGPSample.
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(c)Figure 4: Joint distribution between the values of f1 and f2: (a) shows the a single contour (onestandard deviation from the mean) of the Gaussian distribution; (b) shows the instantiated valueof f1 as a line dashed in the plot and (c) shows the conditional distribution of p (f2|f1) as a dottedline rotated to be a function of the f2-axis of the plot. These plots can be recreated through thescript demGPCov2D([1 2]). The portion of the covariance function as computed between thesetwo points is given by K12 =

[

1 0.966
0.966 1

].
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(c)Figure 5: Joint distribution between the values of f1 and f5: (a) shows the a single contour (onestandard deviation from the mean) of the Gaussian distribution; (b) shows the instantiated valueof f1 as a line dashed in the plot and (c) shows the conditional distribution of p (f5|f1) as a dottedline rotated to be a function of the f5-axis of the plot. These plots can be recreated throughthe script demGPCov2D([1 5]). The portion of the covariance function as computed by these twopoints is given by K15 =

[

1 0.574
0.574 1

].is based on Euclidean distance between the points. The input points used were one dimensionaland equally spaced along a line between -1 and 1. The covariance between points m and n wasgiven by
k (xm,xn) = exp

(

−γ

2
(xm − xn)

T
(xm − xn)

)

, (8)where the inverse width parameter γ was taken to be 10. Note that if m = n then the variance ofthe point is 1. This is why the furthest extent of the contour at one standard deviation in each ofFigures 4 and 5 is also one. This covariance function is known as the radial basis function (RBF),squared exponential, or Gaussian covariance function. We note that it shares the same form asthe RBF kernel used in support vector machines [Schölkopf and Smola, 2001]. In fact the classof valid covariance functions is the same as the class of Mercer kernels. We will therefore use theterms covariance function and kernel interchangeably in what follows.The covariance function provides the joint distribution over the instantiations of the functions.The conditional distribution provides predictions for as yet unseen locations given points at knownlocations. This is analogous to a training set/test set situation in machine learning. The predic-tions are locations are on the left hand side of the conditional, the training data is on the righthand side of the conditional, if we denote instantiations from the training set as f and positions inthe test set as f∗ we can denote this conditional as p (f∗|f). Since the joint distribution is Gaussian,we known this conditional distribution must also be Gaussian. To �nd the conditional distributionwe make use of a partitioned version of the kernel matrix,
K =

[

Kf ,f Kf ,∗

K∗,f K∗,∗

]where Kf ,f is the covariance matrix for the training data points, f , the sub-matrix K∗,∗ is thecovariance matrix for the test data points, f∗, and the sub-matrix K∗,f = KT
f ,∗ is the cross correla-tions between training and test data. We are now in a position to write down the joint distributionof the data via the partition inverse,

K−1 =

[

K−1

f ,f + K−1

f ,f Kf ,∗Σ
−1K∗,fK

−1

f ,f −K−1

f ,f Kf ,∗Σ
−1

−Σ−1K∗,fK
−1

f ,f Σ−1

]where
Σ = K∗,∗ − K∗,fK

−1
f ,f Kf ,∗.7



Through the partitioned inverse we can re-express the joint distribution, for convenience we writeit below as the logarithm of the joint distribution,
log p (f , f∗) = −1

2
fTK−1

f ,f f −
1

2
fTK−1

f ,f Kf ,∗Σ
−1K∗,fK

−1

f ,f f

+fK−1

f ,f Kf ,∗Σ
−1f∗ −

1

2
fT∗ Σ−1f∗ + const1where the constant term contains portions that are not dependent on f or f∗. Strictly speaking,the joint distribution is also conditioned on the parameters of the covariance function, the traininginput locations, X, and the test input locations, X∗. This dependence occurs through the kernelfunctions. However we are dropping this dependence in what follows to avoid cluttering thenotation.The conditional distribution is found by dividing joint distribution by the prior distributionon f , p (f) = N (f |0,Kf ,f ). In log space this is equivalent to subtraction of

log p (f) = −1

2
fTK−1

f ,f f + const2giving
log p (f∗|f) = log p (f∗, f) − log p (f)

= −1

2
fTK−1

f ,f Kf ,∗Σ
−1K∗,fK

−1

f ,f f + fTK−1

f ,f Kf ,∗Σf∗

−1

2
fT∗ Σ−1f∗ + const1 − const2 (9)

= −1

2

(

f∗ − K∗,fK
−1

f ,f f
)T

Σ−1
(

f∗ − K∗,fK
−1

f ,f f
)

+const3 (10)
= log N

(

f∗ |̄f∗, Σ
)

. (11)where f̄ = K∗,fK
−1

f ,f f , const3 = const1 − const2 and (10) is derived from (9) by completing thesquare.So we can see that if we observe points from the function, f , directly for a given set of trainingdata X then we can predict the locations of functions at as yet unseen locations whose inputsare given by X∗. The resulting distribution is also a Gaussian process, but with a mean givenby f̄ and a covariance given by Σ. In general though, we will not make direct observations of thefunction, our observations are more likely to be corrupted by noise. We therefore also de�ne anoise model p (y|f) which relates our actual observations, y, to the function f (see Figure ??). Astandard noise model for regression is independent Gaussian random noise. In this case we canwrite the noise model as
p (y|f) =

N
∏

n=1

p (yn|fn) =

N
∏

n=1

N
(

yn|fn, β−1
)

, (12)i.e. we are assuming that the function becomes corrupted by the addition of independent Gaus-sian noise with a precision of β−1 at each observation. Given the Gaussian noise model in (12)computation of the marginal likelihood,
p (y) =

∫

p (y|f) p (f) df ,

8



is straightforward,
p (y) ∝

∫

exp

(

−β

2
(y − f)

T
(y − f) − 1

2
fTK−1

f ,f f

)

df

∝
∫

exp

(

−β

2
yTy − 1

2
fT (K−1

f ,f + βI
)

f + βyTf

)

df (13)
∝ exp

(

−1

2
yT (βI − β2

(

K−1

f ,f + βI
)−1

)

y

) (14)
∝ exp

(

−1

2
yT (Kf ,f + β−1I

)−1
y

) (15)
= N

(

y|0,Kf ,f + β−1I
)

, (16)where the integral in (13) can again be undertaken through standard Gaussian results [Bishop,1995, Appendix B] and we move from (14) to (15) through inspection by recognising the form ofthe matrix inversion lemma in (14). The resulting marginal likelihood is then a Gaussian processon y with a modi�ed covariance function of the form K̂y,y = Kf ,f + β−1I.4.2 Summing Covariance FunctionsAs an aside we note that the form of p(y|f) can also be seen as a Gaussian process over y witha given mean f and a covariance function Ky,y = β−1I. The particular form of this covariancefunction is that all points are uncorrelated, i.e. the process is just white noise. However regardlessof the form of the covariance function the result of the marginalisation above would remain thesame,
N (y|0,Kf ,f + Ky,y) =

∫

N (y|f ,Ky,y)N (f |0,Kf ,f ) df ,so we see that a new covariance function can be generated by adding two di�erent covariancefunctions together. This has the interpretation of a hierarchical Gaussian process, where themean of each process is itself treated as a Gaussian process.4.3 Parameters of the Covariance FunctionThe covariance function we described in (8) has a parameter: the inverse width. We also saw fromthe contour plots of the correlation between the points, that the maximum standard deviationwas unity. If we wish to have a covariance function that existed on a non unit scale we need tointroduce a further parameter, α,
k (xm,xn) = α exp

(

−γ

2
(xm − xn)

T
(xm − xn)

)

, (17)which controls the variance of the function. Note that this parameter α is analogous to β−1 (whichcontrols the variance of the white noise process). Here α is controlling the variance of the functiongenerated by the RBF kernel. In the context of the marginal distribution over y,
p (y|α, β, γ) = N

(

y|0,Kf ,f + β−1I
)

, (18)where we have made explicit the dependence of the marginal likelihood on α, β and γ. Thisdependence occurs through Kf ,f , the elements of which are given by (17), we can view √
αβ asa signal to noise ratio. The standard deviation of the signal is √

α and the standard deviationof the noise is √β−1. In many kernel methods, these parameters must be selected through crossvalidation. An advantage of the Gaussian process point of view is that they can be optimised bymaximisation of the marginal likelihood p (y|α, β, γ). This is known as empirical Bayes or typeII maximum likelihood. Priors can also be placed over these parameters and sampling used toestimate their posteriors (see e.g.Williams and Rasmussen 1996).9



4.4 Di�erent Covariance FunctionsBy changing the characteristics of the covariance function we can sample di�erent functions fromthe prior. For example, setting each element of the kernel matrix to an inner product between thepoints,
k (xm,xn) = αxT

mxn,produces functions that are linear. Note that this kernel function can also be written as
Kf ,f = XXT.Williams [1997] showed that a multi-layer perceptron with in�nite hidden nodes has a covariancefunction of the form

k (xm,xn) = αsin−1

(

wxT
mxn + b

√

wxT
mxm + b + 1

√

wxT
nxn + b + 1

)

,where a Gaussian prior over the weights from the input to hidden units is used with a variance wand a prior over the locations of the activation functions with variance b.Finally a constant o�set in the function can be accounted for by adding a kernel function whichis constant in value.
k (xm,xn) = α,we will refer to this as the bias kernel. We show some examples of samples associated with tesecovariance functions in Figure 64.5 ConsistencyGaussian processes are consistent in that the posterior predictions at each point remain the sameregardless of the number and location of the test points. To see this we �rst consider an additionalset of test points f+ which is disjoint from f∗. The conditional probability of our original testpoints can be expressed as

p (f∗|f) =

∫

p (f∗, f+|f) df+,for the system to be consistent this marginal likelihood must be the same regardless of f+. Inother words, if we replaced f+ with f̂+ we would require
p (f∗|f) =

∫

p (f∗, f+|f) df+ =

∫

p
(

f∗, f̂+|f
)

df̂+where f̂+ 6= f+.4.6 SummaryWe have reviewed some of the salient points of Gaussian processes, in particular we have shownhow a Gaussian process arises from the speci�cation of a covariance function. Given a sub-set ofobservations of a function, and an associated covariance, we can make predictions about the thelikely location of the function in regions where we hadn't previously observed data.The parameters of the covariance function can be found through maximisation of the marginallikelihood (18).5 The GP-LVMThe standard probabilistic interpretation of PCA we reviewed in Section 3 combines a Gaussianlikelihood,
p (Y|W,X, β) =

N
∏

n=1

N
(

yn|Wxn, β−1I
)10
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(h)Figure 6: Samples from di�erent covariance functions. (a) RBF kernel with γ = 10, α = 1, (b)RBF kernel with γ = 1, α = 1 (c) RBF kernel with γ = 10, α = 4, (d) linear kernel with α = 16,(e) MLP kernel with α = 8, w = 100 and b = 100, (f) MLP kernel with α = 8, b = 0 and
w = 100, (g) bias kernel with α = 1 and (h) Summed combination of: RBF kernel, α = 1, γ = 10;bias kernel, α =1; and white noise kernel, β = 100. Samples can be recreated with the scriptdemCovFuncSample.
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Figure 7: Graphical representation of (a) the standard probabilistic PCA model and (b) its dualrepresentation which also leads to a probabilistic interpretation of PCA. The nodes are shadedto represent di�erent treatments. Black shaded nodes are optimised, white shaded nodes aremarginalised and grey shaded nodes are observed variables.with a Gaussian prior on the latent variables, X. The GP-LVM takes a di�erent perspective onthe model. Rather than marginalising the latent variables, we seek to marginalise the mapping.Graphically, we can depict the two di�erent approaches as shown in Figure 7.As we shall see this approach will lead to a dual representation of probabilistic PCA. Therequired marginalisation now takes the form
p (Y|X, β) =

∫ N
∏

n=1

p (yn|xn,W, β) p (W) dW.By specifying a Gaussian prior distribution over the parameters of the mapping,
p (W) =

∏

i

N (wi|0, I)where wi is the ith row of the matrix W, and then integrating over W we obtain a marginalisedlikelihood for Y,
p (Y|X, β) =

1

(2π)
DN
2 |K|

D
2

exp

(

−1

2
tr(K−1YYT)) , (19)where K = XXT + β−1I and X =

[

xT
1 . . .xT

N

]T. The structure of this model is shown in 7(b).Note that with our earlier de�nition of C = WWT + β−1I we can write the marginal likelihoodfor standard PPCA (6) as
p (Y|W, β) =

1

(2π)
DN
2 |C|

N
2

exp

(

−1

2
tr (C−1YTY

)

)

,which highlights to a greater extent the duality between (19) and (6). Optimisation of (19) isclearly highly related to optimisation of (6). Tipping and Bishop [1999] showed how to optimise(6), in the next section we review this optimisation for DPPCA, but generalise it slightly so that itapplies for any positive de�nite matrix S, rather than only the inner product matrix YYT. Firstthough we make the connection to Gaussian processes by highlighting the fact that (19) can bewritten as
p (Y|X, β) =

D
∏

i=1

1

(2π)
N
2 |K|

1

2

exp

(

−1

2
yT

:,iK
−1y:,i

)

, (20)here y:,i is the ith column of Y. This likelihood is thus recognised as a product of D independentGaussian processes, each process being associated with a di�erent dimension of the data set.However, here we are suggesting maximising over X as well as the kernel parameters. If q > Dthis maximisation would not be well determined, but as long as q < D we are obtaining a reduceddimensional representation of our data. We will now show how, for the case of a linear covariancematrix, this model is equivalent to PCA. 12



5.1 Maximisation of the Marginal LikelihoodThe proof of the maximum likelihood solution for dual probabilistic PCA closely mirrors thatgiven in Tipping and Bishop [1999], we include it here for completeness. For a more general proofsee Lawrence and Sanguinetti [2004]. Maximising (19) is equivalent to minimising its negativelogarithm,
L =

N

2
ln 2π +

1

2
ln |K| + 1

2
tr (K−1S

)

, (21)where S = D−1YYT. The gradient of the negative log likelihood with respect to X can be foundas
∂L

∂X
= −K−1SK−1X + K−1X,setting the equation to zero and pre-multiplying by K gives

S
[

β−1I + XXT]−1

X = X.We substitute X with its singular value decomposition, X = ULVT, giving
SU

[

L + β−1L−1
]−1

VT = ULVTRight multiplying both sides by V (note that the solution is invariant to V) we have, after somerearrangement,
SU = U

(

β−1I + L2
)

,which, since (β−1I + L2
) is diagonal can be solved by an eigenvalue problem where U are eigen-vectors of S and Λ =
(

β−1I + L2
) are the eigenvalues. This implies that the elements from thediagonal of L are given by

li =
(

λi − β−1
)

1

2 . (22)5.2 The Retained EigenvaluesIf q < D we must select which eigenvectors to retain, all eigenvectors are associated with stationarypoints, so how do we choose which to retain? For convenience let us ignore our previously de�nedordering of the eigenvalues in terms of their magnitude and assume that we keep the �rst qeigenvalues.First note that
K = U

[

L2 + β−1I
]

UTwhere U is all the eigenvectors of S. The Kullback Leibler (KL) divergence between zero meanGaussians with covariances given by K and S given by (21) minus the log determinant of S, whichis constant in X. Minimising this KL divergence is thus equivalent to minimising (21).KL (S||K) =
1

2
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2
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2
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∑
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∑
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)
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∑
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+
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λiwhere we have used the fact that S = UΛUT. Di�erentiating with respect to β and setting theresult to zero to obtain a �xed point equation then gives
β =

N − q
∑N

i=q+1
λi13



which when substituted back leads toKL (S||K) =
N − q

2



ln
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i=q+1
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N − q
− 1

N − q

N
∑
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lnλi



 , (23)which is recognised as the di�erence between the log ratio of the arithmetic and geometric meansof the discarded eigenvalues. This di�erence will be zero if and only if the discarded eigenvaluesare constant (when the arithmetic and geometric means become equal) otherwise it is positive.The di�erence is minimised by ensuring that the eigenvalues we discard are adjacent to each otherin terms of magnitude.Which eigenvalues should we then discard? From (22) we note that the retained eigenvaluesmust be larger than β, otherwise li will be complex. The only way this can be true is if we discardthe smallest N − q eigenvalues.5.3 Equivalence of Eigenvalue ProblemsIn Section 3 we reviewed probabilistic PCA, here we have introduced a new dual version of prob-abilistic PCA which leads to a di�erent eigenvalue problem. However, these eigenvalue problemsare equivalent as we shall now show. For DPPCA the eigenvalue problem is of the form
YYTU = UΛ.Premultiplying by YT then gives

YTYYTU = YTUΛ (24)Since U is the eigenvectors of YYT (see the previous section) the matrixUTYYTU = Λ, thereforematrix U′ = YTUΛ− 1

2 is orthonormal. Post multiplying both sides of (24) by Λ− 1

2 gives
YTYU′ = U′Λwhich is recognised as the form of the eigenvalue problem associated with PPCA as given in (7),where the eigenvectors of YTY are given by U′ = YTUΛ− 1

2 and the eigenvalues are given by Λ(as they were for DPPCA).6 Non-linear GP-LVMWe saw in the previous section how PCA can be interpreted as a product of Gaussian processes thatmaps latent-space points to points in data-space. The positions of the points in the latent-spacecan be determined by maximising the process likelihood with respect to X. It is natural, therefore,to consider alternative GP-LVMs by introducing covariance functions which allow for non-linearprocesses. The resulting models will not, in general, be optimisable through an eigenvalue problem.6.1 Optimisation of the Non-linear ModelIn Section 5 we saw for the linear kernel that a closed form solution for dual PPCA could beobtained up to an arbitrary rotation matrix. For non-linear kernels, such as the RBF kernel andMLP kernel discussed in Section 4.4 there will be no such closed form solution and there are likelyto be multiple local optima. To use a particular kernel in the GP-LVM we �rst note that gradientsof (18) with respect to the latent points can be found through �rst taking the gradient with respectto the kernel,
∂L

∂K
= K−1YYTK−1 − DK−1, (25)and then combining it with ∂K

∂xn,j
through the chain rule. As computation of (25) is straightforwardand independent of the kernel choice we only require that the gradient of the kernel with respect14
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� �
� � �Figure 8: The Gaussian process as a latent variable model, now both kernel parameters, θ andlatent positions are optimised.to the latent points can be computed. These gradients may then be used in combination with(18) in a non-linear optimiser to obtain a latent variable representation of the data. Furthermore,gradients with respect to the parameters of the kernel matrix may be computed and used to jointlyoptimise X and the kernel's parameters.The log-likelihood is a highly non-linear function of the embeddings and the parameters. Weare therefore forced to turn to gradient based optimisation of the objective function. In all ourexperiments we made use of conjugate gradients or the scaled conjugate gradient [Møller, 1993]algorithm.6.2 Illustration of GP-LVM via SCGTo illustrate the Gaussian process latent variable model we now make use of the `multi-phase oil�ow' data [Bishop and James, 1993]. This is a twelve dimensional data set containing data ofthree known classes corresponding to the phase of �ow in an oil pipeline: strati�ed, annular andhomogeneous. In Bishop et al. [1998] this data was used to demonstrate the GTM algorithm. Herewe use a sub-sampled version of the data (containing 100 data points) to demonstrate the �ttingof a GP-LVM with a simple radial basis function (RBF) kernel.As we saw in Section 5, seeking a lower dimensional embedding with PCA is equivalent to aGP-LVM model with a linear kernel,

k (xn,xm) = xT
nxm + β−1δnm,where δij is the Kronecker delta function.For comparison we visualised the data set using several of the approaches mentioned in theintroduction. In Figure 9(a) we show the �rst two principal components of the data. Figure 9(b)then shows the visualisation obtained using the GP-LVM with the RBF kernel,

k (xi,xj) = αrbf exp
(

−γ

2
(xi − xj)

T (xi − xj)
)

+ αbias + β−1δij .To obtain this visualisation the log likelihood was optimised jointly with respect to the latentpositions X and the kernel parameters αbias, αrbf, β and γ. The kernel was initialised using PCAto set X, the kernel parameters were initialised as αrbf = γ = 1 and β−1 = αbias = exp (−1).Note that there is a redundancy in the representation between the overall scale of the matrix
X and the value of γ. This redundancy was removed by penalising the log likelihood with half the15



Method PCA GP-LVM Non-metric MDS Metric MDS GTM* kernel PCA*Errors 20 4 13 6 7 13Table 1: Errors made by the di�erent methods when using the latent-space for nearest neighbourclassi�cation in the latent space. Both the GTM and kernel PCA are given asterisks as the resultshown is the best obtained for each method from a range of di�erent parameterisations.sum of the squares of each element of X: this implies we were actually seeking a MAP solution3with a Gaussian prior for X,
p (X) =

N
∏

n=1

N (xn|0, I) .The likelihood for the RBF kernel was optimised using scaled conjugate gradient (see http://www.dcs.shef.ac.uk/~neil/gplvmcpp/ for the C++ code used).In Figure 9(c) we show the result of non-metric MDS using the stress criterion of Kruskal[1964]. Figure 9(d) shows the result from the `Sammon mapping' [Sammon, 1969]. To objectivelyevaluate the quality of the visualisations we classi�ed each data point according to the class of itsnearest neighbour in the two dimensional latent-space supplied by each method. The errors madeby such a classi�cation are given in Table 1. For the GTM and kernel PCA some selection ofparameters is required. For GTM we varied the size of the latent grid between 3× 3 and 15× 15,and the number of hidden nodes in the RBF network was varied between 4 and 36. The best resultwas obtained for a 10×10 latent grid with 25 nodes in the RBF network, it is shown in Figure 9(e).Note the characteristic gridding e�ect in the GTM's visualisation which arises from the layout ofthe latent points. For kernel PCA we used the RBF kernel and varied the kernel width between0.01 and 100. The best result was obtained for a kernel width of 0.75, the associated visualisationis shown in Figure 9(f).The gradient based optimisation of the RBF based GP-LVM's latent-space shows results whichare clearly superior (in terms of separation between the di�erent �ow phases) to those achievedby the linear PCA model. The GP-LVM approach leads to a number of errors that is the smallestof all the approaches used. Additionally the use of a Gaussian process to perform our `mapping'means that we can express uncertainty about the positions of the points in the data space. Forour formulation of the GP-LVM the level of uncertainty is shared across all D dimensions andthus may be visualised in the latent-space.6.2.1 Visualising the UncertaintyRecall that the likelihood (20) is a product of D separate Gaussian processes. In all that hasfollowed we have retained the implicit assumption in PCA that a priori each dimension is iden-tically distributed by assuming that the processes shared the same covariance/kernel function K.Sharing of the covariance function also leads to an a posteriori shared level of uncertainty in eachprocess. While it is possible to use di�erent covariance functions for each dimension and may benecessary when each of the data's attributes have di�erent characteristics4; the more constrainedmodel implemented here allows us to visualise the uncertainty in the latent space and will be pre-ferred for our empirical studies5. In Figure 9(b) (and subsequently) the uncertainty is visualisedby varying the intensity of the background pixels. The lighter the pixel the higher the precisionof the mapping.3Multiplying the likelihood by this prior leads to a joint distribution over data points and latent points. As afunction of X this joint distribution is proportional to the posterior distribution p (X|Y), therefore maximising thejoint distribution is equivalent to seeking a MAP solution.4A simple example of this is given by Grochow et al. [2004] with the `scaled GP-LVM', where a scale parameteris associated with each dimension of the data.5The two approaches, constraining each data direction to the same kernel and allowing each data dimension tohave its own kernel are somewhat analogous to the di�erence between probabilistic PCA, where each output datashares a variance, and factor analysis, where each data dimension maintains its own variance.16
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(f)Figure 9: Visualisation of the Oil data with (a) PCA (a linear GP-LVM) and (b) A GP-LVMwhich uses an RBF kernel, (c) Non-metric MDS using Kruskal's stress, (d) M `Sammon Mapping',(e) GTM and (f) kernel PCA. Red crosses, green circles and blue plus signs represent strati�ed,annular and homogeneous �ows respectively. The greyscales in plot (b) indicate the precision withwhich the manifold is expressed in data-space for that latent point.
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Figure 10: The full oil �ow data set visualised with an RBF based kernel using sub-set of dataapproximations.Model PCA Sparse GP-LVM (IVM) GP-LVM (RBF) GTM YErrors 162 24 1 11 2Table 2: Number of errors for nearest neighbour classi�cation in the latent-space for the full oildata set (1000 points). Far right column contains result for nearest neighbour in the data space,also presented is a result for the GTM algorithm.6.2.2 Computational ComplexityWhile the quality of the results seem good, a quick analysis of the algorithmic complexity showsthat each gradient step requires an inverse of the kernel matrix (see (25)), an O
(

N3
) operation,rendering the algorithm impractical for many data sets of interest.6.3 Large Data SetsThe sparse approximation suggested in Lawrence [2004, 2005] is a sub-set of data approach[Lawrence et al., 2003, Rasmussen and Williams, 2006, pg. 177]. Whilst this approach leadsto somewhat simple algorithms for optimisation of the GP-LVM, it su�ers from the lack of aconvergence criterion and discards information in the data set. A more promising approach tosparsi�cation is suggested for Gaussian process regression by Snelson and Ghahramani [2006]and has recently be placed in a more general framework by Quiñonero Candela and Rasmussen[2005]. The application of this approach in the GP-LVM is available on-line and is the subject ofa forthcoming paper [Lawrence, 2006, in preparation].In Figure 10 we present visualisations of the oil data using a sub-set of data based sparseGP-LVM algorithm with the RBF kernel. In Figure 11 we show the data visualised with the non-sparse GP-LVM algorithm. Again we considered a nearest neighbour classi�er in the latent-spaceto quantify the quality of the visualisations. We note that there appears to be a degradation inthe quality of the GP-LVM model associated with the sparsi�cation, in comparision to the full18
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Figure 11: The full GP-LVM algorithm with RBF kernel on the oil �ow data (uses the GPLVMCPPtoolbox).GP-LVM algorithm and the sub-set of data based sparse GP-LVM performs worse.6.4 Back ConstraintsAn interesting characteristic of the GP-LVM is that it provides a smooth mapping from latentspace to the data space. This implies that points which are close in latent space will be close indata space. However, it does not imply that points which are close in data space will be necessarilymapped as close together in latent space. In recent work [Lawrence and Quinoñero Candela, 2006,in preparation] the use of back constraints is suggested. Back constraints constrain each latentpoints to be a smooth function of its corresponding data point. This forces points which are closein data space to be close in latent space.6.4.1 Motion Capture DataA neat illustration of the issues that arise when the GP-LVM is used without back constraints isgiven by a simple motion capture data set. The data consists of a subject breaking into a runfrom standing6. There are approximately three full strides in the sequence. The mean of the datais removed from each frame so in e�ect the subject is running `in place'. The data is thereforesomewhat periodic in nature, however the subject changes the angle of the run throughout thesequence becoming more upright as it proceeds. Our experimental set up was as follows. For bothmodels a GP-LVM with an RBF kernel for a covariance function was used. The back constraint wasimplemented through an RBF based kernel mapping for which we set γ = 1× 10−3. Both modelswere initialised using PCA. For the RBF model this is straightforward, but for the kernel modelthis was achieved by setting the kernel parameters, A, to minimise the squared distance betweenthe latent positions given by the mapping and those given by PCA. The latent positions/mapping6Data made available by the Ohio State University Advanced Computing Centre for the Arts and Design,available from http://accad.osu.edu/research/mocap/mocap_data.htm, sequence `Figure Run 1' in unprocessed.txt format. 19
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(b)Figure 12: Visualisation of the motion capture data. (a) The regular GP-LVM, log likelihood 1,543(demStick1 in the FGPLVM toolbox) and (b) the GP-LVM with back constraints (demStick3),log likelihood 1,000. The paths of the sequences through latent space are shown as solid lines.Theback constraint used was an RBF kernel mapping with γ = 1 × 10−3. In both cases the start ofthe sequence is towards the top left and the end is towards the bottom centre-left. The grey scalebackground image indicates the precision with which the mapping is expressed.parameters and the GP covariance function parameters were then jointly optimised using conjugategradients. Scripts for re-implementing these experiments are available on line in the FGPLVMtoolbox.The results from visualisation using the GP-LVM both in unconstrained and back constrainedforms are shown in Figure 12. The data is temporal in nature (although the GP-LVM is not takingadvantage of this fact) and we have connected points in the plots that are neighbours in time. InFigure 12(a) the sequence does not clearly show the periodic nature of the data. The likelihood ofthis model is higher, as we should expect given that the other model is constrained, however thesequence is split across several sub-sequences7. To re�ect the periodic nature of the sequence itis necessary to use a circular structure. Such a structure will be of the form of a squashed spiralwhich will either have less representational power in the inner rings (analogous to inner groovedistortion in gramophone records) or will cross over itself in a manner which is not consistent withthe data. The higher likelihood solution turns out to be placing points far apart which are actuallyclose together. Note that the problem arises because the latent space is too constrained. Usinga three dimensional latent space alleviates the problem8 and we expect a two dimensional latentspace which is topologically cylindrical would also resolve the issue. The back constrained modelshows a squashed spiral structure which re�ects the periodic nature of the data and maintains arepresentation of the angle of the run. The changing angle of the run as the sequence proceeds isdepicted in Figure 13.6.4.2 Vowel DataAs a further example we considered a single speaker vowel data set. The data consists of thecepstral coe�cients and deltas of ten di�erent vowel phonemes and is acquired as part of a vocaljoystick system Bilmes et al. [2006]. A particular characteristic of this data set is that PCA, whichis used as the initalisation when the back constraints aren't used, fails to separate the data at all.As a result the non-back constrained model tends to fragment the di�erent vowels. The resultswith the back constrianed model tend to keep like vowels closer together (Figure 14).7Note this is not due to over�tting: the model provides a smooth representation of the data which generaliseswell across the latent space.8A script to run the experiment is available on line (demStick4 in the FGPLVM toolbox).20
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6.5 GP-LVM with DynamicsRecently Wang et al. [2006] described an approach to applying dynamics to the GP-LVM. To seehow this is done, we assume the data is presented in temporal order (i.e. y1 is the �rst data pointin the series and yN is the last). The obvious route to augmenting the model with dynamics isto place a Markov chain distribution over the latent space by de�ning p (xn|xn−1), which gives aprior distribution p (X) = p (x1)
∏N

n=2
p (xn|xn−1). Of course, combining this prior with p (Y|X)to obtain the marginal likelihood p (Y) is in general not tractable. However, it is straightforwardto obtain maximum a posteriori (MAP) estimates of the solution. Instead of a simple Markovchain, Wang et al. [2006] suggest a Gaussian process to relate xn to xn−1. If this GP predicts, ateach time step, the change in position for the next time step, the joint likelihood over the latentvariables and Y is given by

p (Y,X) = −DN

2
log 2π − D

2
log |K| − 1

2
tr (K−1YYT)

−qN

2
log 2π − q

2
log |Kx| −

1

2
tr(K−1

x

(

X̂− X̃
)(

X̂ − X̃
)T)

, (26)where X̂ = [x2 . . .xN ]
T and X̃ = [x1 . . .xN−1]

T the kernelKx is that associated with the dynamicsGaussian process and is constructed on the matrix X̃.6.5.1 Sampling from DynamicsConsider a dynamics Gaussian process based on an RBF kernel and a white noise term,
k (xn,xm) = α′rbf exp

(

−γ′

2
(xn − xm)

T
(xn − xm)

)

+ β′−1δnm,where δnm is the Kronecker delta function. Rather than learning the parameters of the dynamicsmodel we suggest an alternative approach of selecting the dynamics model parameters by hand.Such an approach may seem unwieldy, but there are only three parameters in the covariancefunction, each of which has a clear interpretation. The signal variance is given by α′rbf andthe noise variance by β′−1, thus the signal to noise ratio is given by √α′rbfβ′. The remainingparameter controls the smoothness of the function, taking its square root and inverting, l = 1√
γ
,gives a parameter known as the characteristic length scale. In each dimension the mean level ofzero up-crossings in a unit interval is given by (2πl)

−1
=

√
γ

2π
[Rasmussen and Williams, 2006], thisis related to the number of times the dynamics switches direction. For the example given belowwe used γ = 0.2 , αrbf = 0.01 and β−1 = 1 × 10−6 which is equivalent to a signal to noise ratioof 100. In Figure 15 we show some examples of two dimensional dynamics �elds sampled usingparameters in the neighbourhood of those given above.6.5.2 Motion Capture DataBy selecting a sensible dynamics prior in the latent space the motion capture data again re�ectsthe period nature of the paces (Figure 16).6.6 Loop Closure in RoboticsIn on-going work with Dieter Fox and Brian Ferris at the University of Washington we are in-terested in loop closure for robotic navigation, included as a �nal example is a data set of arobot completing a loop while reading signal strengths from 30 di�erent wireless access points.To produce a neat track and close the loop it turns out it is necessary to use dynamics and backconstraints as seen in Figure 17. When the GP-LVM is used without dynamics (Figure 17(a)and (b)) the path in the latent space is noisy. Dynamics forces a tighter path in latent space(Figure 17(c)) but there is no loop closure. Finally by combining back constraints with dynamicswe can obtain loop closure (Figure 17(d)). 23
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(f)Figure 15: Samples from the prior over the latent space dynamics. One sample from each pa-rameterisation is shown. The top row of plots has a signal to noise ratio of 5 and the bottomrow is 100. Length scales decrease from left to right, left most column l = 2.24; middle column
l = 1; and rightmost column l = 0.447. More speci�cally the parameters used in each plot are (a)
γ′ = 0.2, β′−1 = 4 × 10−4, (b) γ′ = 1, β′ = 4 × 10−4, (c) γ′ = 5, β′−1 = 4 × 10−4, (d) γ′ = 0.2,
β′−1 = 1 × 10−6, (e) γ′ = 1, β′−1 = 1 × 10−6 and (f) γ′ = 5, β′−1 = 4 × 10−6 with α′rbf = 0.1 forall plots. The overall scale was set to unity. The parameter settings used to produce Figure 16are associated with (d).

−4 −2 0 2 4

−5

−4

−3

−2

−1

0

1

2

3

4

Figure 16: Visualisation of the motion capture data using the GP-LVM with dynamics (demStick2in the FGPLVM toolbox) 24
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(d)Figure 17: Use of back constraints and dynamics to obtain loop closure in a robot navigationexample. (a) GP-LVM without back constraints or dynamics, (b) GP-LVM with back constraints,no dynamics, (c) GP-LVM with dynamics, no back constraints, (d) GP-LVM with back con-straints and dynamics. These results can be recreated with scripts demRobotWireless1 throughdemRobotWireless4.
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