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Online Resources

All source code and slides are available online

@ This talk available from my home page (see talks link on left
hand side).

@ MATLAB examples in the ‘oxford’ toolbox (vrs 0.13),
demGplvmTalk.

e http://www.dcs.shef.ac.uk/ neil/oxford/.
@ And the ‘fgplvm’ toolbox (vrs 0.132).
e http://www.dcs.shef.ac.uk/"neil/fgplvm/.

@ MATLAB commands used for examples given in typewriter
font.
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High Dimensional Data

USPS Data Set Handwritten Digit

@ 3648 Dimensions

e 64 rows by 57 columns
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Motivation
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Low Dimensional Manifolds

Pure Rotation is too Simple

@ In practice the data may undergo several distortions.
e e.g. digits undergo 'thinning’, translation and rotation.
@ For data with 'structure’:

e we expect fewer distortions than dimensions;
e we therefore expect the data to live on a lower dimensional
manifold.

@ Conclusion: deal with high dimensional data by looking for
lower dimensional non-linear embedding.
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Existing Methods

Spectral Approaches

o Classical Multidimensional Scaling (MDS) [Mardia et al., 1979].
o Uses eigenvectors of similarity matrix.

@ Isomap [Tenenbaum et al., 2000] is MDS with a particular
proximity measure.
o Kernel PCA [Schélkopf et al., 1998]
@ Provides an low dimensional representation and a mapping.

@ Mapping is implied throught he use of a kernel function as a
similarity matrix.

o Locally Linear Embedding [Roweis and Saul, 2000].

@ Looks to preserve locally linear relationships in a low
dimensional space. g
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Existing Methods ||

Iterative Methods

e Multidimensional Scaling (MDS)

o lIterative optimisation of a stress function [Kruskal, 1964].
e Sammon Mappings [Sammon, 1969].

@ Strictly speaking not a mapping — similar to iterative MDS.
@ NeuroScale [Lowe and Tipping, 1997]

e Augmentation of iterative MDS methods with a mapping.

Neil Lawrence The Gaussian Processes Latent Variable Model



Motivation
High Dimensional Data
Smooth Low Dimensional Embedded Spaces
Existing Methodologies

Existing Methods Il

Probabilistic Approaches

@ Probabilistic PCA [Tipping and Bishop, 1999, Roweis, 1998]

e A linear method.
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@ Probabilistic PCA [Tipping and Bishop, 1999, Roweis, 1998]

e A linear method.
@ Density Networks [MacKay, 1995]

e Use importance sampling and a multi-layer perceptron.
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Existing Methods Il

Probabilistic Approaches

@ Probabilistic PCA [Tipping and Bishop, 1999, Roweis, 1998]
e A linear method.
@ Density Networks [MacKay, 1995]
e Use importance sampling and a multi-layer perceptron.

@ Generative Topographic Mapping (GTM) [Bishop et al., 1998]

o Uses a grid based sample and an RBF network.

Difficulty for Probabilistic Approaches

Propagate a probability distribution through a non-linear mapping. g
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The New Model

A Probabilistic Non-linear PCA
@ PCA has a probabilistic interpretation [Tipping and Bishop, 1999].

o It is difficult to ‘non-linearise’.

Dual Probabilistic PCA

@ We present a new probabilistic interpretation of PCA [Lawrence,
2005].

@ This interpretation can be made non-linear.

@ The result is non-linear probabilistic PCA.
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Mathematical Foundations Probabilistic Linear Dimensionality Reduction
Gaussian Processes
A Non-linear Latent Variable Model

Notation

g— dimension of latent/embedded space
d— dimension of data space
n— number of data points

centred data, Y = [y, ... 7y,,7;]T =[y.1,...,Y.d] € Rnxd
latent variables, X = [x1 ., ... ,x,,,;]T =[X.1,...,%. q] € R™I
mapping matrix, W € R9*49

a; . is a vector from the ith row of a given matrix A
a.j is a vector from the jth row of a given matrix A
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Mathematical Foundations Probabilistic Lir Dimensionality Reduction
Gaussian Pro.
A Non-linear Latent Variable Model

Reading Notation

X and Y are design matrices

o Covariance given by n=tYTY.

@ Inner product matrix given by YYT.
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Linear Dimensionality Reduction

Linear Latent Variable Model

@ Represent data, Y, with a lower dimensional set of latent
variables X.

@ Assume a linear relationship of the form
Yi: = Wxi,: + ni:

where

Ni,: ~ N(0,0'2|) .

)
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Linear Latent Variable Model

Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

n
p(YIX, W) =[N (yi:|Wx;.,o?1)
i=1
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Linear Latent Variable Model

Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

e Standard Latent variable
approach:

n
p(YIX, W) =[N (yi:|Wx;.,o?1)
i=1
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Linear Latent Variable Model

Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

e Standard Latent variable .
approach: p(YIX, W) = TN (yi:|Wx; ., 0%1)

. . . i=1
o Define Gaussian prior

over latent space, X.

p(X) =[N (xi:l0,1)
i=1
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Linear Latent Variable Model

Probabilistic PCA

o Define linear-Gaussian
relationship between
latent variables and data. .
e Standard Latent variable p(YIX, W) =[N (yi:|Wx; .., o?1)
approach: =
o Define Gaussian prior p(X) = [N (x:.10,1)
over latent space, X. ook
o Integrate out /atent N
variables. p(YIW) =T N (y,-,:\O,WWT + 02|)

i=1
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Linear Latent Variable Model 1l

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

p(Y|W) = f[ N (y,-,;IO, ww ! 4 02I>
i=1
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Linear Latent Variable Model 1l

istic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]
p(YIW) = H N (y;.0,C), C=wwT 142
i=1

1
log p(Y|W) = —g log |C| — Etr (C*IYTY> + const.

If Ug are first g principal eigenvectors of n=1YTY and the corresponding eigenvalues
are Aq,

Nl

W=ULVT, L= (A —0?)

where V is an arbitrary rotation matrix.
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Linear Latent Variable Model IlI

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

n
p(YIX,W) =[N (yi.IWx.,ol)
i=1
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Linear Latent Variable Model IlI

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

@ Novel Latent variable
approach:

n
p(YIX,W) =[N (yi.IWx.,ol)
i=1

Neil Lawrence The Gaussian Processes Latent Variable Model



Mathematical Foundations Probabilistic Linear Dimensionality Reduction
Gaussian Processes

A Non-linear Latent Variable Model

Linear Latent Variable Model IlI

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

@ Novel Latent variable

n

approach: p(YIX,W) =T]N (yi,IWx;.,o?l)
o Define Gaussian prior =
over parameteters, W. d
p(W) =N (wi0.1)
i=1
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Linear Latent Variable Model IlI

Dual Probabilistic PCA

o Define linear-Gaussian
relationship between
latent variables and data. .
@ Novel Latent variable p(YIX,W) =[N (yi.[Wx.,o?l)
i=1
approach:
o 0 - d
o Define Gaussian prior p(W) = T[N (wi.[0,1)
over parameteters, W. ]
o Integrate out J
parameters. p(YIX) =[N (y:,j|07 xxT + 02|>
j=1
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Mathematical Foundations Probabilistic Linear Dimensionality Reduction
Gaussian Processes

A Non-linear Latent Variable Model

Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln [Lawrence, 2004]

d
p(YIX) =[N (y:,j|0,xxT + o'2|>
j=1
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Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln [Lawrence, 2004]

d
p(Y|X) = HN S0.K), K=xxXT 402
d 1
log p (Y|X) = == log |K| — Etr (K’IYYT) + const.

If Ug are first q principal eigenvectors of d=1YYT and the corresponding eigenvalues
are Ag,

X=UT, L= (A,—o%)2

where V is an arbitrary rotation matrix.

Neil Lawrence The Gaussian Processes Latent Variable Model



Mathematical Foundations Probabilistic Linear Dimensionality Reduction
Gaussian Processes
A Non-linear Latent Variable Model

Linear Latent Variable Model IV

istic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]
p(YIW) = H N (y;.0,C), C=wwT 142
i=1

1
log p(Y|W) = —g log |C| — Etr (C*IYTY> + const.

If Ug are first g principal eigenvectors of n=1YTY and the corresponding eigenvalues
are Aq,

Nl

W=ULVT, L= (A —0?)

where V is an arbitrary rotation matrix.
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Mathematical Foundations Probabilistic Linear Dimensionality Reduction
Gaussian Processes
A Non-linear Latent Variable Model

Equivalence of Formulations

The Eigenvalue Problems are equivalent

@ Solution for Probabilistic PCA (solves for the mapping)

Y'yu,=u,A, W=u,v'
@ Solution for Dual Probabilistic PCA (solves for the latent
positions)
vwlu, =uA,  x=ulv’
e Equivalence is from

_1
Ug=YTULA,
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Gaussian Process (GP)

Prior for Functions

@ Probability Distribution over Functions

e Functions are infinite dimensional.
o Prior distribution over instantiations of the function: finite
dimensional objects.

@ Can prove by induction that GP is ‘consistent’.
@ Mean and Covariance Functions

o Instead of mean and covariance matrix, GP is defined by mean
function and covariance function.

e Mean function often taken to be zero or constant.

o Covariance function must be positive definite.

e Class of valid covariance functions is the same as the class of
Mercer kernels. g
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Gaussian Processes |l

Zero mean Gaussian Process

@ A (zero mean) Gaussian process likelihood is of the form

p(y|X) = N(y|0,K),

where K is the covariance function or kernel.

@ The linear kernel with noise has the form
K =XXT + 02

@ Priors over non-linear functions are also possible.

e To see what functions look like, we can sample from the prior

process. g
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Covariance Samples

ovFuncSample
4§/
0

Figure: linear kernel, K = XXT

N
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Covariance Samples

demCovFuncSample

6 T T T

Figure: RBF kernel with v =10, a =1
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Covariance Samples

ovFuncSample

=il R 0I5! 0 0.5 1

Figure: RBF kernel with /=1, a =1
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Covariance Samples

demCovFuncSample

Figure: RBF kernel with / =0.3, o =4
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Covariance Samples

ovFuncSample

Figure:  MLP kernel with « =8, w = 100 and b = 100
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Covariance Samples

ovFuncSample

Figure:  MLP kernel with « =8, b=10 and w = 100
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Covariance Samples

ovFuncSample

=il R 0I5! 0 0.5 1

Figure: bias kernel with =1 and
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Covariance Samples

demCovFuncSample

6 T T T

=il -0.5 0 0.5 1

Figure: summed combination of: RBF kernel, o = 1, / = 0.3; bias
kernel, & =1; and white noise kernel, § = 100 g
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Gaussian Process Regression

Posterior Distribution over Functions

@ Gaussian processes are often used for regression.

@ We are given a known inputs X and targets Y.

@ We assume a prior distribution over functions by selecting a
kernel.

@ Combine the prior with data to get a posterior distribution
over functions.
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Gaussian Process Regression

l
N
|
S
-
N
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Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data. .
@ Novel Latent variable p(YIX,W) =[N (yi.[Wx.,o?l)
i=1
approach:
0 0 0 d
o Define Gaussian prior p(W) = T[N (wi.[0,1)
over parameteters, W. ]
o Integrate out J
parameters. p(YIX) =[N (y:,j|07 xxT + 02|>
j=1
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

d
p(YIX) =[N (y:,j|0, xxT + a2|)
Jj=1
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

e The covariance matrix
is a covariance
function.

d
p(YIX) =N (v.;10,K)
j=1

K=xxT + 42
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Non-Linear Latent Variable Model

| Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

e The covariance matrix
is a covariance

d
function.
o p(Y|X)=]]N(y.;[0,K
o We recognise it as the ,1:[1 (1:410,)
‘linear kernel’.

K=xxT + 42

This is a product of Gaussian processes

with linear kernels.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

e The covariance matrix
is a covariance

function. d

o We recognise it as the p(YIX) :jl:[lN (v:,10,K)
‘linear kernel’.

o We call this the K=?
Gaussian Process
Latent Variable model Replace linear kernel with non-linear
(GP_LVM)_ kernel for non-linear model.
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Non-linear Latent Variable Models

RBF Kernel

o The RBF kernel has the form kjj = k (x;.,x;.), where

T
(xi,: - Xj,:) (xi,: - xj,:)
2/2

k(x:,xj.) =aexp | —

@ No longer possible to optimise wrt X via an eigenvalue
problem.

o Instead find gradients with respect to X, a, / and ¢ and
optimise using conjugate gradients.
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Oil Data |

Example Data set

@ Oil flow data [Bishop and James, 1993].

@ Three phases of flow (stratified, annular, homogenous).
@ Twelve measurement probes.

@ 1000 data points.

@ We sub-sampled to 100 data points

e Compare, with KPCA, MDS, Sammon mappings, PCA and
GTM.
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Oil Data Il
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Oil Data I
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Figure: Left PCA, right Non-metric MDS
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Oil Data I
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Oil Data
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Figure: Left Kernel PCA, right GP-LVM
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Oil Data IV

Nearest neighbour errors in X space

@ Nearest neighbour classification in latent space.

Method | PCA | Non-metric MDS | Sammon Mapping
Errors 20 13 6
Method | GTM* Kernel PCA* GP-LVM
Errors 7 13 4

* These models require parameter selection.
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Full Oil Data Set |
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Full Oil Data Set Il

Nearest Neighbour error in X

@ Nearest neighbour classification in latent space.

Method | PCA | GTM | GP-LVM
Errors 162 11 1

cf 2 errors in data space.
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Stick Man

Generalization with less Data than Dimensions

@ Powerful uncertainly handling of GPs leads to suprising
properties.

@ Non-linear models can be used where there are fewer data
points than dimensions without overfitting.

@ Example: Modelling a stick man in 102 dimensions with 55
data points!
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Stick Man I

Figure: The latent space for the stick man motion capture data.
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Stick Man I

=il

Figure: The latent space for the stick man motion capture data.
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Applications

Style Based Inverse Kinematics

Facilitating animation through modelling human motion with the
GP-LVM [Grochow et al., 2004]

Tracking using models of human motion learnt with the GP-LVM
[Urtasun et al., 2005]

Face Animation

Modelling facial motion capture data for synthesis of emotion and

speech. g
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Back Constraints

! Dynamics
Extensions ’

Back Constraints |

Local Distance Preservation [Lawrence and Quifionero Candela, 2006]

@ Most dimensional reduction techniques preserve local
distances.

@ The GP-LVM does not.
@ GP-LVM maps smoothly from latent to data space.

e Points close in latent space are close in data space.
o This does not imply points close in data space are close in
latent space.
@ Kernel PCA maps smoothly from data to latent space.

e Points close in data space are close in latent space.
e This does not imply points close in latent space are close in

data space. g
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Back Constraints Il

Forward Mapping (demBackMapping in oxford toolbox)

@ Mapping from 1-D latent space to 2-D data space.

v = x? — 0.5, yo = —x2+05

15 0
1 -0
— o
= =N
0.5 -1
0 -1
- -1 0 1 a -1 [ 1
x x
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Back Constraints Il

Forward Mapping (demBackMapping in oxford toolbox)

@ Mapping from 1-D latent space to 2-D data space.

v = x? — 0.5, yo = —x2+05

15 0
1 -0
— o
= =N
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x x
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Back Constraints Il

Forward Mapping (demBackMapping in oxford toolbox)

@ Mapping from 1-D latent space to 2-D data space.

v = x? — 0.5, yo = —x2+05

0.
15 0
1 -0.
— o
= =N
0 -1
0 -1
- -1 0 1 a -1 [ 1
x x
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Back Constraints Il

Backward Mapping (demBackMapping in oxford toolbox)
@ Mapping from 2-D data space to 1-D latent.

x=05(yf +y5 +1)

IS
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Back Constraints Il

Backward Mapping (demBackMapping in oxford toolbox)
@ Mapping from 2-D data space to 1-D latent.

x=05(yf +y5 +1)

IS
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Back Constraints Il

Backward Mapping (demBackMapping in oxford toolbox)

@ Mapping from 2-D data space to 1-D latent.

x=05(yf +y5 +1)

0.
1.5 o
1 -0.5
— o
= >
0.5 -1
o -15 :
—08 I\ . I\
05 1 15 2 © 05 1 15 2
x x
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NeuroScale

Multi-Dimensional Scaling with a Mapping

@ Lowe and Tipping [1997] made latent positions a function of
the data.

xij = fi (yi; w)
@ Function was either multi-layer perceptron or a radial basis
function network.
@ Their motivation was different from ours:

e They wanted to add the advantages of a true mapping to
multi-dimensional scaling.
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Back Constraints in the GP-LVM

Back Constraints
@ We can use the same idea to force the GP-LVM to respect
local distances.

e By constraining each x; to be a ‘smooth’ mapping from y;
local distances can be respected.

@ This works because in the GP-LVM we maximise wrt latent
variables, we don't integrate out.
@ Can use any ‘smooth’ function:

@ Neural network.
@ RBF Network.
© Kernel based mapping.
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Optimising BC-GPLVM

Computing Gradients

@ GP-LVM normally proceeds by optimising
L(X) = log p(Y|X)

with respect to X using g—)L(.

@ The back constraints are of the form

Xij = fJ-'(YI,:; B)

where B are parameters.

@ We can compute % via chain rule and optimise parameters of
mapping. g
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Motion Capture Results

demStickl and demStick3

Figure: The latent space for the motion capture data with (right) and
without (/eft) dynamics. The dynamics us a Gaussian process with an
RBF kernel.
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Motion Capture Results

demStickl and demStick3

Figure: The latent space for the motion capture data with (right) and
without (/eft) dynamics. The dynamics us a Gaussian process with an
RBF kernel.
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Stick Man Results

demStickResults

-0.6 -04 -02 0 0.2 0.4 0.6 0.8

= = -

A |

(a) b) (c) (d)

Projection into data space from four points in the latent space. The
inclination of the runner changes becoming more upright.
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Vowel Data

Vocal Joystick Data

@ Vowel sounds from a vocal joystick system [Bilmes et al., 2006].
e http://ssli.ee.washington.edu/vj
@ Vowels are from a single speaker and represented as:

o cepstral coefficients (12 dimensions) and
o 'deltas’ (further 12 dimensions).

@ 2700 data points in total (300 for each vowel).
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Back Constraints
Dynamics

Extensions

PCA Results

PCA (used as initialisation for GP-LVM

4r

3,

The different vowels are
shown as follows: /a/
red cross /ae/ green
circle /ao/ blue plus
/e/ cyan asterix /i/
pink square /ibar/
yellow diamond /o/ red
down triangle /schwa/
green up triangle and
/u/ blue left triangle.

Neil Lawrence The Gaussian Processes Latent




Back Constraints

H Dynamics
Extensions Y

GP-LVM Results

demVowels?2

The different vowels are
shown as follows: /a/
red cross /ae/ green
circle /ao/ blue plus

/e/ cyan asterix /i/
pink square /ibar/
yellow diamond /o/ red
down triangle /schwa/
green up triangle and
/u/ blue left triangle.
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Isomap Results

demVowelsIsomap

1.5¢
1,
The different vowels are
0.5 shown as follows: /a/
red cross /ae/ green
O circle /ao/ blue plus
/e/ cyan asterix /i/
-0.5- pink square /ibar/
yellow diamond /o/ red
-1r down triangle /schwa/
green up triangle and
-L.5; 2 /u/ blue left triangle.
_2,
-2 -1 0 1 g
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BC-GPLVM Results

The different vowels are
shown as follows: /a/
red cross /ae/ green
circle /ao/ blue plus
/e/ cyan asterix /i/
pink square /ibar/
yellow diamond /o/ red
down triangle /schwa/
green up triangle and
/u/ blue left triangle.
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1-Nearest Neighbour in X

Comparison of the Approaches

@ Nearest neighbour classification in latent space.

Method | GP-LVM | Isomap | BC-GP-LVM
Errors 226 458 155

cf 24 errors in data space.
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Adding Dynamics

MAP Solutions for Dynamics Models

@ Data often has a temporal ordering.
@ Markov-based dynamics are often used.
@ For the GP-LVM

e Marginalising such dynamics is intractable.
e But: MAP solutions are trivial to implement.

@ Many choices: Kalman filter, Markov chains etc..

e Wang et al. [2006] suggest using a Gaussian Process.
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Gaussian Process Dynamics

GP-LVM with Dynamics

@ Gaussian process mapping in latent space between time points.
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Gaussian Process Dynamics

GP-LVM with Dynamics

@ Gaussian process mapping in latent space between time points.

“

t+1
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Gaussian Process Dynamics

GP-LVM with Dynamics

@ Gaussian process mapping in latent space between time points.

&

t
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Motion Capture Results

demStickl and demStick?2

Figure: The latent space for the motion capture data with (right) and
without (/eft) back constraints based on an RBF kernel.

W g
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Motion Capture Results

demStickl and demStick?2

Figure: The latent space for the motion capture data with (right) and
without (/eft) back constraints based on an RBF kernel.
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Robot SLAM |

Navigating by WiFi
@ Wireless access point signal strengths measured by robot
moving around building.

e 215 separate signal strength readings.
o 30 separate access points.

@ Robot moves in two dimensions so we expect data to be
inherently 2-D.

@ Learn GP-LVM, GP-LVM with Dynamics, back constrained
GP-LVM and back constrained GP-LVM with dynamics.
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Robot SLAM I

05 1

-15 -1 -05 0 05 1 15 2

(c) Standard GP-LVM (d) Standard GP-LVM
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Conclusions

Summary

GP-LVM is a Probabilistic Non-Linear Generalisation of PCA.

Works Effectively as a Probabilistic Model in High
Dimensional Spaces.

@ Back constraints can be introduced to force local distance
preservation.

@ Dynamics can be introduced for modelling data with a
temporal structure.

And finally ...
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Initialisation

‘Swiss Roll’

g g S

s xS
*-Innu'lﬁ“-";,‘.%‘{‘

Figure: The ‘Swiss Roll’ data set is data in three dimensions that is
inherently two dimensional.
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Initialisation Il

uality of solution is |

Figure: Left: Swiss roll solution initalised by PCA. Right: Swiss roll
solution initialised by Isomap.

’ g
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Supplementary Material

Linear Back Constraints |

@ Special case of back constraints is a /inear back constraint.

X=YB

where B € RI*49.

@ Maximise the likelihood with respect to the projection matrix
B.

@ Seems strange to sacrifice the ‘non-linearity’ of the model in
this way.

o Motivate this through a digits data set.
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Linear Back Constraints Il

Digits Model with Linear Back Constraints
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Y
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Supplementary Material Iinielleeio
PP Z Linear Back Constraints
Non-Gaussian Data

Linear Back Constraints |l
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Figure: Linear projections from PCA (left) and linear back constrained
GP-LVM (right)
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Supplementary Material

1-Nearest Neighbour in X

Comparison for increasing latent dimensionality

q 2 3 | 4
Pl 131 | 115 | 47
Errors
Linear
constrained 79 | 60 | 39
GP-LVM Errors

c.f. 24 errors in data space
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Supplementary Material

Non-Gaussian Data

Modelling Binary Data

@ A common form of non-Gaussian data is binary data.

e Can use Assumed Density Filtering to model binary data.
e This can also easily be extended to the Expectation
Propagation Algorithm Minka [2001].

@ Practical consquences:

e d times slower.
e requires d times more storage.
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Supplementary Material

Modelling Binary Twos

Cedar CD ROM digits
@ We model 700 examples of binary 8x8 handwritten twos.
@ Use a standard GP-LVM (a Gaussian noise assumption).

@ Compare with ADF approximation for the Bernoulli noise
model.

Neil Lawrence The Gaussian Processes Latent Variable Model



Supplementary Material

Twos Results |

2

(a) Gaussian Noise Model

Initialisation
Linear Back Constraints
Non-Gaussian Data

> £
-!.-_g‘; #2 2 xR W
_,.r""“az,flaa:*aaid 2P 7R3 0 -
Jaaa..;;;
.1324‘ ¢ S A 22 A
2 E-"L .1 22,3
z: ; e 2%

z
El :4,2 12 1‘2?2

1 15

(b) Bernoulli Noise Model

Figure:
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Twos Results Il

Reconstruction of Deleted Pixels

At asl a2 Ll RXAALL L EA
24P L I LR ITRELT LRI L2 E I
ALl A s LK 4dF L LS E A
A ALE JL A daRE AR LJIT L2
A A E L A A FRALLETIALL 22

] Reconstruction Method \ Pixel Error Rate ‘

GP-LVM Bernoulli noise 23.5%
GP-LVM Gaussian noise 35.9%
Missing pixels ‘not ink’ 51.5%
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