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Online Resources

All source code and slides are available online

This talk available from my home page (see talks link on left
hand side).

MATLAB examples in the ‘oxford’ toolbox (vrs 0.131),
demGplvmTalk.

http://www.dcs.shef.ac.uk/~neil/oxford/.

And the ‘fgplvm’ toolbox (vrs 0.15).

http://www.dcs.shef.ac.uk/~neil/fgplvm/.

MATLAB commands used for examples given in typewriter
font.
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High Dimensional Data

USPS Data Set Handwritten Digit

3648 Dimensions

64 rows by 57 columns

Space contains more than
just this digit.

Even if we sample every
nanosecond from now
until the end of the
universe, you won’t see
the original six!
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MATLAB Demo

demDigitsManifold[2 3], ’all’)

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

PC no 2

P
C

 n
o 

3

Neil Lawrence The Gaussian Processes Latent Variable Model



Motivation
GP-LVM

Extensions
Conclusions

High Dimensional Data
Smooth Low Dimensional Embedded Spaces
Existing Methodologies

MATLAB Demo
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Low Dimensional Manifolds

Pure Rotation is too Simple

In practice the data may undergo several distortions.

e.g. digits undergo ’thinning’, translation and rotation.

For data with ’structure’:

we expect fewer distortions than dimensions;
we therefore expect the data to live on a lower dimensional
manifold.

Conclusion: deal with high dimensional data by looking for
lower dimensional non-linear embedding.
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Existing Methods

Spectral Approaches

Classical Multidimensional Scaling (MDS) [Mardia et al., 1979].

Uses eigenvectors of similarity matrix.

Isomap [Tenenbaum et al., 2000] is MDS with a particular
proximity measure.

Kernel PCA [Schölkopf et al., 1998]

Provides an low dimensional representation and a mapping.
Mapping is implied throught he use of a kernel function as a
similarity matrix.

Locally Linear Embedding [Roweis and Saul, 2000].

Looks to preserve locally linear relationships in a low
dimensional space.
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Motivation
GP-LVM

Extensions
Conclusions

High Dimensional Data
Smooth Low Dimensional Embedded Spaces
Existing Methodologies

Existing Methods II

Iterative Methods

Multidimensional Scaling (MDS)

Iterative optimisation of a stress function [Kruskal, 1964].

Sammon Mappings [Sammon, 1969].

Strictly speaking not a mapping — similar to iterative MDS.

NeuroScale [Lowe and Tipping, 1997]

Augmentation of iterative MDS methods with a mapping.

Neil Lawrence The Gaussian Processes Latent Variable Model
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Existing Methods III

Probabilistic Approaches

Probabilistic PCA [Tipping and Bishop, 1999, Roweis, 1998]

A linear method.

Density Networks [MacKay, 1995]

Use importance sampling and a multi-layer perceptron.

Generative Topographic Mapping (GTM) [Bishop et al., 1998]

Uses a grid based sample and an RBF network.
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Existing Methods III

Probabilistic Approaches

Probabilistic PCA [Tipping and Bishop, 1999, Roweis, 1998]

A linear method.

Density Networks [MacKay, 1995]

Use importance sampling and a multi-layer perceptron.

Generative Topographic Mapping (GTM) [Bishop et al., 1998]

Uses a grid based sample and an RBF network.

Difficulty for Probabilistic Approaches

Propagate a probability distribution through a non-linear mapping.

Neil Lawrence The Gaussian Processes Latent Variable Model



Motivation
GP-LVM

Extensions
Conclusions

High Dimensional Data
Smooth Low Dimensional Embedded Spaces
Existing Methodologies

The New Model

A Probabilistic Non-linear PCA

PCA has a probabilistic interpretation [Tipping and Bishop, 1999].

It is difficult to ‘non-linearise’.

Dual Probabilistic PCA

We present a new probabilistic interpretation of PCA [Lawrence,

2005].

This interpretation can be made non-linear.

The result is non-linear probabilistic PCA.

Neil Lawrence The Gaussian Processes Latent Variable Model
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Notation

q— dimension of latent/embedded space
d— dimension of data space
n— number of data points

centred data, Y = [y1,:, . . . , yn,:]
T = [y:,1, . . . , y:,d ] ∈ <n×d

latent variables, X = [x1,:, . . . , xn,:]
T = [x:,1, . . . , x:,q] ∈ <n×q

mapping matrix, W ∈ <d×q

ai ,: is a vector from the ith row of a given matrix A
a:,j is a vector from the jth row of a given matrix A

Neil Lawrence The Gaussian Processes Latent Variable Model
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Reading Notation

X and Y are design matrices

Covariance given by n−1YTY.

Inner product matrix given by YYT.

Neil Lawrence The Gaussian Processes Latent Variable Model
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Linear Dimensionality Reduction

Linear Latent Variable Model

Represent data, Y, with a lower dimensional set of latent
variables X.

Assume a linear relationship of the form

yi ,: = Wxi ,: + ηi ,:,

where
ηi ,: ∼ N

(
0, σ2I

)
.

Neil Lawrence The Gaussian Processes Latent Variable Model
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Linear Latent Variable Model

Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Standard Latent variable
approach:

Define Gaussian prior
over latent space, X.
Integrate out latent
variables.

X W

Y

p (Y|X, W) =
nY

i=1

N
`
yi,:|Wxi,:, σ

2I
´
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Linear Latent Variable Model
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Define linear-Gaussian
relationship between
latent variables and data.
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Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

X W

Y

p (Y|W) =
nY

i=1

N
“
yi,:|0, WWT + σ2I

”
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Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

p (Y|W) =
nY

i=1

N
`
yi,:|0, C

´
, C = WWT + σ2I

log p (Y|W) = −
n

2
log |C| −

1

2
tr

“
C−1YTY

”
+ const.

If Uq are first q principal eigenvectors of n−1YTY and the corresponding eigenvalues
are Λq ,

W = UqLV
T, L =

`
Λq − σ2I

´ 1
2

where V is an arbitrary rotation matrix.

Neil Lawrence The Gaussian Processes Latent Variable Model



Motivation
GP-LVM

Extensions
Conclusions

Mathematical Foundations
Examples

Linear Latent Variable Model III

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach:

Define Gaussian prior
over parameteters, W.
Integrate out
parameters.

W

Y

X

p (Y|X, W) =
nY

i=1

N
`
yi,:|Wxi,:, σ

2I
´
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Linear Latent Variable Model III

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach:

Define Gaussian prior
over parameteters, W.
Integrate out
parameters.

W

Y

X

p (Y|X, W) =
nY

i=1

N
`
yi,:|Wxi,:, σ

2I
´

p (W) =
dY

i=1

N
`
wi,:|0, I

´
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Linear Latent Variable Model III

Dual Probabilistic PCA

Define linear-Gaussian
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Define Gaussian prior
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Integrate out
parameters.
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i=1

N
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yi,:|Wxi,:, σ

2I
´

p (W) =
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Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln [Lawrence, 2004]

W

Y

X

p (Y|X) =
dY

j=1

N
“
y:,j |0, XXT + σ2I

”
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Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln [Lawrence, 2004]

p (Y|X) =
dY

j=1

N
`
y:,j |0, K

´
, K = XXT + σ2I

log p (Y|X) = −
d

2
log |K| −

1

2
tr

“
K−1YYT

”
+ const.

If U′
q are first q principal eigenvectors of d−1YYT and the corresponding eigenvalues

are Λq ,

X = U′
qLV

T, L =
`
Λq − σ2I

´ 1
2

where V is an arbitrary rotation matrix.
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Linear Latent Variable Model IV

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

p (Y|W) =
nY
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N
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yi,:|0, C

´
, C = WWT + σ2I

log p (Y|W) = −
n

2
log |C| −

1

2
tr
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C−1YTY

”
+ const.

If Uq are first q principal eigenvectors of n−1YTY and the corresponding eigenvalues
are Λq ,
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`
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´ 1
2

where V is an arbitrary rotation matrix.
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Equivalence of Formulations

The Eigenvalue Problems are equivalent

Solution for Probabilistic PCA (solves for the mapping)

YTYUq = UqΛq W = UqLV
T

Solution for Dual Probabilistic PCA (solves for the latent
positions)

YYTU′
q = U′

qΛq X = U′
qLV

T

Equivalence is from

Uq = YTU′
qΛ

− 1
2

q

Neil Lawrence The Gaussian Processes Latent Variable Model
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Gaussian Process (GP)

Prior for Functions

Probability Distribution over Functions

Functions are infinite dimensional.
Prior distribution over instantiations of the function: finite
dimensional objects.

Can prove by induction that GP is ‘consistent’.

Mean and Covariance Functions

Instead of mean and covariance matrix, GP is defined by mean
function and covariance function.
Mean function often taken to be zero or constant.
Covariance function must be positive definite.
Class of valid covariance functions is the same as the class of
Mercer kernels.
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Gaussian Processes II

Zero mean Gaussian Process

A (zero mean) Gaussian process likelihood is of the form

p (y|X) = N (y|0,K) ,

where K is the covariance function or kernel.

The linear kernel with noise has the form

K = XXT + σ2I

Priors over non-linear functions are also possible.

To see what functions look like, we can sample from the prior
process.

Neil Lawrence The Gaussian Processes Latent Variable Model



Motivation
GP-LVM

Extensions
Conclusions

Mathematical Foundations
Examples

Covariance Samples

demCovFuncSample
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Figure: linear kernel, K = XXT
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Covariance Samples
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Figure: RBF kernel with γ = 10, α = 1
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Figure: RBF kernel with l = 1, α = 1
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Covariance Samples
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Figure: RBF kernel with l = 0.3, α = 4
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Figure: MLP kernel with α = 8, w = 100 and b = 100
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Figure: MLP kernel with α = 8, b = 0 and w = 100
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Covariance Samples

demCovFuncSample
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Figure: bias kernel with α = 1 and
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Covariance Samples

demCovFuncSample
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Figure: summed combination of: RBF kernel, α = 1, l = 0.3; bias
kernel, α =1; and white noise kernel, β = 100
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Gaussian Process Regression

Posterior Distribution over Functions

Gaussian processes are often used for regression.

We are given a known inputs X and targets Y.

We assume a prior distribution over functions by selecting a
kernel.

Combine the prior with data to get a posterior distribution
over functions.

Neil Lawrence The Gaussian Processes Latent Variable Model
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Gaussian Process Regression

demRegression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach:

Define Gaussian prior
over parameteters, W.
Integrate out
parameters.

W

Y

X

p (Y|X, W) =
nY

i=1

N
`
yi,:|Wxi,:, σ

2I
´

p (W) =
dY

i=1

N
`
wi,:|0, I

´

p (Y|X) =
dY

j=1

N
“
y:,j |0, XXT + σ2I

”
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Inspection of the marginal
likelihood shows ...

The covariance matrix
is a covariance
function.
We recognise it as the
‘linear kernel’.
We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

W

Y

X

p (Y|X) =
dY

j=1

N
“
y:,j |0, XXT + σ2I

”
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Inspection of the marginal
likelihood shows ...

The covariance matrix
is a covariance
function.
We recognise it as the
‘linear kernel’.
We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

W

Y

X

p (Y|X) =
dY

j=1

N
`
y:,j |0, K

´

K = XXT + σ2I
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Inspection of the marginal
likelihood shows ...

The covariance matrix
is a covariance
function.
We recognise it as the
‘linear kernel’.
We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

W

Y

X

p (Y|X) =
dY

j=1

N
`
y:,j |0, K

´

K = XXT + σ2I

This is a product of Gaussian processes

with linear kernels.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Inspection of the marginal
likelihood shows ...

The covariance matrix
is a covariance
function.
We recognise it as the
‘linear kernel’.
We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

W

Y

X

p (Y|X) =
dY

j=1

N
`
y:,j |0, K

´
K =?

Replace linear kernel with non-linear

kernel for non-linear model.
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Non-linear Latent Variable Models

RBF Kernel

The RBF kernel has the form kij = k (xi ,:, xj ,:) , where

k (xi ,:, xj ,:) = α exp

(
−

(xi ,: − xj ,:)
T (xi ,: − xj ,:)

2l2

)
.

No longer possible to optimise wrt X via an eigenvalue
problem.

Instead find gradients with respect to X, α, l and σ2 and
optimise using conjugate gradients.
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Applications

Style Based Inverse Kinematics

Facilitating animation through modelling human motion with the
GP-LVM [Grochow et al., 2004]

Tracking

Tracking using models of human motion learnt with the GP-LVM
[Urtasun et al., 2005, 2006]

.

Neil Lawrence The Gaussian Processes Latent Variable Model



Motivation
GP-LVM

Extensions
Conclusions

Mathematical Foundations
Examples

Stick Man

Generalization with less Data than Dimensions

Powerful uncertainly handling of GPs leads to suprising
properties.

Non-linear models can be used where there are fewer data
points than dimensions without overfitting.

Example: Modelling a stick man in 102 dimensions with 55
data points!
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Stick Man II

demStick1

Figure: The latent space for the stick man motion capture data.

Neil Lawrence The Gaussian Processes Latent Variable Model



Motivation
GP-LVM

Extensions
Conclusions

Mathematical Foundations
Examples

Stick Man II

demStick1
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Figure: The latent space for the stick man motion capture data.
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Back Constraints I

Local Distance Preservation [Lawrence and Quiñonero Candela, 2006]

Most dimensional reduction techniques preserve local
distances.

The GP-LVM does not.

GP-LVM maps smoothly from latent to data space.

Points close in latent space are close in data space.
This does not imply points close in data space are close in
latent space.

Kernel PCA maps smoothly from data to latent space.

Points close in data space are close in latent space.
This does not imply points close in latent space are close in
data space.
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Back Constraints II

Forward Mapping (demBackMapping in oxford toolbox)

Mapping from 1-D latent space to 2-D data space.

y1 = x2 − 0.5, y2 = −x2 + 0.5
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Back Constraints II

Forward Mapping (demBackMapping in oxford toolbox)

Mapping from 1-D latent space to 2-D data space.
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Back Constraints II

Forward Mapping (demBackMapping in oxford toolbox)

Mapping from 1-D latent space to 2-D data space.

y1 = x2 − 0.5, y2 = −x2 + 0.5
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Back Constraints II

Backward Mapping (demBackMapping in oxford toolbox)

Mapping from 2-D data space to 1-D latent.

x = 0.5
`
y2
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Back Constraints II

Backward Mapping (demBackMapping in oxford toolbox)

Mapping from 2-D data space to 1-D latent.
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Back Constraints II

Backward Mapping (demBackMapping in oxford toolbox)

Mapping from 2-D data space to 1-D latent.

x = 0.5
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NeuroScale

Multi-Dimensional Scaling with a Mapping

Lowe and Tipping [1997] made latent positions a function of
the data.

xij = fj (yi ;w)

Function was either multi-layer perceptron or a radial basis
function network.

Their motivation was different from ours:

They wanted to add the advantages of a true mapping to
multi-dimensional scaling.
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Back Constraints in the GP-LVM

Back Constraints

We can use the same idea to force the GP-LVM to respect
local distances.[Lawrence and Quiñonero Candela, 2006]

By constraining each xi to be a ‘smooth’ mapping from yi

local distances can be respected.

This works because in the GP-LVM we maximise wrt latent
variables, we don’t integrate out.

Can use any ‘smooth’ function:

1 Neural network.
2 RBF Network.
3 Kernel based mapping.
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Optimising BC-GPLVM

Computing Gradients

GP-LVM normally proceeds by optimising

L (X) = log p (Y|X)

with respect to X using dL
dX .

The back constraints are of the form

xij = fj (yi ,:;B)

where B are parameters.

We can compute dL
dB via chain rule and optimise parameters of

mapping.
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Motion Capture Results

demStick1 and demStick3

Figure: The latent space for the motion capture data with (right) and
without (left) dynamics. The dynamics us a Gaussian process with an
RBF kernel.

.
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Motion Capture Results

demStick1 and demStick3
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Figure: The latent space for the motion capture data with (right) and
without (left) dynamics. The dynamics us a Gaussian process with an
RBF kernel..
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Stick Man Results

demStickResults
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Projection into data space from four points in the latent space. The
inclination of the runner changes becoming more upright.Neil Lawrence The Gaussian Processes Latent Variable Model
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Adding Dynamics

MAP Solutions for Dynamics Models

Data often has a temporal ordering.

Markov-based dynamics are often used.

For the GP-LVM

Marginalising such dynamics is intractable.
But: MAP solutions are trivial to implement.

Many choices: Kalman filter, Markov chains etc..

Wang et al. [2006] suggest using a Gaussian Process.
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Gaussian Process Dynamics

GP-LVM with Dynamics

Autoregressive Gaussian process mapping in latent space
between time points.

t
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Gaussian Process Dynamics

GP-LVM with Dynamics

Autoregressive Gaussian process mapping in latent space
between time points.

t t + 1
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Gaussian Process Dynamics

GP-LVM with Dynamics

Autoregressive Gaussian process mapping in latent space
between time points.

t t + 1
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Motion Capture Results

demStick1 and demStick2

Figure: The latent space for the motion capture data without dynamics
(left), with auto-regressive dynamics (right) based on an RBF kernel.
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Motion Capture Results

demStick1 and demStick2
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Figure: The latent space for the motion capture data without dynamics
(left), with auto-regressive dynamics (right) based on an RBF kernel.
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Regressive Dynamics

Inner Groove Distortion

Autoregressive unimodal
dynamics, p (xt |xt−1) .

Forces spiral visualisation.

Poorer model due to inner
groove distortion.
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Regressive Dynamics

Direct use of Time Variable

Instead of auto-regressive dynamics, consider regressive
dynamics.

Take t as an input, use a prior p (X|t).
User a Gaussian process prior for p (X|t) .

Also allows us to consider variable sample rate data.
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Motion Capture Results

demStick1, demStick2 and demStick5

Figure: The latent space for the motion capture data without dynamics
(left), with auto-regressive dynamics (middle) and with regressive
dynamics (right) based on an RBF kernel.
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Motion Capture Results

demStick1, demStick2 and demStick5
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Figure: The latent space for the motion capture data without dynamics
(left), with auto-regressive dynamics (middle) and with regressive
dynamics (right) based on an RBF kernel.
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Hierarchical GP-LVM

Stacking Gaussian Processes

Regressive dynamics provides a simple hierarchy.

The input space of the GP is governed by another GP.

By stacking GPs we can consider more complex hierarchies.

Ideally we should marginalise latent spaces

In practice we seek MAP solutions.
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Two Correlated Subjects

demHighFive1

Figure: Hierarchical model of a ’high five’.
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Within Subject Hierarchy

Decomposition of Body

Figure: Decomposition of a subject.
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Single Subject Run/Walk

demRunWalk1

Figure: Hierarchical model of a walk and a run.
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Summary

GP-LVM is a Probabilistic Non-Linear Generalisation of PCA.

Works Effectively as a Probabilistic Model in High
Dimensional Spaces.

Back constraints can be introduced to force local distance
preservation.

Dynamics can be introduced for modelling data with a
temporal structure.
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Initialisation

‘Swiss Roll’
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Figure: The ‘Swiss Roll’ data set is data in three dimensions that is
inherently two dimensional.
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Initialisation II

Quality of solution is Initialisation Dependent
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Figure: Left: Swiss roll solution initalised by PCA. Right: Swiss roll
solution initialised by Isomap.
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Linear Back Constraints I

Special case of back constraints is a linear back constraint.

X = YB

where B ∈ <d×q.

Maximise the likelihood with respect to the projection matrix
B.

Seems strange to sacrifice the ‘non-linearity’ of the model in
this way.

Motivate this through a digits data set.
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Linear Back Constraints II

Digits Model with Linear Back Constraints
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Linear Back Constraints III
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Figure: Linear projections from PCA (left) and linear back constrained
GP-LVM (right)
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1-Nearest Neighbour in X

Comparison for increasing latent dimensionality

q 2 3 4
PCA
Errors

131 115 47

Linear
constrained

GP-LVM Errors
79 60 39

c.f. 24 errors in data space
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Oil Data I

Example Data set

Oil flow data [Bishop and James, 1993].

Three phases of flow (stratified, annular, homogenous).

Twelve measurement probes.

1000 data points.

We sub-sampled to 100 data points

Compare, with KPCA, MDS, Sammon mappings, PCA and
GTM.

Neil Lawrence The Gaussian Processes Latent Variable Model



Supplementary Material
References

Initialisation
Linear Back Constraints
Oil Flow Data
Vowels with Back Constraints
WiFi SLAM
Non-Gaussian Data

Oil Data II
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Oil Data III
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Figure: Left PCA, right Non-metric MDS
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Oil Data III
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Figure: Left Sammon Mapping, right GTM
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Oil Data III
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Figure: Left Kernel PCA, right GP-LVM
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Oil Data IV

Nearest neighbour errors in X space

Nearest neighbour classification in latent space.

Method PCA Non-metric MDS Sammon Mapping

Errors 20 13 6

Method GTM* Kernel PCA* GP-LVM

Errors 7 13 4

* These models require parameter selection.
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Full Oil Data Set I
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Full Oil Data Set II

Nearest Neighbour error in X

Nearest neighbour classification in latent space.

Method PCA GTM GP-LVM

Errors 162 11 1

cf 2 errors in data space.
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Vowel Data

Vocal Joystick Data

Vowel sounds from a vocal joystick system [Bilmes et al., 2006].

http://ssli.ee.washington.edu/vj

Vowels are from a single speaker and represented as:

cepstral coefficients (12 dimensions) and
’deltas’ (further 12 dimensions).

2700 data points in total (300 for each vowel).
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PCA Results

PCA (used as initialisation for GP-LVM
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The different vowels are
shown as follows: /a/
red cross /ae/ green
circle /ao/ blue plus
/e/ cyan asterix /i/
pink square /ibar/
yellow diamond /o/ red
down triangle /schwa/
green up triangle and
/u/ blue left triangle.
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GP-LVM Results

demVowels2
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Isomap Results

demVowelsIsomap
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BC-GPLVM Results

demVowels3

−1 −0.5 0 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

The different vowels are
shown as follows: /a/
red cross /ae/ green
circle /ao/ blue plus
/e/ cyan asterix /i/
pink square /ibar/
yellow diamond /o/ red
down triangle /schwa/
green up triangle and
/u/ blue left triangle.

Neil Lawrence The Gaussian Processes Latent Variable Model



Supplementary Material
References

Initialisation
Linear Back Constraints
Oil Flow Data
Vowels with Back Constraints
WiFi SLAM
Non-Gaussian Data

1-Nearest Neighbour in X

Comparison of the Approaches

Nearest neighbour classification in latent space.

Method GP-LVM Isomap BC-GP-LVM

Errors 226 458 155

cf 24 errors in data space.
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Robot SLAM I

Navigating by WiFi

Wireless access point signal strengths measured by robot
moving around building.

215 separate signal strength readings.
30 separate access points.

Robot moves in two dimensions so we expect data to be
inherently 2-D.

Learn GP-LVM, GP-LVM with Dynamics, back constrained
GP-LVM and back constrained GP-LVM with dynamics.[Ferris
et al., 2007]
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Robot SLAM II
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Non-Gaussian Data

Modelling Binary Data

A common form of non-Gaussian data is binary data.

Can use Assumed Density Filtering to model binary data.
This can also easily be extended to the Expectation
Propagation Algorithm Minka [2001].

Practical consquences:

d times slower.
requires d times more storage.
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Modelling Binary Twos

Cedar CD ROM digits

We model 700 examples of binary 8×8 handwritten twos.

Use a standard GP-LVM (a Gaussian noise assumption).

Compare with ADF approximation for the Bernoulli noise
model.
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Twos Results I
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Twos Results II

Reconstruction of Deleted Pixels

Reconstruction Method Pixel Error Rate

GP-LVM Bernoulli noise 23.5%

GP-LVM Gaussian noise 35.9%

Missing pixels ‘not ink’ 51.5%
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