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Online Resources

All source code and slides are available online

@ This talk available from my home page (see talks link on left
hand side).

o MATLAB examples in the ‘oxford’ toolbox (vrs 0.131),
demGplvmTalk.

e http://www.dcs.shef.ac.uk/ neil/oxford/.
@ And the ‘fgplvm’ toolbox (vrs 0.15).
e http://www.dcs.shef.ac.uk/"neil/fgplvm/.

@ MATLAB commands used for examples given in typewriter
font.
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Motivation High Dimensional Data

Smooth Low Dimensional Embedded Spaces
Existing Methodologies

Low Dimensional Manifolds

Pure Rotation is too Simple

@ In practice the data may undergo several distortions.
e e.g. digits undergo 'thinning’, translation and rotation.
@ For data with 'structure’:

e we expect fewer distortions than dimensions;
e we therefore expect the data to live on a lower dimensional
manifold.

@ Conclusion: deal with high dimensional data by looking for
lower dimensional non-linear embedding.
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Smooth Low Dimensional Embedded Spaces
Existing Methodologies

Existing Methods

Spectral Approaches

o Classical Multidimensional Scaling (MDS) [Mardia et al., 1979].
o Uses eigenvectors of similarity matrix.

@ Isomap [Tenenbaum et al., 2000] is MDS with a particular
proximity measure.
o Kernel PCA [Schélkopf et al., 1998]
@ Provides an low dimensional representation and a mapping.

e Mapping is implied throught he use of a kernel function as a
similarity matrix.

e Locally Linear Embedding [Roweis and Saul, 2000].

@ Looks to preserve locally linear relationships in a low
dimensional space. g
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Existing Methods ||

Iterative Methods

e Multidimensional Scaling (MDS)

o lterative optimisation of a stress function [Kruskal, 1964].
e Sammon Mappings [Sammon, 1969].

o Strictly speaking not a mapping — similar to iterative MDS.
@ NeuroScale [Lowe and Tipping, 1997]

e Augmentation of iterative MDS methods with a mapping.
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Smooth Low Dimensional Embedded Spaces
Existing Methodologies

Existing Methods Il

Probabilistic Approaches

@ Probabilistic PCA [Tipping and Bishop, 1999, Roweis, 1998]

o A linear method.
@ Density Networks [MacKay, 1995]

e Use importance sampling and a multi-layer perceptron.

@ Generative Topographic Mapping (GTM) [Bishop et al., 1998]

e Uses a grid based sample and an RBF network.

Difficulty for Probabilistic Approaches

Propagate a probability distribution through a non-linear mapping. g
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Motivation

High Dimensional Data
Smooth Low Dimensional Embedded Spaces
Existing Methodologies

The New Model

A Probabilistic Non-linear PCA
@ PCA has a probabilistic interpretation [Tipping and Bishop, 1999].

@ It is difficult to ‘non-linearise’.

Dual Probabilistic PCA

@ We present a new probabilistic interpretation of PCA [Lawrence,
2005].

@ This interpretation can be made non-linear.

@ The result is non-linear probabilistic PCA.
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GP-LVM Mathematical Foundations
Examples

Notation

g— dimension of latent/embedded space
d— dimension of data space
n— number of data points

centred data, Y = [yg., ... ,y,,7:]T =[y.1,...,Y.d] € Rnxd
latent variables, X = [x1 ., ... ,x,,,:]T = [x.1,...,X.q] € R™T
mapping matrix, W € R9*49

a; . is a vector from the ith row of a given matrix A
a.j is a vector from the jth row of a given matrix A
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GP-LVM Mathematical Foundations
Examples

Reading Notation

X and Y are design matrices

e Covariance given by n=tYTY.

o Inner product matrix given by YYT.
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GP-LVM Mathematical Foundations

Examples

Linear Dimensionality Reduction

Linear Latent Variable Model

@ Represent data, Y, with a lower dimensional set of latent
variables X.

@ Assume a linear relationship of the form
Yi,. = Wxi,: =+ ”7,‘7:7

where

N, ~ N (O,UZI) .
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GP-LVM Mathematical Foundations

Examples

Linear Latent Variable Model

Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

n
p(YIX,W) =[N (yi:|Wx;.,o°1)
i=1
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GP-LVM Mathematical Foundations

Examples

Linear Latent Variable Model

Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

@ Standard Latent variable

approach: p(YIX,W) =[N (yi.[Wxi ., 1)
o 0 5 i=1
o Define Gaussian prior '

over latent space, X. n
p(X)=T]N (xi:[0,1)

i=1
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Mathematical Foundations
Examples

Linear Latent Variable Model

Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

e Standard Latent variable p(YIX,W) =[N (yi.[Wxi.,o?l)
approach: =
o Define Gaussian prior .
p(X) = N (x;.]0,1
over latent space, X. ) ,11 (ricl01)

o Integrate out /atent n
variables. p(YIW) =N (y,-,:\o,wa + 02|)

@
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GP-LVM Mathematical Foundations

Examples

Linear Latent Variable Model 1l

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

p(YIW) =TT N (vi 0, wwT +o2)
i=1
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GP-LVM Mathematical Foundations

Examples

Linear Latent Variable Model 1l

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

p(YIW) =[N (¥::0,C), C=wwT +5%
i=1

1
log p (Y|W) = —g log |C| — Etr (C’IYTY) + const.

If Ug are first g principal eigenvectors of n=YTY and the corresponding eigenvalues
are Ag,

Nl

W=UvT, L= (A;—02)

where V is an arbitrary rotation matrix.
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GP-LVM Mathematical Foundations

Examples

Linear Latent Variable Model Il

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

n

p(YIX, W) =[N (yi:|Wxi,o?1)
i=1
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GP-LVM Mathematical Foundations

Examples

Linear Latent Variable Model Il

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

@ Novel Latent variable

approach: p(YIX,W) = TN (i, [Wxi, o)
o o o i=1
o Define Gaussian prior

over parameteters, W.

d
p(W)=T[N (w0,
i=1
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GP-LVM

Mathematical Foundations
Examples

Linear Latent Variable Model Il

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

@ Novel Latent variable

approach:

o Define Gaussian prior
over parameteters, W.

o Integrate out
parameters.

Neil Lawrence

n

p(YIX,W) =[N (yi.|Wx;.,o?1)

i=1

d

p(W)=T]N (w0,

i=1

d
p(YIX) =[N (y:,j|o, xxT 4+ 02I)
j=1
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GP-LVM Mathematical Foundations

Examples

Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln [Lawrence, 2004]

d
p(Y1X) = [T N (v.410,XXT + o21)
j=1
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GP-LVM Mathematical Foundations

Examples

Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln [Lawrence, 2004]

d
p(YIX) =[N (y40.K), K=xXXT 40
j=1

d 1
log p (Y|X) = — 3 log [K| — 5tr (K’IYYT> + const.

If U are first g principal eigenvectors of d=1YYT and the corresponding eigenvalues
are Ag,

X=U T, L= (A —o2)?

where V is an arbitrary rotation matrix.
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Linear Latent Variable Model IV

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

p(YIW) =[N (¥::0,C), C=wwT +5%
i=1

1
log p (Y|W) = —g log |C| — Etr (C’IYTY) + const.

If Ug are first g principal eigenvectors of n=YTY and the corresponding eigenvalues
are Ag,

Nl

W=UvT, L= (A;—02)

where V is an arbitrary rotation matrix.
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GP-LVM Mathematical Foundations

Examples

Equivalence of Formulations

The Eigenvalue Problems are equivalent

@ Solution for Probabilistic PCA (solves for the mapping)

Y'yu,=u,A, wW=u,v'
@ Solution for Dual Probabilistic PCA (solves for the latent
positions)
vwlu, =uA,  X=ulv’
e Equivalence is from

_1
Ug=YTULA,
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GP-LVM Mathematical Foundations
Examples

Gaussian Process (GP)

Prior for Functions

@ Probability Distribution over Functions

o Functions are infinite dimensional.
o Prior distribution over instantiations of the function: finite
dimensional objects.

@ Can prove by induction that GP is ‘consistent’.
@ Mean and Covariance Functions

o Instead of mean and covariance matrix, GP is defined by mean
function and covariance function.

e Mean function often taken to be zero or constant.

e Covariance function must be positive definite.

e Class of valid covariance functions is the same as the class of
Mercer kernels. g
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GP-LVM Mathematical Foundations
Examples

Gaussian Processes |l

o mean Gaussian Process

@ A (zero mean) Gaussian process likelihood is of the form

p(y|X) = N(y|0,K),

where K is the covariance function or kernel.

@ The linear kernel with noise has the form
K=XXT + 02l

@ Priors over non-linear functions are also possible.

o To see what functions look like, we can sample from the prior

process. g
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GP-LVM Mathematical Foundations
Examples

Covariance Samples

demCovFuncSample

N

2

0|
=L ]
s J
E;1 —0‘5 6 0‘.5 1

Figure: linear kernel, K = XXT
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GP-LVM Mathematical Foundations
Examples

Covariance Samples

demCovFuncSample

=il =05 0 0.5 1

Figure: RBF kernel with v =10, a =1
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GP-LVM Mathematical Foundations
Examples

Covariance Samples

demCovFuncSample
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Figure: RBF kernel with / =1, a =1
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GP-LVM Mathematical Foundations
Examples

Covariance Samples

demCovFuncSample

Figure: RBF kernel with / =0.3, a =4 g
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Mathematical Foundations
Examples

Covariance Samples
demCovFuncSample

GP-LVM

0.5

6! .
=il =05

MLP kernel with o« =8, w = 100 and b = 100

Figure:
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GP-LVM Mathematical Foundations
Examples

Covariance Samples

demCovFuncSample

Figure:  MLP kernel with « =8, b= 10 and w = 100 g
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GP-LVM Mathematical Foundations
Examples

Covariance Samples

demCovFuncSample

6 T T T

-2

Figure: bias kernel with & =1 and g
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GP-LVM Mathematical Foundations
Examples

Covariance Samples

demCovFuncSample

Figure: summed combination of: RBF kernel, @« = 1, / = 0.3; bias
kernel, o =1; and white noise kernel, 5 = 100 g
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GP-LVM Mathematical Foundations

Examples

Gaussian Process Regression

Posterior Distribution over Functions

@ Gaussian processes are often used for regression.
@ We are given a known inputs X and targets Y.

@ We assume a prior distribution over functions by selecting a
kernel.

@ Combine the prior with data to get a posterior distribution
over functions.
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GP-LVM Mathematical Foundations
Examples

Gaussian Process Regression

demRegression

-2 =il 1 2
1 'Y
*
=l
5
Figure: Examples include WiFi localization, C14 callibration curve. g
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Gaussian Process Regression
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Mathematical Foundations
Examples

Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

@ Novel Latent variable

approach:

o Define Gaussian prior
over parameteters, W.

o Integrate out
parameters.

Neil Lawrence

n

p(YIX,W) =[N (yi:|Wx;.,o?1)

i=1

d

p(W)=T]N (w0,

i=1

d
p(YIX) =[N (y:,j|o, xxT 4+ 02I)
j=1

The Gaussian Processes Latent Variable Model



GP-LVM Mathematical Foundations

Examples

Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

d
p(YIX) =[N (y:,,-|0, xxT 4 02I>
j=1
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GP-LVM Mathematical Foundations

Examples

Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

e The covariance matrix
is a covariance
function.

d
p(YIX)=]]N(y.j0,K)

Jj=1

K =xxT + 52
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GP-LVM Mathematical Foundations
Examples

Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

e The covariance matrix
is a covariance

d
function
L p(YIX)=]]N(y;0,K)
o We recognise it as the ,1:[1 !
‘linear kernel’.
K=xxT 12

This is a product of Gaussian processes

with linear kernels.
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GP-LVM

Mathematical Foundations
Examples

Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

e The covariance matrix
is a covariance
function.

o We recognise it as the
‘linear kernel’.

o We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

Neil Lawrence

d
p(Y1X) =] N (y.;10.K)

K =?

Replace linear kernel with non-linear

kernel for non-linear model.
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GP-LVM Mathematical Foundations

Examples

Non-linear Latent Variable Models

RBF Kernel

o The RBF kernel has the form kjj = k (x;.,x;.), where

k(xj:,xj.) = aexp ( (xi; = xj, )2/2(XI ,:)) ‘

@ No longer possible to optimise wrt X via an eigenvalue
problem.

o Instead find gradients with respect to X, a, / and ¢ and
optimise using conjugate gradients.

Neil Lawrence The Gaussian Processes Latent Variable Model



GP-LVM Mathematical Foundations
Examples

Applications

Style Based Inverse Kinematics

Facilitating animation through modelling human motion with the
GP-LVM [Grochow et al., 2004]

Tracking using models of human motion learnt with the GP-LVM
[Urtasun et al., 2005, 2006]
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GP-LVM Mathematical Foundations
Examples

Stick Man

Generalization with less Data than Dimensions

@ Powerful uncertainly handling of GPs leads to suprising
properties.

@ Non-linear models can be used where there are fewer data
points than dimensions without overfitting.

@ Example: Modelling a stick man in 102 dimensions with 55
data points!

Neil Lawrence The Gaussian Processes Latent Variable Model



GP-LVM Mathematical Foundations
Examples

Stick Man I

Figure: The latent space for the stick man motion capture data.
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Examples

Stick Man I

Figure: The latent space for the stick man motion capture data.
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Back Constraints
Dynamics

Extensions Hierarchical GP-LVM

Back Constraints |

Local Distance Preservation [Lawrence and Quifionero Candela, 2006]

@ Most dimensional reduction techniques preserve local
distances.

@ The GP-LVM does not.
@ GP-LVM maps smoothly from latent to data space.

e Points close in latent space are close in data space.
e This does not imply points close in data space are close in
latent space.

@ Kernel PCA maps smoothly from data to latent space.

e Points close in data space are close in latent space.
e This does not imply points close in latent space are close in

data space. g
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Back Constraints
Dynamics

Extensions Hierarchical GP-LVM

Back Constraints Il

Forward Mapping (demBackMapping in oxford toolbox)

@ Mapping from 1-D latent space to 2-D data space.

y1=x>—05, yp=-x>+05

0.
1.5 0
1 -0.4
— N
=N =N
0.5 -1
0 -1
- -1 [ 1 -1 [ 1
x x
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Back Constraints
Dynamics

Extensions Hierarchical GP-LVM

Back Constraints Il

Forward Mapping (demBackMapping in oxford toolbox)

@ Mapping from 1-D latent space to 2-D data space.

y1=x>—05, yp=-x>+05

1.5 0
1 -0.
— N
=N =N
o -1
0 -1
- -1 [ 1 -1 [ 1
x x
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Back Constraints
Extensions Dynamics
xtension Hierarchical GP-LVM

Back Constraints Il

Backward Mapping (demBackMapping in oxford toolbox)

@ Mapping from 2-D data space to 1-D latent.

x=05(y2+y3 +1)

IS
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Back Constraints Il

Backward Mapping (demBackMapping in oxford toolbox)

@ Mapping from 2-D data space to 1-D latent.

x=05(y2+y3 +1)
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NeuroScale

Multi-Dimensional Scaling with a Mapping

@ Lowe and Tipping [1997] made latent positions a function of
the data.

xjj = fj (yii w)
@ Function was either multi-layer perceptron or a radial basis
function network.
@ Their motivation was different from ours:

e They wanted to add the advantages of a true mapping to
multi-dimensional scaling.
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Back Constraints in the GP-LVM

@ We can use the same idea to force the GP-LVM to respect
local distances.[Lawrence and Quifionero Candela, 2006]

e By constraining each x; to be a ‘smooth’ mapping from y;
local distances can be respected.

@ This works because in the GP-LVM we maximise wrt latent
variables, we don't integrate out.
@ Can use any ‘smooth’ function:

© Neural network.
@ RBF Network.
© Kernel based mapping.
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Optimising BC-GPLVM

Computing Gradients

@ GP-LVM normally proceeds by optimising
L(X) = log p(Y|X)

with respect to X using %.

@ The back constraints are of the form

Xij = f.—f(yi,:; B)

where B are parameters.

@ We can compute % via chain rule and optimise parameters of
mapping. g
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Motion Capture Results

demStickl and demStick3

Figure: The latent space for the motion capture data with (right) and
without (/eft) dynamics. The dynamics us a Gaussian process with an
RBF kernel. g
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Motion Capture Results

demStickl and demStick3

Figure: The latent space for the motion capture data with (right) and
without (/eft) dynamics. The dynamics us a Gaussian process with an
RBF kernel. g
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Stick Man Results

demStickResults

(a) (b) (c) (d)

PrOJectlon into data space from four pomts in the latent space. The
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Adding Dynamics

MAP Solutions for Dynamics Models

@ Data often has a temporal ordering.
@ Markov-based dynamics are often used.
@ For the GP-LVM

e Marginalising such dynamics is intractable.
e But: MAP solutions are trivial to implement.

@ Many choices: Kalman filter, Markov chains etc..

e Wang et al. [2006] suggest using a Gaussian Process.
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Gaussian Process Dynamics

GP-LVM with Dynamics

@ Autoregressive Gaussian process mapping in latent space
between time points.

&

t

|

Neil Lawrence The Gaussian Processes Latent Variable Model



Back Constraints
Dynamics

Extensions Hierarchical GP-LVM

Gaussian Process Dynamics

GP-LVM with Dynamics

@ Autoregressive Gaussian process mapping in latent space
between time points.

il

0 t+1
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Gaussian Process Dynamics

GP-LVM with Dynamics

@ Autoregressive Gaussian process mapping in latent space
between time points.

t t+1
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Motion Capture Results

demStickl and demStick?2

Figure: The latent space for the motion capture data without dynamics
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Motion Capture Results

demStickl and demStick?2

(left), with auto-regressive dynamics (right) based on an RBF kernel. g

Neil Lawrence The Gaussian Processes Latent Variable Model



Back Constraints
Dynamics

Extensions i archical GP-LVM

Neil Lawrence The Gaussian Processes Latent Variable Model




Back Constraints
Dynamics

Extensions Hierarchical GP-LVM

Regressive Dynamics

Inner Groove Distortion

@ Autoregressive unimodal
dynamics, p (X¢|x¢—1) -
@ Forces spiral visualisation.

@ Poorer model due to inner
groove distortion.
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Regressive Dynamics

Direct use of Time Variable

@ Instead of auto-regressive dynamics, consider regressive
dynamics.

@ Take t as an input, use a prior p (X|t).

@ User a Gaussian process prior for p (X|t).

@ Also allows us to consider variable sample rate data.
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Motion Capture Results

demStickl, demStick?2 and demStick5

Figure: The latent space for the motion capture data without dynamics
(left), with auto-regressive dynamics (middle) and with regressive
dynamics (right) based on an RBF kernel.
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Motion Capture Results

demStickl, demStick2 and demStickb

Figure: The latent space for the motion capture data without dynamics
(feft), with auto-regressive dynamics (middle) and with regressive
dynamics (right) based on an RBF kernel.
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Hierarchical GP-LVM

Stacking Gaussian Processes

@ Regressive dynamics provides a simple hierarchy.

o The input space of the GP is governed by another GP.
@ By stacking GPs we can consider more complex hierarchies.
@ ldeally we should marginalise latent spaces

o In practice we seek MAP solutions.
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Two Correlated Subjects

A 8
Both Subjects
R

£ 0 G
of % B

o
) iﬂx > /}Ja\ /}/
Subject 1 Subject 2
e 1

2 )
T+

Figure: Hierarchical model of a 'high five'. g
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Within Subject Hierarchy

/AN

head

abdomen

ight
left arm (LOSETD) leftleg  right leg

Figure: Decomposition of a subject.
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Single Subject Run/Walk

549
141

Figure: Hierarchical model of a walk and a run.
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Conclusions

Summary

@ GP-LVM is a Probabilistic Non-Linear Generalisation of PCA.

@ Works Effectively as a Probabilistic Model in High
Dimensional Spaces.

@ Back constraints can be introduced to force local distance
preservation.

@ Dynamics can be introduced for modelling data with a
temporal structure.
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Linear Back Constraints
Supplementary Material Oil Flow Data

Vowels with Back Constraints

WiFi SLAM

Non-Gaussian Data

Initialisation

‘Swiss Roll’

is

Figure: The ‘Swiss Roll’ data set is data in three dimensions that
inherently two dimensional. g
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Linear Back Constraints
Supplementary Material Oil F ta

Vowels with Back Constraints

WiFi SLAM

Non-Gaussian Data

Initialisation |l

uality of solution is Initialisatio

Figure: Left: Swiss roll solution initalised by PCA. Right: Swiss roll
solution initialised by Isomap.

Neil Lawrence The Gaussian Processes Latent Variable Model




Initialisation

Linear Back Constraints
Supplementary Material Oil Flow Data

Vowels with Back Constraints

WiFi SLAM

Non-Gaussian Data

Linear Back Constraints |

@ Special case of back constraints is a /inear back constraint.

X=YB

where B € RI*9.

@ Maximise the likelihood with respect to the projection matrix
B.

@ Seems strange to sacrifice the ‘non-linearity’ of the model in
this way.

@ Motivate this through a digits data set.
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Non-Gaussian Data

Linear Back Constraints Il

Digits Model with Linear Back Constraints

S E
=1 K]
Y
w4 b1
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Initialisation

Linear Back Constraints
Supplementary Material Oil Flow Data

Vowels with Back Constraints

WiFi SLAM

Non-Gaussian Data

Linear Back Constraints |l

Figure: Linear projections from PCA (/eft) and linear back constrained
GP-LVM (right)
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Back Constraints

Non-Gaussian Data

1-Nearest Neighbour in X

Comparison for increasing latent dimensionality

q 2 3 | 4
e 131 | 115 | 47
Errors
Linear
constrained 79 60 | 39
GP-LVM Errors

c.f. 24 errors in data space
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Vowels with Back Constraints

WiFi SLAM

Non-Gaussian Data

Oil Data |

Example Data set

@ Oil flow data [Bishop and James, 1993].

Three phases of flow (stratified, annular, homogenous).
Twelve measurement probes.

1000 data points.

We sub-sampled to 100 data points

Compare, with KPCA, MDS, Sammon mappings, PCA and
GTM.
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Non-Gaussian Data

QOil Data Il
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(d) GTM (e) Kernel PCA (f) GP-LVM

Neil Lawrence The Gaussian Processes Latent Variable Model




Initialisation

Linear Back Constraints
Supplementary Material Oil Flow Data

Vowels with Back Constraints

WiFi SLAM

Non-Gaussian Data

Oil Data
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Figure: Left PCA, right Non-metric MDS
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Linear Back Constraints
Supplementary Material Oil Flow Data

Vowels with Back Constraints

WiFi SLAM

Non-Gaussian Data

Oil Data I
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Figure: Left Sammon Mapping, right GTM
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Oil Data I
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Initialisation

Linear Back Constraints
Supplementary Material Oil Flow Data

Vowels with Back Constraints

WiFi SLAM

Non-Gaussian Data
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Figure: Left Kernel PCA, right GP-LVM
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Linear Back Constraints
Supplementary Material Oil Flow Data

Vowels with Back Constraints

WiFi SLAM

Non-Gaussian Data

QOil Data IV

Nearest neighbour errors in X space

@ Nearest neighbour classification in latent space.

Method | PCA | Non-metric MDS | Sammon Mapping
Errors 20 13 6
Method | GTM* Kernel PCA* GP-LVM
Errors 7 13 4

* These models require parameter selection.
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Vowels with Back Constraints

WiFi SLAM

Non-Gaussian Data

Full Oil Data Set |

-1 -0.5 0 0:5
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Initialisation
Linear Back Constraints

Supplementary Material Oil Flow Data
Vowels with Back Constraints

WiFi SLAM
Non-Gaussian Data

Full Oil Data Set Il

Nearest Neighbour error in X

@ Nearest neighbour classification in latent space.

Method | PCA | GTM | GP-LVM
Errors 162 11 1

cf 2 errors in data space.
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Vowels with Back Constraints

WiFi SLAM

Non-Gaussian Data

Vowel Data

Vocal Joystick Data

@ Vowel sounds from a vocal joystick system [Bilmes et al., 2006].
e http://ssli.ee.washington.edu/vj
@ Vowels are from a single speaker and represented as:

o cepstral coefficients (12 dimensions) and
o 'deltas’ (further 12 dimensions).

@ 2700 data points in total (300 for each vowel).
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Linear Back Constraints
Supplementary Material Oil Flow Data

Vowels with Back Constraints

WiFi SLAM

Non-Gaussian Data

PCA Results

4-
3,
The different vowels are
2r shown as follows: /a/
red cross /ae/ green
1t K circle /ao/ blue plus
/e/ cyan asterix /i/
o o DD pink square /ibar/
yellow diamond /o/ red
down triangle /schwa/
-1 green up triangle and
5 /u/ blue left triangle.
% : 5 ¢
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GP-LVM Results

demVowels?2

The different vowels are
shown as follows: /a/
red cross /ae/ green
circle /ao/ blue plus

/e/ cyan asterix /i/
pink square /ibar/
yellow diamond /o/ red
down triangle /schwa/
green up triangle and
/u/ blue left triangle.
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Vowels with Back Constraints

WiFi SLAM

Non-Gaussian Data

Isomap Results

demVowelsIsomap

1.5}
1,
The different vowels are
0.5+ shown as follows: /a/
red cross /ae/ green
(0]3 circle /ao/ blue plus
/e/ cyan asterix /i/
-0.5¢ pink square /ibar/
yellow diamond /o/ red
-1F down triangle /schwa/
e green up triangle and
-1.5¢ P, /u/ blue left triangle.
_2,
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Non-Gaussian Data

BC-GPLVM Results

The different vowels are
shown as follows: /a/
red cross /ae/ green
circle /ao/ blue plus
/e/ cyan asterix /i/
pink square /ibar/
yellow diamond /o/ red
down triangle /schwa/
green up triangle and
/u/ blue left triangle.

-1 -0.5 0 0.5 g
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Non-Gaussian Data

1-Nearest Neighbour in X

Comparison of the Approaches

@ Nearest neighbour classification in latent space.

Method | GP-LVM | Isomap | BC-GP-LVM
Errors 226 458 155

cf 24 errors in data space.
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Non-Gaussian Data

Robot SLAM |

Navigating by WiFi

@ Wireless access point signal strengths measured by robot
moving around building.
e 215 separate signal strength readings.
o 30 separate access points.
@ Robot moves in two dimensions so we expect data to be
inherently 2-D.
@ Learn GP-LVM, GP-LVM with Dynamics, back constrained
GP-LVM and back constrained GP-LVM with dynamics.[Ferris
et al., 2007]
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bot SLAM I

05 0 05 1

(b) Standard GP-LVM

-15 -1 -05 0 05 1 15 2

c) Standard GP-LVM d) Standard GP-LVM
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Non-Gaussian Data

Modelling Binary Data

@ A common form of non-Gaussian data is binary data.

o Can use Assumed Density Filtering to model binary data.
e This can also easily be extended to the Expectation
Propagation Algorithm Minka [2001].

@ Practical consquences:

e d times slower.
e requires d times more storage.
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Modelling Binary Twos

Cedar CD ROM digits

@ We model 700 examples of binary 8x8 handwritten twos.

@ Use a standard GP-LVM (a Gaussian noise assumption).

@ Compare with ADF approximation for the Bernoulli noise
model.
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Non-Gaussian Data

Twos Results |

(a) Gaussian Noise Model (b) Bernoulli Noise Model

Figure:
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Twos Results Il

Reconstruction of Deleted Pixels

2 ALl Aad22L LA IALL L E A
AL I LR T I RET LT LRT LI A
ALl A s L F 48 1L LS E A
2 d kS VLA dAREA AR AT LA
A AL E L A AR L FTLIALLES I

’ Reconstruction Method | Pixel Error Rate ‘

GP-LVM Bernoulli noise 23.5%
GP-LVM Gaussian noise 35.9%
Missing pixels ‘not ink’ 51.5%
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