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Outline

© Motivation
@ Statistical Interpretation of Inverse Problem

@ Examples

© Extensions
@ Back Constraints

@ Dynamics
@ Hierarchical GP-LVM

© Conclusions

@ Summary
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Online Resources

All source code and slides are available online

@ This talk available from my home page (see talks link on

left hand side).
@ MATLAB examples in the ‘oxford" toolbox (vrs 0.131),

demGplvmTalk.

e http://www.cs.man.ac.uk/ “neill/oxford/.

@ And the ‘fgplvm’ toolbox (vrs 0.15).
o http://www.cs.man.ac.uk/ " neill/fgplvm/.

@ MATLAB commands used for examples given in
typewriter font.
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Bayes' Rule

Posterior Distribution over Variables

The Universi

P (Y, W) p(X)
PIXIY, W) === FTw)

Y— data
X— latent variables

W— parameters

e.g. for EEG signals X is true source signal, Y is observed
signals and W is a mixing matrix and noise.
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g— dimension of latent/embedded space
d— dimension of data space
n— number of data points

) y:,d] S §Rn><d

centred data, Y = [y .,... ,y,,,;]T =[y.1,...
’x:7q] € %an

latent variables, X = [xq.,. .. ,x,,,;]T =[x.1,...
mapping matrix, W € RIx9

a; . is a vector from the ith row of a given matrix A
a.j is a vector from the jth row of a given matrix A
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Reading Notation

The Universi

X and Y are design matrices

e Covariance given by n=1YTY.
@ Inner product matrix given by YYT.

u

N)
yel
?



ity
€r

The Universi
of Manchest

Linear Dimensionality Reduction

Linear Latent Variable Model

@ Represent data, Y, with a lower dimensional set of latent
variables X.
@ Assume a linear relationship of the form

yi. = Wx;. +n;.,

where

Ni,: ~ N (0,0’2|) .
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Probabilistic PCA [Tipping and

Bishop, 1999, Roweis, 1998|
@ Define linear-Gaussian
relationship between
latent variables and data.

Linear Latent Variable Model

n
p(YlX,W) = H N (Yi,:|wxi,:y0'2|)
i=1
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Probabilistic PCA [Tipping and

Bishop, 1999, Roweis, 1998|
@ Define linear-Gaussian
relationship between
latent variables and data.

o Standard Latent variable
approach:

Linear Latent Variable Model

n
p(Y|X7W) = H N (Yi,:|WXi,:,02|)

i=1
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Linear Latent Variable Model

Probabilistic PCA [Tipping and

Bishop, 1999, Roweis, 1998|
@ Define linear-Gaussian
relationship between
latent variables and data.

o Standard Latent variable
approach:

o Define Gaussian prior
over latent space, X.

n
p(YIX,W) =[N (yi:[Wxi.,o?1)
=1

P(X) = ]___[ N (xi,:|07 I)
i=1
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Linear Latent Variable Model

Probabilistic PCA [Tipping and

Bishop, 1999, Roweis, 1998|
@ Define linear-Gaussian

relationship between
latent variables and data.

@ Standard Latent variable
approach:
o Define Gaussian prior
over latent space, X.
o Integrate out /atent
variables.

p(YIX,W) =[N (i Wxi.,o?1)

i=1
p(X)=TIN(il0,1)
=l

n
p(YIW) =N (y;7:|0,WWT + a2|)
i=1
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Linear Latent Variable Model |l

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop,

p(YIW) =T]N (y,-,:|0,wa + g2|)
=1l

1999
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Linear Latent Variable Model |l

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

n
p(YIW) =N (y,00,C), C=wwT 452
i=1

1
log p(Y|W) = —g log |C| — Etr (C_IYTY) + const.

If Uq are first g principal eigenvectors of n=YTY and the corresponding
eigenvalues are Aq,

W=UVT, L= (A —o02l)?

where V is an arbitrary rotation matrix.
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Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

n
P(le,W) = H N (y,',:|WXi,:,02|)
i=1




ity
€r

The Universi
of Manchest

Linear Latent Variable Model |

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

@ Novel Latent variable
approach:

n
P(le,W) = H N (Yi,:|WXi,:,02|)
i=1
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Linear Latent Variable Model |

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

@ Novel Latent variable
approach:

o Define Gaussian prior
over parameters, W.

n
p(YIX,W) =[N (yi|Wx.,o?1)
i=1

d
p(W) = H N (Wi,:|07 I)

i=1
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Linear Latent Variable Model |

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

@ Novel Latent variable
approach:

o Define Gaussian prior
over parameters, W.
o Integrate out

parameters.

n
p(YIX,W) =[N (yi.Wx.,o?1)

i=1
d

p(W) = H N (Wi,:|07 I)
i=1

d
p(YIX) =[N (y;,j|0,xxT + 0'2I)
Jj=1
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Linear Latent Variable Model 1V

Dual Probabilistic PCA Max. Likelihood Soln [Lawrence, 2004, 2005]

d
p(YIX) =[N (y:,j|o, xxT 4+ azl)
j=1
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Linear Latent Variable Model 1V

Dual Probabilistic PCA Max. Likelihood Soln [Lawrence, 2004, 2

d
p(YIX) =[N (y.40.K), K=XXT +02
j=1

log p(Y|X) = —g log |K| — %tr (K_lYYT) + const.

If U; are first g principal eigenvectors of d=1YYT and the corresponding
eigenvalues are Aq,

X=UvT, L= (Ag—o%)2

where V is an arbitrary rotation matrix.
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Linear Latent Variable Model 1V

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

n
p(YIW) =N (y,00,C), C=wwT 452
i=1

1
log p(Y|W) = —g log |C| — Etr (C_IYTY) + const.

If Uq are first g principal eigenvectors of n=YTY and the corresponding
eigenvalues are Aq,

W=UVT, L= (A —o02l)?

where V is an arbitrary rotation matrix.
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Equivalence of Formulations

The Eigenvalue Problems are equivalent

@ Solution for Probabilistic PCA (solves for the mapping)

Yy'yu,=u,A, w=u,v'
@ Solution for Dual Probabilistic PCA (solves for the latent
positions)
vylu, =uA,  x=ulv'

e Equivalence is from

_1
Us=YTUA,
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Gaussian Process (GP)

Prior for Functions

@ Probability Distribution over Functions
e Functions are infinite dimensional.
o Prior distribution over instantiations of the function: finite
dimensional objects.

@ Can prove by induction that GP is ‘consistent’.

@ Mean and Covariance Functions

o Instead of mean and covariance matrix, GP is defined by
mean function and covariance function.

o Mean function often taken to be zero or constant.

e Covariance function must be positive definite.

o Class of valid covariance functions is the same as the class

of Mercer kernels. )
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Gaussian Processes |l

Zero mean Gaussian Process

@ A (zero mean) Gaussian process likelihood is of the form

p(yIX) = N(y[0,K),

where K is the covariance function or kernel.

@ The linear kernel with noise has the form
K =xXT + 02

@ Priors over non-linear functions are also possible.

o To see what functions look like, we can sample from the
prior process.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

@ Novel Latent variable
approach:

o Define Gaussian prior
over parameteters, W.
o Integrate out

parameters.

n
p(YIX,W) =[N (yi.Wx.,o?1)

i=1
d

p(W) = H N (Wi,:|07 I)
i=1

d
p(YIX) =[N (y;,j|0,xxT + 0'2I)
Jj=1
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Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

d

p(YIX) =[N (y;,j|0,xxT + 02I)

=1
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Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

e The covariance matrix
is a covariance

d
p(YIX) =[N (y.j10,K)
=1

K =xXT + 52
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Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

e The covariance matrix
is a covariance

o We recognise it as the
‘linear kernel'.

d
p(YIX) =TT N (y.10,K)
j=1

K =xXT + 52

This is a product of Gaussian processes

with linear kernels.
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Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

o The covariance matrix
is a covariance
function.

o We recognise it as the
‘linear kernel'.

o We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

Non-Linear Latent Variable Model

d
p(YIX)=]]N(y.,0,K)
1

K =?

Replace linear kernel with non-linear

kernel for non-linear model.
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RBF Kernel

@ The RBF kernel has the form kjj = k (x;.,x;.), where

H — H T HE S
k (xi,:a xj,:) = aexp (— (xl’: X-/")2l2(x’v- x.l;-)) )

@ No longer possible to optimise wrt X via an eigenvalue

problem.
o Instead find gradients with respect to X, a, / and o2 and

optimise using conjugate gradients.
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Applications

Style Based Inverse Kinematics

Facilitating animation through modelling human motion with
the GP-LVM [Grochow et al., 2004]

Tracking using models of human motion learnt with the
GP-LVM [Urtasun et al., 2005, 2006]
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Generalization with less Data than Dimensions

@ Powerful uncertainly handling of GPs leads to suprising
properties.

@ Non-linear models can be used where there are fewer data
points than dimensions without overfitting.

@ Example: Modelling a stick man in 102 dimensions with
55 data points!
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Stick Man I
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demStickl

Figure: The latent space for the stick man motion

capture data.
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Stick Man I

demStickil

1

Figure: The latent space for the stick man motion

capture data.
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Back Constraints |

Local Distance Preservation [Lawrence and Quifionero Candela, 2006]

@ Most dimensional reduction techniques preserve local
distances.

@ The GP-LVM does not.

@ GP-LVM maps smoothly from latent to data space.

e Points close in latent space are close in data space.
e This does not imply points close in data space are close in

latent space.

o Kernel PCA maps smoothly from data to latent space.

e Points close in data space are close in latent space.
o This does not imply points close in latent space are close

in data space.
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Back Constraints Il

Forward Mapping (demBackMapping in oxford toolbox)
@ Mapping from 1-D latent space to 2-D data space.

1= X2 — 0.5, y» = —x2+0.5

Y2

8o
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Back Constraints Il

Forward Mapping (demBackMapping in oxford toolbox)
@ Mapping from 1-D latent space to 2-D data space.

1= X2 — 0.5, y» = —x2+0.5

Y2

8o
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Back Constraints Il

Forward Mapping (demBackMapping in oxford toolbox)
@ Mapping from 1-D latent space to 2-D data space.

1= X2 — 0.5, y» = —x2+0.5

Y2

=

8o
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Back Constraints Il

Backward Mapping (demBackMapping in oxford toolbox)
@ Mapping from 2-D data space to 1-D latent.

x=05(y2 +y2 +1)

— o —

05
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Back Constraints Il

Backward Mapping (demBackMapping in oxford toolbox)
@ Mapping from 2-D data space to 1-D latent.

x=05(y2 +y2 +1)

— o —

e
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Back Constraints Il

Backward Mapping (demBackMapping in oxford toolbox)
@ Mapping from 2-D data space to 1-D latent.

x=05(y2 +y2 +1)

— o —

e
ST
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NeuroScale

Multi-Dimensional Scaling with a Mapping

@ Lowe and Tipping [1997] made latent positions a function
of the data.

xij = f; (yi; w)
@ Function was either multi-layer perceptron or a radial basis
function network.
@ Their motivation was different from ours:

e They wanted to add the advantages of a true mapping to
multi-dimensional scaling.
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Back Constraints in the GP-LVM

Back Constraints

@ We can use the same idea to force the GP-LVM to respect
local distances.[Lawrence and Quifionero Candela, 2006]

e By constraining each x; to be a ‘smooth’ mapping from y;
local distances can be respected.
@ This works because in the GP-LVM we maximise wrt
latent variables, we don't integrate out.

@ Can use any ‘smooth’ function:

© Neural network.
@ RBF Network.
© Kernel based mapping.
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Optimising BC-GPLVM

Computing Gradients

@ GP-LVM normally proceeds by optimising

L(X) = log p(Y[X)

with respect to X using %.
@ The back constraints are of the form

Xij = fJ-'(yi,:; B)

where B are parameters.
@ We can compute % via chain rule and optimise

parameters of mapping.
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Motion Capture Results

demStickl and demStick3

Figure: The latent space for the motion capture data with (right)
and without (/eft) dynamics. The dynamics us a Gaussian process

with an RBF kernel.
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Motion Capture Results

demStickl and demStick3

-06 -04 -02 0 0.2 0.4 0.6

Figure: The latent space for the motion capture data with (right)
and without (/eft) dynamics. The dynamics us a Gaussian process
with an RBF kernel.
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Stick Man Results

demStickResults

(a) (b) (c) (d)

Projection into data space from four points in the latent space. The
inclination of the runner changes becoming more upright.
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Adding Dynamics

MAP Solutions for Dynamics Models

o Data often has a temporal ordering.
@ Markov-based dynamics are often used.
@ For the GP-LVM

e Marginalising such dynamics is intractable.
e But: MAP solutions are trivial to implement.

@ Many choices: Kalman filter, Markov chains etc..

@ Wang et al. [2006] suggest using a Gaussian Process.
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Gaussian Process Dynamics

GP-LVM with Dynamics
@ Autoregressive Gaussian process mapping in latent space
between time points.
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Gaussian Process Dynamics

GP-LVM with Dynamics

@ Autoregressive Gaussian process mapping in latent space

between time points.
L

t t+1
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Gaussian Process Dynamics

GP-LVM with Dynamics

o Autoregressive Gaussian process mapping in latent space
between time points.
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Motion Capture Results

demStickl and demStick?2

Figure: The latent space for the motion capture data without

dynamics (/eft), with auto-regressive dynamics (right) based on an

RRE.I 1
NDT RCTIMcl.
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Motion Capture Results

demStickl and demStick?2

=2 0 2 4

Figure: The latent space for the motion capture data without

RBF kernel.
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Regressive Dynamics

Inner Groove Distortion

@ Autoregressive unimodal
dynamics, p (x¢|x¢—1) -

@ Forces spiral visualisation.

@ Poorer model due to inner
groove distortion.
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Regressive Dynamics

Direct use of Time Variable

@ Instead of auto-regressive dynamics, consider regressive

dynamics.
e Take t as an input, use a prior p (X|t).
@ User a Gaussian process prior for p (X|t).
@ Also allows us to consider variable sample rate data.
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Motion Capture Results

demStickl, demStick?2 and demStick5

Figure: The latent space for the motion capture data without
dynamics (/eft), with auto-regressive dynamics (middle) and with
regressive dynamics (right) based on an RBF kernel.
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Motion Capture Results

demStickl, demStick2 and demStickbh

Figure: The latent space for the motion capture data without
dynamics (/eft), with auto-regressive dynamics (middle) and with
regressive dynamics (right) based on an RBF kernel.
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Hierarchical GP-LVM

Stacking Gaussian Processes

@ Regressive dynamics provides a simple hierarchy.
e The input space of the GP is governed by another GP.

@ By stacking GPs we can consider more complex
hierarchies.
@ ldeally we should marginalise latent spaces

e In practice we seek MAP solutions.
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demHighFivel

Both Subjects
SETE

x
iR Fog
E s

o = q
4 {;axx"cx f(a\ /{k«‘\
Subject 1 Subject 2
xx %% B ' g
™ L ;m\ M\
T é*f
B s id

l
Figure: Hierarchical model of a 'high five'.
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Within Subject Hierarchy

Decomposition of Body
T/

head

o0 abdomen
left arm right arm leftleg right leg

Figure: Decomposition of a subject.
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Single Subject Run/Walk

demRunWalki1

Run Walk

Figure: Hierarchical model of a walk and a run.
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Summary

@ We maximised latent variables integrated out parameters.

@ This allowed us to:

o Optimise latent variables by constrained maximum

likelihood.
o Apply complex dynamics models to the latent space and

seek MAP solutions.
o Build hierarchies of the MAP models for decomposition of

data structure.

u}
o)

I
i
ht
n
)
pe)
i)



MANHlE.SrER

ty

er

The Universi
of Manchest

References

K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popovic. Style-based inverse kinematics. In ACM
Transactions on Graphics (SIGGRAPH 2004), pages 522-531, 2004. doi: 10.1145/1186562.1015755.

N. D. Lawrence. Gaussian process models for visualisation of high dimensional data. In S. Thrun, L. Saul,
and B. Schélkopf, editors, Advances in Neural Information Processing Systems, volume 16, pages
329-336, Cambridge, MA, 2004. MIT Press.

N. D. Lawrence. Probabilistic non-linear principal component analysis with Gaussian process latent variable
models. Journal of Machine Learning Research, 6:1783-1816, Nov 2005.

N. D. Lawrence and J. Quifionero Candela. Local distance preservation in the GP-LVM through back
constraints. In W. Cohen and A. Moore, editors, Proceedings of the International Conference in Machine
Learning, volume 23, pages 513-520. Omnipress, 2006. ISBN 1-59593-383-2. doi:
10.1145/1143844.1143909.

D. Lowe and M. E. Tipping. Neuroscale: Novel topographic feature extraction with radial basis function
networks. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural Information
Processing Systems, volume 9, pages 543-549, Cambridge, MA, 1997. MIT Press.

S. T. Roweis. EM algorithms for PCA and SPCA. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors,
Advances in Neural Information Processing Systems, volume 10, pages 626-632, Cambridge, MA, 1998.
MIT Press.

M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. Journal of the Royal Statistical
Society, B, 6(3):611-622, 1999.

R. Urtasun, D. J. Fleet, A. Hertzmann, and P. Fua. Priors for people tracking from small training sets. In
IEEE International Conference on Computer Vision (ICCV), pages 403-410, Bejing, China, 1721 Oct.
2005. IEEE Computer Society Press.

R. Urtasun, D. J. Fleet, and P. Fua. 3D people tracking with Gaussian process dynamical models. In
Proceedings of the Conference on Computer Vision and Pattern Recognition, pages 238-245, New York,
U.S.A., 17-22 Jun. 2006. IEEE Computer Society Press.

J. M. Wang, D. J. Fleet, and A. Hertzmann. Gaussian process dynamical models. In Y. Weiss, B. Schélkopf,
and J. C. Platt, editors, Advances in Neural Information Processing Systems, volume 18, Cambridge,

MA, 2006. MIT Press. (=] = == HAl



	Motivation
	Statistical Interpretation of Inverse Problem
	Examples

	Extensions
	Back Constraints
	Dynamics
	Hierarchical GP-LVM

	Conclusions
	Summary

	References
	References

