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Online Resources

All source code and slides are available online

This talk available from my home page (see talks link on
left hand side).

MATLAB examples in the ‘oxford’ toolbox (vrs 0.131),
demGplvmTalk.

http://www.cs.man.ac.uk/~neill/oxford/.

And the ‘fgplvm’ toolbox (vrs 0.15).

http://www.cs.man.ac.uk/~neill/fgplvm/.

MATLAB commands used for examples given in
typewriter font.

http://www.cs.man.ac.uk/~neill/oxford/
http://www.cs.man.ac.uk/~neill/fgplvm/
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Bayes’ Rule

Posterior Distribution over Variables

p (X|Y,W) =
p (Y|X,W) p (X)

p (Y|W)

Y— data

X— latent variables

W— parameters

e.g. for EEG signals X is true source signal, Y is observed
signals and W is a mixing matrix and noise.
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Notation

q— dimension of latent/embedded space
d— dimension of data space
n— number of data points

centred data, Y = [y1,:, . . . , yn,:]
T = [y:,1, . . . , y:,d ] ∈ <n×d

latent variables, X = [x1,:, . . . , xn,:]
T = [x:,1, . . . , x:,q] ∈ <n×q

mapping matrix, W ∈ <d×q

ai ,: is a vector from the ith row of a given matrix A
a:,j is a vector from the jth row of a given matrix A
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Reading Notation

X and Y are design matrices

Covariance given by n−1YTY.

Inner product matrix given by YYT.
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Linear Dimensionality Reduction

Linear Latent Variable Model

Represent data, Y, with a lower dimensional set of latent
variables X.

Assume a linear relationship of the form

yi ,: = Wxi ,: + ηi ,:,

where
ηi ,: ∼ N

(
0, σ2I

)
.
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Linear Latent Variable Model

Probabilistic PCA [Tipping and

Bishop, 1999, Roweis, 1998]

Define linear-Gaussian
relationship between
latent variables and data.

Standard Latent variable
approach:

Define Gaussian prior
over latent space, X.
Integrate out latent
variables.

X W

Y

p (Y|X, W) =
nY

i=1

N
`
yi,:|Wxi,:, σ

2I
´
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Linear Latent Variable Model

Probabilistic PCA [Tipping and

Bishop, 1999, Roweis, 1998]

Define linear-Gaussian
relationship between
latent variables and data.

Standard Latent variable
approach:

Define Gaussian prior
over latent space, X.
Integrate out latent
variables.

X W

Y

p (Y|X, W) =
nY

i=1

N
`
yi,:|Wxi,:, σ

2I
´
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Linear Latent Variable Model

Probabilistic PCA [Tipping and

Bishop, 1999, Roweis, 1998]

Define linear-Gaussian
relationship between
latent variables and data.

Standard Latent variable
approach:

Define Gaussian prior
over latent space, X.
Integrate out latent
variables.

X W

Y

p (Y|X, W) =
nY

i=1

N
`
yi,:|Wxi,:, σ

2I
´

p (X) =
nY

i=1

N
`
xi,:|0, I

´
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Linear Latent Variable Model

Probabilistic PCA [Tipping and

Bishop, 1999, Roweis, 1998]

Define linear-Gaussian
relationship between
latent variables and data.

Standard Latent variable
approach:

Define Gaussian prior
over latent space, X.
Integrate out latent
variables.

X W

Y

p (Y|X, W) =
nY

i=1

N
`
yi,:|Wxi,:, σ

2I
´

p (X) =
nY

i=1

N
`
xi,:|0, I

´

p (Y|W) =
nY

i=1

N
“
yi,:|0, WWT + σ2I

”
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Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

X W

Y

p (Y|W) =
nY

i=1

N
“
yi,:|0, WWT + σ2I

”
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Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

p (Y|W) =
nY

i=1

N
`
yi,:|0, C

´
, C = WWT + σ2I

log p (Y|W) = −
n

2
log |C| −

1

2
tr

“
C−1YTY

”
+ const.

If Uq are first q principal eigenvectors of n−1YTY and the corresponding
eigenvalues are Λq ,

W = UqLV
T, L =

`
Λq − σ2I

´ 1
2

where V is an arbitrary rotation matrix.



The
Gaus-
sian
Pro-

cesses
La-
tent
Vari-
able

Model

Linear Latent Variable Model III

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach:

Define Gaussian prior
over parameters, W.
Integrate out
parameters.

W

Y

X

p (Y|X, W) =
nY

i=1

N
`
yi,:|Wxi,:, σ

2I
´
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Linear Latent Variable Model III

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach:

Define Gaussian prior
over parameters, W.
Integrate out
parameters.

W

Y

X

p (Y|X, W) =
nY

i=1

N
`
yi,:|Wxi,:, σ

2I
´
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Linear Latent Variable Model III

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach:

Define Gaussian prior
over parameters, W.
Integrate out
parameters.

W

Y

X

p (Y|X, W) =
nY

i=1

N
`
yi,:|Wxi,:, σ

2I
´

p (W) =
dY

i=1

N
`
wi,:|0, I

´
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Linear Latent Variable Model III

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach:

Define Gaussian prior
over parameters, W.
Integrate out
parameters.

W

Y

X

p (Y|X, W) =
nY

i=1

N
`
yi,:|Wxi,:, σ

2I
´

p (W) =
dY

i=1

N
`
wi,:|0, I

´

p (Y|X) =
dY

j=1

N
“
y:,j |0, XXT + σ2I

”
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Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln [Lawrence, 2004, 2005]

W

Y

X

p (Y|X) =
dY

j=1

N
“
y:,j |0, XXT + σ2I

”
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Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln [Lawrence, 2004, 2005]

p (Y|X) =
dY

j=1

N
`
y:,j |0, K

´
, K = XXT + σ2I

log p (Y|X) = −
d

2
log |K| −

1

2
tr

“
K−1YYT

”
+ const.

If U′
q are first q principal eigenvectors of d−1YYT and the corresponding

eigenvalues are Λq ,

X = U′
qLV

T, L =
`
Λq − σ2I

´ 1
2

where V is an arbitrary rotation matrix.
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Linear Latent Variable Model IV

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

p (Y|W) =
nY

i=1

N
`
yi,:|0, C

´
, C = WWT + σ2I

log p (Y|W) = −
n

2
log |C| −

1

2
tr

“
C−1YTY

”
+ const.

If Uq are first q principal eigenvectors of n−1YTY and the corresponding
eigenvalues are Λq ,

W = UqLV
T, L =

`
Λq − σ2I

´ 1
2

where V is an arbitrary rotation matrix.
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Equivalence of Formulations

The Eigenvalue Problems are equivalent

Solution for Probabilistic PCA (solves for the mapping)

YTYUq = UqΛq W = UqLV
T

Solution for Dual Probabilistic PCA (solves for the latent
positions)

YYTU′
q = U′

qΛq X = U′
qLV

T

Equivalence is from

Uq = YTU′
qΛ

− 1
2

q
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Gaussian Process (GP)

Prior for Functions

Probability Distribution over Functions

Functions are infinite dimensional.
Prior distribution over instantiations of the function: finite
dimensional objects.

Can prove by induction that GP is ‘consistent’.

Mean and Covariance Functions

Instead of mean and covariance matrix, GP is defined by
mean function and covariance function.
Mean function often taken to be zero or constant.
Covariance function must be positive definite.
Class of valid covariance functions is the same as the class
of Mercer kernels.
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Gaussian Processes II

Zero mean Gaussian Process

A (zero mean) Gaussian process likelihood is of the form

p (y|X) = N (y|0,K) ,

where K is the covariance function or kernel.

The linear kernel with noise has the form

K = XXT + σ2I

Priors over non-linear functions are also possible.

To see what functions look like, we can sample from the
prior process.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach:

Define Gaussian prior
over parameteters, W.
Integrate out
parameters.

W

Y

X

p (Y|X, W) =
nY

i=1

N
`
yi,:|Wxi,:, σ

2I
´

p (W) =
dY

i=1

N
`
wi,:|0, I

´

p (Y|X) =
dY

j=1

N
“
y:,j |0, XXT + σ2I

”
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Inspection of the marginal
likelihood shows ...

The covariance matrix
is a covariance
function.
We recognise it as the
‘linear kernel’.
We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

W

Y

X

p (Y|X) =
dY

j=1

N
“
y:,j |0, XXT + σ2I

”
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Inspection of the marginal
likelihood shows ...

The covariance matrix
is a covariance
function.
We recognise it as the
‘linear kernel’.
We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

W

Y

X

p (Y|X) =
dY

j=1

N
`
y:,j |0, K

´

K = XXT + σ2I
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Inspection of the marginal
likelihood shows ...

The covariance matrix
is a covariance
function.
We recognise it as the
‘linear kernel’.
We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

W

Y

X

p (Y|X) =
dY

j=1

N
`
y:,j |0, K

´

K = XXT + σ2I

This is a product of Gaussian processes

with linear kernels.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Inspection of the marginal
likelihood shows ...

The covariance matrix
is a covariance
function.
We recognise it as the
‘linear kernel’.
We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

W

Y

X

p (Y|X) =
dY

j=1

N
`
y:,j |0, K

´
K =?

Replace linear kernel with non-linear

kernel for non-linear model.
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Non-linear Latent Variable Models

RBF Kernel

The RBF kernel has the form kij = k (xi ,:, xj ,:) , where

k (xi ,:, xj ,:) = α exp

(
−

(xi ,: − xj ,:)
T (xi ,: − xj ,:)

2l2

)
.

No longer possible to optimise wrt X via an eigenvalue
problem.

Instead find gradients with respect to X, α, l and σ2 and
optimise using conjugate gradients.
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Applications

Style Based Inverse Kinematics

Facilitating animation through modelling human motion with
the GP-LVM [Grochow et al., 2004]

Tracking

Tracking using models of human motion learnt with the
GP-LVM [Urtasun et al., 2005, 2006]

.
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Stick Man

Generalization with less Data than Dimensions

Powerful uncertainly handling of GPs leads to suprising
properties.

Non-linear models can be used where there are fewer data
points than dimensions without overfitting.

Example: Modelling a stick man in 102 dimensions with
55 data points!
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Stick Man II

demStick1

Figure: The latent space for the stick man motion capture data.
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Stick Man II

demStick1

−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5

Figure: The latent space for the stick man motion capture data.
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Back Constraints I

Local Distance Preservation [Lawrence and Quiñonero Candela, 2006]

Most dimensional reduction techniques preserve local
distances.

The GP-LVM does not.

GP-LVM maps smoothly from latent to data space.

Points close in latent space are close in data space.
This does not imply points close in data space are close in
latent space.

Kernel PCA maps smoothly from data to latent space.

Points close in data space are close in latent space.
This does not imply points close in latent space are close
in data space.
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Back Constraints II

Forward Mapping (demBackMapping in oxford toolbox)

Mapping from 1-D latent space to 2-D data space.

y1 = x2 − 0.5, y2 = −x2 + 0.5

−1 0 1
−0.5

0

0.5

1

1.5

2

x

y
1

−1 0 1
−2

−1.5

−1

−0.5

0

0.5

x

y
2
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Back Constraints II

Forward Mapping (demBackMapping in oxford toolbox)

Mapping from 1-D latent space to 2-D data space.

y1 = x2 − 0.5, y2 = −x2 + 0.5

−1 0 1
−0.5

0

0.5

1

1.5

2

x

y
1

−1 0 1
−2

−1.5

−1

−0.5

0

0.5

x

y
2
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Back Constraints II

Forward Mapping (demBackMapping in oxford toolbox)

Mapping from 1-D latent space to 2-D data space.

y1 = x2 − 0.5, y2 = −x2 + 0.5

−1 0 1
−0.5

0

0.5

1

1.5
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x

y
1
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x

y
2
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Back Constraints II

Backward Mapping (demBackMapping in oxford toolbox)

Mapping from 2-D data space to 1-D latent.

x = 0.5
`
y2
1 + y2

2 + 1
´

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

x

y
1

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

x

y
2
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Back Constraints II

Backward Mapping (demBackMapping in oxford toolbox)

Mapping from 2-D data space to 1-D latent.

x = 0.5
`
y2
1 + y2

2 + 1
´

0 0.5 1 1.5 2
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0
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Back Constraints II

Backward Mapping (demBackMapping in oxford toolbox)

Mapping from 2-D data space to 1-D latent.

x = 0.5
`
y2
1 + y2

2 + 1
´

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

x

y
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NeuroScale

Multi-Dimensional Scaling with a Mapping

Lowe and Tipping [1997] made latent positions a function
of the data.

xij = fj (yi ;w)

Function was either multi-layer perceptron or a radial basis
function network.

Their motivation was different from ours:

They wanted to add the advantages of a true mapping to
multi-dimensional scaling.



The
Gaus-
sian
Pro-

cesses
La-
tent
Vari-
able

Model

Back Constraints in the GP-LVM

Back Constraints

We can use the same idea to force the GP-LVM to respect
local distances.[Lawrence and Quiñonero Candela, 2006]

By constraining each xi to be a ‘smooth’ mapping from yi

local distances can be respected.

This works because in the GP-LVM we maximise wrt
latent variables, we don’t integrate out.

Can use any ‘smooth’ function:

1 Neural network.
2 RBF Network.
3 Kernel based mapping.
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Optimising BC-GPLVM

Computing Gradients

GP-LVM normally proceeds by optimising

L (X) = log p (Y|X)

with respect to X using dL
dX .

The back constraints are of the form

xij = fj (yi ,:;B)

where B are parameters.

We can compute dL
dB via chain rule and optimise

parameters of mapping.
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Motion Capture Results

demStick1 and demStick3

Figure: The latent space for the motion capture data with (right)
and without (left) dynamics. The dynamics us a Gaussian process
with an RBF kernel.

.
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Motion Capture Results

demStick1 and demStick3
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Figure: The latent space for the motion capture data with (right)
and without (left) dynamics. The dynamics us a Gaussian process
with an RBF kernel..
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Stick Man Results

demStickResults

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1.5
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−0.5

0

0.5

1

(a)

(b)

(c)

(d)

(a) (b) (c) (d)

Projection into data space from four points in the latent space. The
inclination of the runner changes becoming more upright.
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Adding Dynamics

MAP Solutions for Dynamics Models

Data often has a temporal ordering.

Markov-based dynamics are often used.

For the GP-LVM

Marginalising such dynamics is intractable.
But: MAP solutions are trivial to implement.

Many choices: Kalman filter, Markov chains etc..

Wang et al. [2006] suggest using a Gaussian Process.
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Gaussian Process Dynamics

GP-LVM with Dynamics

Autoregressive Gaussian process mapping in latent space
between time points.

t
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Gaussian Process Dynamics

GP-LVM with Dynamics

Autoregressive Gaussian process mapping in latent space
between time points.

t t + 1
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Gaussian Process Dynamics

GP-LVM with Dynamics

Autoregressive Gaussian process mapping in latent space
between time points.

t t + 1
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Motion Capture Results

demStick1 and demStick2

Figure: The latent space for the motion capture data without
dynamics (left), with auto-regressive dynamics (right) based on an
RBF kernel.
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Motion Capture Results

demStick1 and demStick2
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Figure: The latent space for the motion capture data without
dynamics (left), with auto-regressive dynamics (right) based on an
RBF kernel.
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Regressive Dynamics

Inner Groove Distortion

Autoregressive unimodal
dynamics, p (xt |xt−1) .

Forces spiral visualisation.

Poorer model due to inner
groove distortion.
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Regressive Dynamics

Direct use of Time Variable

Instead of auto-regressive dynamics, consider regressive
dynamics.

Take t as an input, use a prior p (X|t).
User a Gaussian process prior for p (X|t) .

Also allows us to consider variable sample rate data.
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Motion Capture Results

demStick1, demStick2 and demStick5

Figure: The latent space for the motion capture data without
dynamics (left), with auto-regressive dynamics (middle) and with
regressive dynamics (right) based on an RBF kernel.
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Motion Capture Results

demStick1, demStick2 and demStick5
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Figure: The latent space for the motion capture data without
dynamics (left), with auto-regressive dynamics (middle) and with
regressive dynamics (right) based on an RBF kernel.
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Hierarchical GP-LVM

Stacking Gaussian Processes

Regressive dynamics provides a simple hierarchy.

The input space of the GP is governed by another GP.

By stacking GPs we can consider more complex
hierarchies.

Ideally we should marginalise latent spaces

In practice we seek MAP solutions.
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Two Correlated Subjects

demHighFive1

Figure: Hierarchical model of a ’high five’.
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Within Subject Hierarchy

Decomposition of Body

Figure: Decomposition of a subject.
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Single Subject Run/Walk

demRunWalk1

Figure: Hierarchical model of a walk and a run.
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Summary

We maximised latent variables integrated out parameters.

This allowed us to:

Optimise latent variables by constrained maximum
likelihood.
Apply complex dynamics models to the latent space and
seek MAP solutions.
Build hierarchies of the MAP models for decomposition of
data structure.
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