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The Model

A Probabilistic Non-linear PCA

@ PCA has a probabilistic interpretation [Tipping and Bishop, 1999].

o It is difficult to ‘non-linearise’.

Dual Probabilistic PCA

@ We present a new probabilistic interpretation of PCA [Lawrence, 2005].
@ This interpretation can be made non-linear.

@ The result is non-linear probabilistic PCA.
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g— dimension of latent/embedded space
d— dimension of data space
n— number of data points
centred data, Y = [y1., ... ,y,,’:]T =[y.1,---,y.4] € R
latent variables, X =[xy, .. ,x,,,:]T =[x.1,...,%X.q] € R"
mapping matrix, W € R9*49

a; . is a vector from the ith row of a given matrix A
a.; is a vector from the jth row of a given matrix A

X and Y are design matrices

Covariance given by n71YTY.
Inner product matrix given by YYT.
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Linear Dimensionality Reduction

Linear Latent Variable Model
@ Represent data, Y, with a lower dimensional set of latent variables X.

Assume a linear relationship of the form
Yi: = Wxi,: + "7,',;,

where
Ni: ~ N (0,0’2|) .
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Linear Latent Variable Model

Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

n
p(YIX,W) =[N (yi:|Wx;.,o?1)
i=1
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Linear Latent Variable Model

Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

@ Standard Latent variable
approach:

n
p(YIX,W) =[N (yi:|Wx;.,o?1)
i=1
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Linear Latent Variable Model

Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

e Standard Latent variable

n
approach: P (YIX, W) = Hl N (i |Wxi ., o1)
» Define Gaussian prior
over latent space, X. p(X) = f[ N (x;.]0,1)
= i,: 1Y,
i=1
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Linear Latent Variable Model

Probabilistic PCA

@ Define linear-Gaussian
relationship between

latent variables and data.

n
p(YIX, W) =[N (yi:IWx;.,o?1)

@ Standard Latent variable 1

approach:

» Define Gaussian prior p(X) =[N (xi:l0,1)
over latent space, X. i=1
> Integrate out /atent

n
variables. p(YIW)=][N (y;,:IO, ww ¢ azl)

i=1
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Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

p(YIW) = H N (i o, wwT 4 o21)
i=1

n
p(YIW) =[N (v::0,C), C=wwT +52
i=1
1
log p(Y|W) = - log |C| — =tr (C’IYTY) + const.
2 2
If Uq are first g principal eigenvectors of n=1YTY and the corresponding eigenvalues are Aq,
1
W=UgVT, L= (Ag—0?)2
where V is an arbitrary rotation matrix.
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Linear Latent Variable Model Il|

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

p(YIX,W) =[N (yi:|Wx;.,o?1)
i=1
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Linear Latent Variable Model Il|

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

@ Novel Latent variable
approach:

p(YIX,W) =[N (yi:|Wx;.,o?1)
i=1
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Linear Latent Variable Model Il|

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

@ Novel Latent variable

n
approach: p(YIX, W) = TN (yi.|Wx; ., 1)
i=1
» Define Gaussian prior
over parameters, W. d
P p(W) =TT N (w;.0.1)

i=1
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Linear Latent Variable Model Il|

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between

latent variables and data. n
p(Y|X,W) = H N (Yi,;|WXi,:,02|)

@ Novel Latent variable Py
approach:
d
» Define Gaussian prior p(W)=]]N(w.[0,1)
over parameters, W. i=1
> Integrate out d
parameters. p(YX)=T]N (Y:J|0: xxT + ‘72')
Jj=1
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Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

n
p(YIW) =T N (y,-,:|o,wa + 02I)
i=1

p(YIW) =[N (y::0,C), C=wwT 452
i=1

log p (Y|W) = _g log |C| — %tr (c—lvTY) + const.
If Uq are first g principal eigenvectors of n=1YTY and the corresponding eigenvalues are Ay,
W=UvT, L= (A —o2)?
where V is an arbitrary rotation matrix.
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Dual Probabilistic PCA Max. Likelihood Soln [Lawrence, 2004]

d
p(Y1X) = [T N (v.410,XXT +o21)
j=1

d
p(YIX) =[N (y.0.K), K=xxT+0
j=1

d 1
logp(Y|X) = ——log |K| — =tr (K_IYYT) + const.
2 2
If Uﬁ, are first g principal eigenvectors of d=YYT and the corresponding eigenvalues are Ay,
1
X=U,vT L= (A—0?)2
where V is an arbitrary rotation matrix.
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Equivalence of Formulations

The Eigenvalue Problems are equivalent
@ Solution for Probabilistic PCA (solves for the mapping)
Y'yu, =u,A, W=ugLv'
@ Solution for Dual Probabilistic PCA (solves for the latent positions)
yylu, =uA,  X=uULvT

@ Equivalence is from
_1
Ug=YTUA,
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Gaussian Process (GP)

Prior for Functions

@ Probability Distribution over Functions
@ Functions are infinite dimensional.

» Prior distribution over instantiations of the function: finite dimensional
objects.

@ Can prove by induction that GP is ‘consistent’.
@ Mean and Covariance Functions

> Instead of mean and covariance matrix, GP is defined by mean function
and covariance function.
Mean function often taken to be zero or constant.

» Covariance function must be positive definite.

» Class of valid covariance functions is the same as the class of Mercer
kernels.
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Gaussian Processes |l

Zero mean Gaussian Process

@ A (zero mean) Gaussian process likelihood is of the form

p(y|X) = N(y|0,K),

where K is the covariance function or kernel.

@ The linear kernel with noise has the form
K=XXT 402

@ Priors over non-linear functions are also possible.

» To see what functions look like, we can sample from the prior process.

Neil Lawrence () Human Dimensional Reduction



Covariance Samples

demCovFuncSample

o

Figure: linear kernel, K = XXT
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Covariance Samples

demCovFuncSample

Figure: RBF kernel, ki j = acexp <—% [Ix; — xj||2>, with / =0.32, a =1
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Covariance Samples

demCovFuncSample

6

4

1 -0.5 0 0.5 1

Figure: RBF kernel, k; j = cexp (—% [Ix; — xj||2>, with /=1, a=1
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Covariance Samples

demCovFuncSample

1 -0.5 0 0.5 1

Figure: RBF kernel, k; j = aexp (—% [Ixi — xj||2), with =03, a=4
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Covariance Samples

demCovFuncSample

(2]

1 05 0 05 1
T
. L Ty th .
Figure:  MLP kernel, k;j = asin ! WX Xt , with o = 8,
\/(wx;rx;+b+1)(wx;rxj'+b+1)

w = 100 and b = 100
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Covariance Samples

demCovFuncSample

(2]

Figure:  MLP kernel, k;j = asin”? wxxtb , with o = 8,
h \/(wx;rx;+b+1)(wx;rxj'+b+1)

b=0and w =100
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Covariance Samples

demCovFuncSample

6

aF
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Figure: bias 'kernel’, k; ; = o, with o =1 and
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Covariance Samples

demCovFuncSample

o

Figure: summed combination of: RBF kernel, o = 1, | = 0.3; bias kernel, o =1,
and white noise kernel, 5 = 100
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Gaussian Process Regression

Posterior Distribution over Functions

@ Gaussian processes are often used for regression.
@ We are given a known inputs X and targets Y.
@ We assume a prior distribution over functions by selecting a kernel.

@ Combine the prior with data to get a posterior distribution over
functions.
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Gaussian Process Regression

demRegression

2—

—2—

-3

Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression

demRegression

Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression

demRegression

Figure: Examples include WiFi localization, C14 callibration curve.

Neil Lawrence () Human Dimensional Reduction



Gaussian Process Regression

demRegression

-3

Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression

demRegression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression

demRegression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression

demRegression

-3

Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression

demRegression

-3

Figure: Examples include WiFi localization, C14 callibration curve.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

n
p(YIX,W) =[N (yi:|Wx;.,o?1)

@ Novel Latent variable Pty

approach:
d
» Define Gaussian prior p(W)=]]N(w.[0,1)
over parameteters, W. i1
> Integrate out d N
parameters. p(Y|X) = H N (y;,jlo, XX + 02|)

Jj=1
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

d
p(YIX) =T N (y:,,-|o, xxT 4 a2|)
j=1
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

» The covariance matrix
is a covariance
function. d

p(YIX)=T]N(y.0.K)

j=1

K=xxXT + 42l
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

» The covariance matrix
is a covariance

. d
function.
L. p(Y|X)=]]N(y.;I0,K
» We recognise it as the lell (0:710,)
‘linear kernel'.
K=xxT 42

This is a product of Gaussian processes

with linear kernels.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

» The covariance matrix
is a covariance

function. d

» We recognise it as the p(YIX) :EN (v:,10,K)
‘linear kernel’.

» We call this the K =7
Gaussian Process
Latent Variable model Replace linear kernel with non-linear
(GP_LVM)_ kernel for non-linear model.
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Non-linear Latent Variable Models

RBF Kernel
o The RBF kernel has the form kjj = k (x;.,%;.), where

T
xi7: — x'a: xiz: — x.,:
k(xj:,xj.) = aexp (—( J )212( j )) ‘

@ No longer possible to optimise wrt X via an eigenvalue problem.

e Instead find gradients with respect to X, a, / and o and optimise
using conjugate gradients.
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Test Data

Traditional Model

@ For a parameteric model maximise the marginal.

N
g p(YIW) = log [ p(YIX. W) p(X)dX = [ A" (3:.[0, WW + 152)
i=1

leading to W.

@ Evaluate the log likelihood of a new, test point y.,

log p <y*|W> = log /N <y*|0,WWT + I02> )
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Test Data

New Model

@ For non-parameteric model maximise the marginal

d
0g p (¥IX) = log | p(YIX, W) p(W) AW = log [ T (+.,/0,K)

leading to X.

@ Evaluate the log likelihood of a new, test point y,.??7

log p (y*,le*,f() = log p (y*IY,x*,f(> +log p (Ylf(> :
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Maximise New Latent Variable

@ Maximise log likelihood with respect to x,,
d
log p (y*IY,x*,X> = log NV (yju ki K1y, j, ke — kIK k)
=1
where the new covariance (of the joint process) is partitioned as

, K K
K‘[k* ks
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Multiple Test Data

@ What if we are given two data points though? y, and y..

" K K.
K= { K. K.

d
log p (y*,y**|Y,x*,x**,)A() =3 log N (b/j* Vi IKTK Yy K — KfK‘lK*)

Jj=1

@ But this is a joint covariance!!! It is not the same as maximising the
individual data twice:

d
log p (y*IY,x*, X) p (y**IY,xm)A() =log ZN (yJ'*IkEK_ly:,j, K v — ka‘lk*)
j=1

d
+ |OgZN (}O’**|kz*K_IY:,ja k**,** - k’f* K_lk**)

j=1
@ What does it mean?
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Possible Explaination?

Comment from John yesterday:

@ For Gaussians maximising log p (x, y|X) wrt X is equivalent to
log p (x|y,X) + log p (y|x,X) wrt X.
@ So perhaps maximising

log p <Y*7 Y**‘Ya Xy Xy )A() =logp (Y*a Y**‘Yv KH)
is equivalent to maximising

log p (Y« |Ysx, Y, K”) + log p (Yaxly«, Y, K”)

@ cf
log p (y+|Y,K") + log p (y«|Y,K")
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© Examples
o
o
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Generalization with less Data than Dimensions

@ Powerful uncertainly handling of GPs leads to suprising properties.

@ Non-linear models can be used where there are fewer data points than
dimensions without overfitting.

@ Example: Modelling a stick man in 102 dimensions with 55 data
points!

Neil Lawrence () Human Dimensional Reduction



Stick Man I

demStickl

Figure: The latent space for the stick man motion capture data.
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Stick Man I

demStickl

-1 -0.5 0 0.5 1

Figure: The latent space for the stick man motion capture data.
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Applications

Style Based Inverse Kinematics

o Facilitating animation through modelling human motion with the
GP-LVM [Grochow et al., 2004]

Tracking

@ Tracking using models of human motion learnt with the GP-LVM
[Urtasun et al., 2005, 2006]
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Outline

© Model Extensions
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Back Constraints |

Local Distance Preservation [Lawrence and Quifionero Candela, 2006]

@ Most dimensional reduction techniques preserve local distances.
@ The GP-LVM does not.

@ GP-LVM maps smoothly from latent to data space.

@ Points close in latent space are close in data space.

» This does not imply points close in data space are close in latent space.

Many methods map smoothly from data to latent space.

» Points close in data space are close in latent space.
» This does not imply points close in latent space are close in data space.
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Back Constraints Il

Forward Mapping (demBackMapping in oxford toolbox)
@ Mapping from 1-D latent space to 2-D data space.

y1=x>-05, yp=-x*4+05

U1
Y2

-1

S0
Ko
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Back Constraints Il

Forward Mapping (demBackMapping in oxford toolbox)
@ Mapping from 1-D latent space to 2-D data space.

y1 =x>—05, yp=—x*>+05

| G /\
A\ / S/

S0\ / s |/ \
A o/ \

-1 1 -1

Ko
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Back Constraints Il

Forward Mapping (demBackMapping in oxford toolbox)
@ Mapping from 1-D latent space to 2-D data space.

y1 =x>—05, yp=—x*>+05

) IR
\ / L/

5 \ S /

/
_—

Ko
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Back Constraints Il

Backward Mapping (demBackMapping in oxford toolbox)
@ Mapping from 2-D data space to 1-D latent.

x=05(yf +y5 +1)

/ /
15 - 0| ~
= I( = |(
SN =
0.5 \ -1 \
o N 19 ~—
N \ | \
0 05 217 15 2 0 05 i‘ 15 2
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Back Constraints Il

Backward Mapping (demBackMapping in oxford toolbox)
@ Mapping from 2-D data space to 1-D latent.

x=05(yf +y5 +1)

N e

0 0.5 15 2 0

IS
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Back Constraints Il

Backward Mapping (demBackMapping in oxford toolbox)
@ Mapping from 2-D data space to 1-D latent.

x=05(yf +y5 +1)

N pre
N N

0 0.5 15 2 0 15 2

IS
ST
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NeuroScale

Multi-Dimensional Scaling with a Mapping
@ Lowe and Tipping [1997] made latent positions a function of the data.

xjj = i (yi; w)

@ Function was either multi-layer perceptron or a radial basis function
network.
@ Their motivation was different from ours:

@ They wanted to add the advantages of a true mapping to
multi-dimensional scaling.
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Back Constraints in the GP-LVM

Back Constraints

@ We can use the same idea to force the GP-LVM to respect local
distances.[Lawrence and Quifionero Candela, 2006]
» By constraining each x; to be a ‘smooth’ mapping from y; local
distances can be respected.

» This works because in the GP-LVM we maximise wrt latent variables,
we don't integrate out.

@ Can use any ‘smooth’ function:

@ Neural network.
@ RBF Network.
© Kernel based mapping.
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Optimising BC-GPLVM

Computing Gradients

@ GP-LVM normally proceeds by optimising

L(X) = log p (Y|X)

with respect to X using %.
@ The back constraints are of the form

Xij = f}(yi,:; B)

where B are parameters

@ We can compute via chain rule and optimise parameters of
mapping.
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Motion Capture Results

demStickl and demStick3

Figure: The latent space for the motion capture data with (right) and without
(left) dynamics. The dynamics us a Gaussian process with an RBF kernel.
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Motion Capture Results

demStickl and demStick3

-1 -0.5 0 0.5 1 -06 -04 -02 0 0.2 0.4 0.6

Figure: The latent space for the motion capture data with (right) and without
(left) dynamics. The dynamics us a Gaussian process with an RBF kernel.

Neil Lawrence () Human Dimensional Reduction



Stick Man Results

demStickResults

-06 -04 -0.2

(a) b) (c) (d)

Projection into data space from four points in the latent space. The inclination of
the runner changes becoming more upright.
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Adding Dynamics

MAP Solutions for Dynamics Models

@ Data often has a temporal ordering.

» Markov-based dynamics are often used.

e For the GP-LVM

Marginalising such dynamics is intractable.

But: MAP solutions are trivial to implement.

Many choices: Kalman filter, Markov chains etc..
Wang et al. [2006] suggest using a Gaussian Process.

vV vy vYyy
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Gaussian Process Dynamics

GP-LVM with Dynamics

@ Autoregressive Gaussian process mapping in latent space between
time points.

=

t
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Gaussian Process Dynamics

GP-LVM with Dynamics

@ Autoregressive Gaussian process mapping in latent space between
time points.

S

t t+1
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Gaussian Process Dynamics

GP-LVM with Dynamics

@ Autoregressive Gaussian process mapping in latent space between
time points.
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Motion Capture Results

demStickl and demStick2

Figure: The latent space for the motion capture data without dynamics (/eft),
with auto-regressive dynamics (right) based on an RBF kernel.
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Motion Capture Results

demStickl and demStick?2

-1 -0.5 0 0.5 1 -4 -2 0 2 4

Figure: The latent space for the motion capture data without dynamics (left),
with auto-regressive dynamics (right) based on an RBF kernel.
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ressive Dynamics

Inner Groove Distortion

@ Autoregressive unimodal
dynamics, p (x¢|x¢—1) -
» Forces spiral
visualisation.

» Poorer model due to
inner groove distortion.
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Regressive Dynamics

Direct use of Time Variable
@ Instead of auto-regressive dynamics, consider regressive dynamics.
@ Take t as an input, use a prior p (X|t).
@ User a Gaussian process prior for p (X|t).

@ Also allows us to consider variable sample rate data.
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Motion Capture Results

demStickl, demStick?2 and demStick5

Figure: The latent space for the motion capture data without dynamics (/eft),
with auto-regressive dynamics (middle) and with regressive dynamics (right)
based on an RBF kernel.
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Motion Capture Results

demStickl, demStick2 and demStick5

1.5

| e e

-1 -0.5 0 0.5 1 -4 0.05

-2 0 2 4 -0.05 0

Figure: The latent space for the motion capture data without dynamics (/eft),
with auto-regressive dynamics (middle) and with regressive dynamics (right)
based on an RBF kernel.
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Extensions

MAP Solutions for Dynamics Models

@ Autoregressive Gaussian Processes. Wang et al. [2006]
Force the Model to Respect Local Distances

@ Back constrained GP-LVM.
Developments Made Under Pump Priming Grant

@ Sparse Approximations for Large Data Sets
@ Hierarchical Models for Subject Decomposition

@ Three Dimensional Pose Reconstruction from Images
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Hierarchical GP-LVM

Stacking Gaussian Processes

@ Regressive dynamics provides a simple hierarchy.

@ The input space of the GP is governed by another GP.

@ By stacking GPs we can consider more complex hierarchies.
@ ldeally we should marginalise latent spaces

» In practice we seek MAP solutions.
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Two Correlated Subjects

demHighFivel

Both Subjects
’ RN X B
of % M
g T
2 g«;&x e
Subject 1 Nubject 2
xxx x % B 1 o X KB
1 X0 C 5
T |
|8 o ! °

T

Figure: Hierarchical model of a "high five'.

Boox

7 Bl g
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Within Subject Hierarchy

Decomposition of Body
/ \R
' head .

abdomen

left arm right arm leftleg right leg

Figure: Decomposition of a subject.
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Single Subject Run/Walk

demRunWalk1

Left Le: l i
r F
L R I i x R
Al | F R I
I > oF A e
R S | SN B : ‘e o
Al x 00 % x % x
B } OOOXX A 4 R "B

Figure: Hierarchical model of a walk and a run.
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Complexity Issues

@ Gaussian processes inherently
» O (N3) complexity,
» O (N?) storage.
@ Sparse Gaussian processes normally give

» O (k2N) complexity,
» O (kN) storage

@ FITC Approximation [Snelson and Ghahramani, 2006, Quifionero Candela
and Rasmussen, 2005, Presented/Developed at PASCAL workshop!].
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Sparse GP-LVM

@ Recreate results of Taylor et al. [2007] on human motion capture data
set.

e Data was walking and running motions from subject 35 in the CMU
Mocap data base.

@ Used dynamical refinement of the GP-LVM proposed by Wang et al.
[2006]

@ Taylor et al. [2007] applied their binary latent variable model to two
missing data problems

> right leg was removed from the test seqence
» upper body was removed.

@ Reconstruction obtained compared with nearest neighbour.

Neil Lawrence () Human Dimensional Reduction



FITC Approximation

@ Used the FITC approximation with 100 inducing points.

@ The models were back constrained [Lawrence and Quifionero Candela,
2006] .

@ The data set size was 2613 frames.
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Root mean squared angle error results on test data.

Data | Leg | Body
GP-LVM (g =3) | 3.40 | 2.49
GP-LVM (¢ =4) | 3.38 | 2.72
GP-LVM (¢ =5) | 4.25 | 2.78

NN (s) 444 | 2.62

NN 4.11 | 3.20

Table: NN: nearest neighbour, NN (s): nearest neighbour in scaled space,
GP-LVM (latent dimension): the GP-LVM with different latent dimensions, g.
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Shared GP-LVM

@ Learn two separate kernels from a single shared latent representation
X [Shon et al., 2006]

@ Objective

p(Y,Z|X,®dy,d7) = p(Y|X,dy)p(Z|X, d7)
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Shared GP-LVM Experiments!

o Silhouette Features: y; € R190, Pose Parameters: z; € ®>*

@ Back constraints: force bijective mapping between latent space and
pose [Lawrence and Quifionero Candela, 2006].

e Dynamics: add GP auto regressive dynamics to latent space [Wang
et al., 2006].

o Artificially generated training data: from Agarwal and Triggs
[2006].

'Ek et al. [2007]
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Shared GP-LVM Experiments
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Shared GP-LVM Experiments

@ Highly multimodal latent space given silhouette.
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runcca_all.sh runcca_only.sh
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Modified Model
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Initialisation

Shared Latent space by kernel CCA:

e Find directions {Wy, Wz} in each feature space maximizing the
correlation

ay = YWY

az = ZWZ

@ Solution through Eigenvalue problem.

@ Canonical variate {

Non Shared Latent Space

@ Find further directions orthogonal to CCA directions of maximum
variance.
@ We named these non-consolidating components.

@ Solution through eigenvalue problem.
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Kernels

Feature Spaces:

@ Many possible choices of feature space

@ Linear Kernel
@ RBF
© Maximum Variance Unfolding, Isomap

@ Choose between them using GP-LVM likelihood [Harmeling, 2007].
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Results of Initialisation

runspectral_test.sh

runspectral_test.sh

Neil Lawrence () Human Dimensional Reduction



Topological Constraints

o
51
A

runtopology_walk.sh runtopology_jump.sh
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@ Conclusions
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@ GP-LVM is a Probabilistic Non-Linear Generalisation of PCA.

@ Works Effectively as a Probabilistic Model in High Dimensional
Spaces.

@ Back constraints can be introduced to force local distance
preservation.

@ Dynamics can be introduced for modelling data with a temporal
structure.

@ Hierarchical models can encode conditional independencies.
@ Topologically constraints can be imposed.

>
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