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The Model

A Probabilistic Non-linear PCA

PCA has a probabilistic interpretation [Tipping and Bishop, 1999].

It is difficult to ‘non-linearise’.

Dual Probabilistic PCA

We present a new probabilistic interpretation of PCA [Lawrence, 2005].

This interpretation can be made non-linear.

The result is non-linear probabilistic PCA.
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Notation

q— dimension of latent/embedded space
d— dimension of data space
n— number of data points

centred data, Y = [y1,:, . . . , yn,:]
T = [y:,1, . . . , y:,d ] ∈ <n×d

latent variables, X = [x1,:, . . . , xn,:]
T = [x:,1, . . . , x:,q] ∈ <n×q

mapping matrix, W ∈ <d×q

ai ,: is a vector from the ith row of a given matrix A
a:,j is a vector from the jth row of a given matrix A

X and Y are design matrices
Covariance given by n−1YTY.

Inner product matrix given by YYT.
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Linear Dimensionality Reduction

Linear Latent Variable Model

Represent data, Y, with a lower dimensional set of latent variables X.

Assume a linear relationship of the form

yi ,: = Wxi ,: + ηi ,:,

where
ηi ,: ∼ N

(
0, σ2I

)
.
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Linear Latent Variable Model

Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Standard Latent variable
approach:

I Define Gaussian prior
over latent space, X.

I Integrate out latent
variables.

X W

Y

p (Y|X,W) =
nY

i=1

N
`
yi,:|Wxi,:, σ

2I
´
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Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

X W

Y

p (Y|W) =
nY

i=1

N
“

yi,:|0,WWT + σ2I
”

p (Y|W) =
nY

i=1

N
`
yi,:|0,C

´
, C = WWT + σ2I

log p (Y|W) = −
n

2
log |C| −

1

2
tr
“

C−1YTY
”

+ const.

If Uq are first q principal eigenvectors of n−1YTY and the corresponding eigenvalues are Λq ,

W = UqLVT, L =
`
Λq − σ2I

´ 1
2

where V is an arbitrary rotation matrix.
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Linear Latent Variable Model III

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach:

I Define Gaussian prior
over parameters, W.

I Integrate out
parameters.

W

Y

X

p (Y|X,W) =
nY

i=1

N
`
yi,:|Wxi,:, σ

2I
´
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Dual Probabilistic PCA Max. Likelihood Soln [Lawrence, 2004]

W

Y

X

p (Y|X) =
dY

j=1

N
“

y:,j |0,XXT + σ2I
”

p (Y|X) =
dY

j=1

N
`
y:,j |0,K

´
, K = XXT + σ2I

log p (Y|X) = −
d

2
log |K| −

1

2
tr
“

K−1YYT
”

+ const.

If U′q are first q principal eigenvectors of d−1YYT and the corresponding eigenvalues are Λq ,

X = U′qLVT, L =
`
Λq − σ2I

´ 1
2

where V is an arbitrary rotation matrix.
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Equivalence of Formulations

The Eigenvalue Problems are equivalent

Solution for Probabilistic PCA (solves for the mapping)

YTYUq = UqΛq W = UqLVT

Solution for Dual Probabilistic PCA (solves for the latent positions)

YYTU′q = U′qΛq X = U′qLVT

Equivalence is from

Uq = YTU′qΛ
− 1

2
q
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Gaussian Process (GP)

Prior for Functions

Probability Distribution over Functions

Functions are infinite dimensional.

I Prior distribution over instantiations of the function: finite dimensional
objects.

Can prove by induction that GP is ‘consistent’.

Mean and Covariance Functions

I Instead of mean and covariance matrix, GP is defined by mean function
and covariance function.

I Mean function often taken to be zero or constant.
I Covariance function must be positive definite.
I Class of valid covariance functions is the same as the class of Mercer

kernels.
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Gaussian Processes II

Zero mean Gaussian Process

A (zero mean) Gaussian process likelihood is of the form

p (y|X) = N (y|0,K) ,

where K is the covariance function or kernel.

The linear kernel with noise has the form

K = XXT + σ2I

Priors over non-linear functions are also possible.

I To see what functions look like, we can sample from the prior process.
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Covariance Samples

demCovFuncSample
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Figure: linear kernel, K = XXT
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Figure: RBF kernel, ki,j = α exp
(
− 1

2l ‖xi − xj‖2
)

, with l = 0.32, α = 1
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Figure: RBF kernel, ki,j = α exp
(
− 1

2l ‖xi − xj‖2
)

, with l = 0.3, α = 4
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Covariance Samples

demCovFuncSample
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Figure: MLP kernel, ki,j = α sin−1

(
wxT

i xj +bq
(wxT

i xi +b+1)(wxT
j xj +b+1)

)
, with α = 8,

w = 100 and b = 100

Neil Lawrence () Human Dimensional Reduction 7th February 2008 14 / 62



Covariance Samples

demCovFuncSample

−1 −0.5 0 0.5 1
−6

−4

−2

0

2

4

6

Figure: MLP kernel, ki,j = α sin−1

(
wxT

i xj +bq
(wxT

i xi +b+1)(wxT
j xj +b+1)

)
, with α = 8,

b = 0 and w = 100

Neil Lawrence () Human Dimensional Reduction 7th February 2008 14 / 62



Covariance Samples

demCovFuncSample
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Figure: bias ‘kernel’, ki,j = α, with α = 1 and
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Covariance Samples

demCovFuncSample
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Figure: summed combination of: RBF kernel, α = 1, l = 0.3; bias kernel, α =1;
and white noise kernel, β = 100

Neil Lawrence () Human Dimensional Reduction 7th February 2008 14 / 62



Gaussian Process Regression

Posterior Distribution over Functions

Gaussian processes are often used for regression.

We are given a known inputs X and targets Y.

We assume a prior distribution over functions by selecting a kernel.

Combine the prior with data to get a posterior distribution over
functions.
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Gaussian Process Regression

demRegression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach:

I Define Gaussian prior
over parameteters, W.

I Integrate out
parameters.

W

Y

X

p (Y|X,W) =
nY

i=1

N
`
yi,:|Wxi,:, σ

2I
´

p (W) =
dY

i=1

N
`
wi,:|0, I

´

p (Y|X) =
dY

j=1

N
“

y:,j |0,XXT + σ2I
”
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Inspection of the marginal
likelihood shows ...

I The covariance matrix
is a covariance
function.

I We recognise it as the
‘linear kernel’.

I We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

W

Y

X

p (Y|X) =
dY

j=1

N
“

y:,j |0,XXT + σ2I
”
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Inspection of the marginal
likelihood shows ...
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W

Y

X

p (Y|X) =
dY

j=1

N
`
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´

K = XXT + σ2I

This is a product of Gaussian processes

with linear kernels.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Inspection of the marginal
likelihood shows ...

I The covariance matrix
is a covariance
function.

I We recognise it as the
‘linear kernel’.

I We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

W

Y

X

p (Y|X) =
dY

j=1

N
`
y:,j |0,K

´
K =?

Replace linear kernel with non-linear

kernel for non-linear model.
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Non-linear Latent Variable Models

RBF Kernel

The RBF kernel has the form kij = k (xi ,:, xj ,:) , where

k (xi ,:, xj ,:) = α exp

(
−

(xi ,: − xj ,:)
T (xi ,: − xj ,:)

2l2

)
.

No longer possible to optimise wrt X via an eigenvalue problem.

Instead find gradients with respect to X, α, l and σ2 and optimise
using conjugate gradients.
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Test Data

Traditional Model

For a parameteric model maximise the marginal.

log p (Y|W) = log

∫
p (Y|X,W) p (X) dX =

N∏
i=1

N
(
yi,:|0,WWT + Iσ2

)
leading to Ŵ.

Evaluate the log likelihood of a new, test point y∗,

log p
(

y∗|Ŵ
)

= logN
(

y∗|0, ŴŴT + Iσ2
)
.
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Test Data

New Model

For non-parameteric model maximise the marginal

log p (Y|X) = log

∫
p (Y|X,W) p (W) dW = log

d∏
j=1

N (y:,j |0,K)

leading to X̂.

Evaluate the log likelihood of a new, test point y∗??

log p
(

y∗,Y|x∗, X̂
)

= log p
(

y∗|Y, x∗, X̂
)

+ log p
(

Y|X̂
)
.
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Maximise New Latent Variable

Maximise log likelihood with respect to x∗,

log p
(

y∗|Y, x∗, X̂
)

=
d∑

j=1

logN
(
yj∗|kT

∗K−1y:,j , k∗,∗ − kT
∗K−1k∗

)
where the new covariance (of the joint process) is partitioned as

K′ =

[
K k∗
k∗ k∗,∗

]
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Multiple Test Data

What if we are given two data points though? y∗ and y∗∗

K′′ =

[
K K∗
K∗ K∗,∗

]

log p
“

y∗, y∗∗|Y, x∗, x∗∗, X̂
”

=
dX

j=1

logN
“

[yj∗ yj∗∗]
T |KT

∗K−1y:,j , K∗,∗ −KT
∗K−1K∗

”
But this is a joint covariance!!! It is not the same as maximising the
individual data twice:

log p
“

y∗|Y, x∗, X̂
”

p
“

y∗∗|Y, x∗∗, X̂
”

= log
dX

j=1

N
“
yj∗|kT

∗K−1y:,j , k∗,∗ − kT
∗K−1k∗

”

+ log
dX

j=1

N
“
yj∗∗|kT

∗∗K
−1y:,j , k∗∗,∗∗ − kT

∗∗K
−1k∗∗

”
What does it mean?
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Possible Explaination?

Comment from John yesterday:

For Gaussians maximising log p (x , y |Σ) wrt Σ is equivalent to
log p (x |y ,Σ) + log p (y |x ,Σ) wrt Σ.

So perhaps maximising

log p
(

y∗, y∗∗|Y, x∗, x∗∗, X̂
)
≡ log p

(
y∗, y∗∗|Y,K′′

)
is equivalent to maximising

log p
(
y∗|y∗∗,Y,K′′

)
+ log p

(
y∗∗|y∗,Y,K′′

)
cf

log p
(
y∗|Y,K′′

)
+ log p

(
y∗∗|Y,K′′

)
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Stick Man

Generalization with less Data than Dimensions

Powerful uncertainly handling of GPs leads to suprising properties.

Non-linear models can be used where there are fewer data points than
dimensions without overfitting.

Example: Modelling a stick man in 102 dimensions with 55 data
points!
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Stick Man II

demStick1

Figure: The latent space for the stick man motion capture data.
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Stick Man II
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Applications

Style Based Inverse Kinematics

Facilitating animation through modelling human motion with the
GP-LVM [Grochow et al., 2004]

Tracking

Tracking using models of human motion learnt with the GP-LVM
[Urtasun et al., 2005, 2006]

.
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Back Constraints I

Local Distance Preservation [Lawrence and Quiñonero Candela, 2006]

Most dimensional reduction techniques preserve local distances.

The GP-LVM does not.

GP-LVM maps smoothly from latent to data space.

Points close in latent space are close in data space.

I This does not imply points close in data space are close in latent space.

Many methods map smoothly from data to latent space.

I Points close in data space are close in latent space.
I This does not imply points close in latent space are close in data space.
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Back Constraints II

Forward Mapping (demBackMapping in oxford toolbox)

Mapping from 1-D latent space to 2-D data space.

y1 = x2 − 0.5, y2 = −x2 + 0.5
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Back Constraints II

Backward Mapping (demBackMapping in oxford toolbox)

Mapping from 2-D data space to 1-D latent.
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NeuroScale

Multi-Dimensional Scaling with a Mapping

Lowe and Tipping [1997] made latent positions a function of the data.

xij = fj (yi ; w)

Function was either multi-layer perceptron or a radial basis function
network.

Their motivation was different from ours:

They wanted to add the advantages of a true mapping to
multi-dimensional scaling.
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Back Constraints in the GP-LVM

Back Constraints

We can use the same idea to force the GP-LVM to respect local
distances.[Lawrence and Quiñonero Candela, 2006]

I By constraining each xi to be a ‘smooth’ mapping from yi local
distances can be respected.

I This works because in the GP-LVM we maximise wrt latent variables,
we don’t integrate out.

Can use any ‘smooth’ function:

1 Neural network.
2 RBF Network.
3 Kernel based mapping.
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Optimising BC-GPLVM

Computing Gradients

GP-LVM normally proceeds by optimising

L (X) = log p (Y|X)

with respect to X using dL
dX .

The back constraints are of the form

xij = fj (yi ,:; B)

where B are parameters.

We can compute dL
dB via chain rule and optimise parameters of

mapping.
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Motion Capture Results

demStick1 and demStick3

Figure: The latent space for the motion capture data with (right) and without
(left) dynamics. The dynamics us a Gaussian process with an RBF kernel.

.
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Motion Capture Results

demStick1 and demStick3
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Figure: The latent space for the motion capture data with (right) and without
(left) dynamics. The dynamics us a Gaussian process with an RBF kernel..
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Stick Man Results

demStickResults
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(a)
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(c)

(d)

(a) (b) (c) (d)

Projection into data space from four points in the latent space. The inclination of
the runner changes becoming more upright.
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Adding Dynamics

MAP Solutions for Dynamics Models

Data often has a temporal ordering.

I Markov-based dynamics are often used.

For the GP-LVM

I Marginalising such dynamics is intractable.
I But: MAP solutions are trivial to implement.
I Many choices: Kalman filter, Markov chains etc..
I Wang et al. [2006] suggest using a Gaussian Process.
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Gaussian Process Dynamics

GP-LVM with Dynamics

Autoregressive Gaussian process mapping in latent space between
time points.

t
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Motion Capture Results

demStick1 and demStick2

Figure: The latent space for the motion capture data without dynamics (left),
with auto-regressive dynamics (right) based on an RBF kernel.
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Motion Capture Results

demStick1 and demStick2
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Figure: The latent space for the motion capture data without dynamics (left),
with auto-regressive dynamics (right) based on an RBF kernel.
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Regressive Dynamics

Inner Groove Distortion

Autoregressive unimodal
dynamics, p (xt |xt−1) .

I Forces spiral
visualisation.

I Poorer model due to
inner groove distortion.
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Regressive Dynamics

Direct use of Time Variable

Instead of auto-regressive dynamics, consider regressive dynamics.

Take t as an input, use a prior p (X|t).

User a Gaussian process prior for p (X|t) .

Also allows us to consider variable sample rate data.
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Motion Capture Results

demStick1, demStick2 and demStick5

Figure: The latent space for the motion capture data without dynamics (left),
with auto-regressive dynamics (middle) and with regressive dynamics (right)
based on an RBF kernel.
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Motion Capture Results
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Figure: The latent space for the motion capture data without dynamics (left),
with auto-regressive dynamics (middle) and with regressive dynamics (right)
based on an RBF kernel.
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Extensions

MAP Solutions for Dynamics Models

Autoregressive Gaussian Processes. Wang et al. [2006]

Force the Model to Respect Local Distances

Back constrained GP-LVM.

Developments Made Under Pump Priming Grant

Sparse Approximations for Large Data Sets

Hierarchical Models for Subject Decomposition

Three Dimensional Pose Reconstruction from Images

Neil Lawrence () Human Dimensional Reduction 7th February 2008 42 / 62



Hierarchical GP-LVM

Stacking Gaussian Processes

Regressive dynamics provides a simple hierarchy.

The input space of the GP is governed by another GP.

By stacking GPs we can consider more complex hierarchies.

Ideally we should marginalise latent spaces

I In practice we seek MAP solutions.
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Two Correlated Subjects

demHighFive1

Figure: Hierarchical model of a ’high five’.
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Within Subject Hierarchy

Decomposition of Body

Figure: Decomposition of a subject.
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Single Subject Run/Walk

demRunWalk1

Figure: Hierarchical model of a walk and a run.
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Complexity Issues

Gaussian processes inherently

I O
(
N3
)

complexity,
I O

(
N2
)

storage.

Sparse Gaussian processes normally give

I O
(
k2N

)
complexity,

I O (kN) storage

FITC Approximation [Snelson and Ghahramani, 2006, Quiñonero Candela

and Rasmussen, 2005, Presented/Developed at PASCAL workshop!].
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Sparse GP-LVM

Recreate results of Taylor et al. [2007] on human motion capture data
set.

Data was walking and running motions from subject 35 in the CMU
Mocap data base.

Used dynamical refinement of the GP-LVM proposed by Wang et al.
[2006]

Taylor et al. [2007] applied their binary latent variable model to two
missing data problems

I right leg was removed from the test seqence
I upper body was removed.

Reconstruction obtained compared with nearest neighbour.
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FITC Approximation

Used the FITC approximation with 100 inducing points.

The models were back constrained [Lawrence and Quiñonero Candela,
2006] .

The data set size was 2613 frames.
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Results

Root mean squared angle error results on test data.

Data Leg Body

GP-LVM (q = 3) 3.40 2.49
GP-LVM (q = 4) 3.38 2.72

GP-LVM (q = 5) 4.25 2.78

NN (s) 4.44 2.62

NN 4.11 3.20

Table: NN: nearest neighbour, NN (s): nearest neighbour in scaled space,
GP-LVM (latent dimension): the GP-LVM with different latent dimensions, q.
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Shared GP-LVM

!!Y

Y

ZX

Z

Learn two separate kernels from a single shared latent representation
X [Shon et al., 2006]

Objective

p(Y,Z|X,ΦY ,ΦZ ) = p(Y|X,ΦY )p(Z|X,ΦZ )
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Shared GP-LVM Experiments1

Feature Pose

! !Z

!dyn

X

Z

W

Y

Y

Silhouette Features: yi ∈ <100, Pose Parameters: zi ∈ <54

Back constraints: force bijective mapping between latent space and
pose [Lawrence and Quiñonero Candela, 2006].

Dynamics: add GP auto regressive dynamics to latent space [Wang
et al., 2006].

Artificially generated training data: from Agarwal and Triggs
[2006].

1Ek et al. [2007]
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Shared GP-LVM Experiments

Highly multimodal latent space given silhouette.

Neil Lawrence () Human Dimensional Reduction 7th February 2008 53 / 62



Shared GP-LVM Experiments

Highly multimodal latent space given silhouette.

Neil Lawrence () Human Dimensional Reduction 7th February 2008 53 / 62



Video

runcca_all.sh runcca_only.sh
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Modified Model

g Z Z Zg h
!ZY!

Y Z

X XY X ZS

Y f Y Y fh
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Initialisation

Shared Latent space by kernel CCA:

Find directions {WY,WZ} in each feature space maximizing the
correlation

Canonical variate

{
aY = YWY

aZ = ZWZ

Solution through Eigenvalue problem.

Non Shared Latent Space

Find further directions orthogonal to CCA directions of maximum
variance.

We named these non-consolidating components.

Solution through eigenvalue problem.
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Kernels

Feature Spaces:

Many possible choices of feature space

1 Linear Kernel
2 RBF
3 Maximum Variance Unfolding, Isomap

Choose between them using GP-LVM likelihood [Harmeling, 2007].
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Results of Initialisation

runspectral_test.sh

runspectral_test.sh
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Topological Constraints

runtopology_walk.sh runtopology_jump.sh
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Outline

1 Probabilistic Dimensionality Reduction

2 Examples

3 Model Extensions

4 Conclusions
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Summary

GP-LVM is a Probabilistic Non-Linear Generalisation of PCA.

Works Effectively as a Probabilistic Model in High Dimensional
Spaces.

Back constraints can be introduced to force local distance
preservation.

Dynamics can be introduced for modelling data with a temporal
structure.

Hierarchical models can encode conditional independencies.

Topologically constraints can be imposed.

I
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