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Structure of Priors

MacKay: NIPS Tutorial 1997 �Have we thrown out the baby with

the bathwater?� (Published as MacKay, 1998) Also noted by

(Wilson et al., 2012)



Deep Models

• Universal approximator arguments ignore interesting priors.

• Gaussian process priors are amazing, but still limited.
• Struggle to learn unusual long range correlations
• Makes covariance functions inappropriate for `multitask

learning'.



Motivation for Non-Linear Dimensionality Reduction

USPS Data Set Handwritten Digit

• 3648 Dimensions

• 64 rows by 57 columns
• Space contains more

than just this digit.
• Even if we sample

every nanosecond from
now until the end of
the universe, you won't
see the original six!
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Template Model of Digits

• Design a set of `latent' features, which generate the 6.

• Global template: memorize data set.



Latent Variable Model
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Template Matching

• Each latent node associated with a `template' digit.

• If as many nodes as data then model is like `nearest neighbour'

with a particular distance measure.

• If less nodes than data then model is like a mixture of

Bernoulli distributions.

• What if we allow several nodes to be switched on together?



Templates to Features

• In template matching ith node had an associated set of

probabilities, pi .

• These probabilities can be reshaped into a matrix and sampled

from to see the sixes.

• If the ith node is on the ith vector of probabilities is used.

• What if the ith node and the kth node are on?
• How do we combine pi and pk to give probabilities of pixels?



Squashing Function

• One solution is to �rst reparameterise pi ,j as a squashing

function,
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Addition Before Squashing

• Example: if latent node 1 and 6 are on.

• Can't add p:,1 to p:,6 to obtain probability that node is on.

• Instead add w:,1 to w:,6 and push through squashing function.
• In general for pi,: compute Wxi,:.
• Then pi,j = σ(w>

j,:xi,j) where σ(·) is the sigmoid function.
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Localized Receptive Fields

• Model can now �t global model as sum of parts.

• Each latent node associated with local features.

• Structure of model combines local features in products of

experts manner (?).



x1

x2

x3

x4

x5

x6



x1

x2

x3

x4

x5

x6



x1

x2

x3

x4

x5

x6



x1

x2

x3

x4

x5

x6



x1

x2

x3

x4

x5

x6



x1

x2

x3

x4

x5

x6



x1

x2

x3

x4

x5

x6



x1

x2

x3

x4

x5

x6



x1

x2

x3

x4

x5

x6



x1

x2

x3

x4

x5

x6



x1

x2

x3

x4

x5

x6



x1

x2

x3

x4

x5

x6



Restricted Boltzmann Machine

• Represent data, Y, through a set of unobserved latent variables

P(Y) =
∑
X

P(Y|X)P(X).

• Data and latent variables are binary.

• Assume latent variables, xi ,j , are `on' with probability πj .

P(X) =
n∏

i=1

q∏
j=1

π
xi,j
j (1− πj)(1−xi,j )

• Set πj = σ(bi ) where σ(·) is the sigmoid function1 and bi is a

`bias' parameter.

1The sigmoid function is σ(z) = exp(z)
1+exp(z)

,



Restricted Boltzmann Machine: Binomial Prior

• Parameterizing in this way means

P(X) ∝
n∏

i=1

exp
(
x>i ,:b

)
which, because X is binary, is equivalent to

P(X) ∝
n∏

i=1

exp
(
x>i ,:diag(b)xi ,:

)



Restricted Boltzmann Machine

• Assume a linear-logistic relationship of the form

P(yi ,j) = p
yi,j
i ,j (1− pi ,j)

(1−yi,j )

where pi ,j is the probability that yi ,j = 1.

• For RBM it is often given by

pi ,j = σ
(
w>j ,:xi ,: + cj

)
• For convenience we will reparameterize

pi ,j = σ
(
cj

[
w>j ,:xi ,: − 1

])



Restricted Boltzmann Machine

• Parameterizing in this way implies

P(Y|X,W) ∝
n∏

i=1

exp
(
y>i ,:diag(c) (Wxi ,: − 1)

)
which, because Y is binary can be rewritten2 as

P(Y|X,W) ∝
n∏

i=1

exp
(
− (yi ,: −Wxi ,:)

> diag(c) (yi ,: −Wxi ,:)
)

2To complete the square where we extracted x>i,:W
>diag(c)Wxi,: from the

constant of proportionality.



Restricted Boltzman Machine

RBM

• De�ne linear-logistic

relationship between

latent variables and data.

• Standard Latent variable

approach:

• De�ne binomial prior
over latent space, X.

• Integrate out latent

variables ... ??
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Marginalization of X
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Model Factorizes Across Data
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Model Factorizes Across Data

Y

W
X

P (yi ,:|xi ,:,W) ∝ exp
(
− (yi ,: −Wxi ,:)

> diag(c) (yi ,: −Wxi ,:)
)

P (xi ,:) ∝ exp
(
x>i ,:diag (b) xi ,:

)
P (yi ,:|W) =

∑
xi,:

P (yi ,:|xi ,:,W)P (xi ,:)

Unfortunately this sum still contains 2q terms.



Linear Dimensionality Reduction

Linear Latent Variable Model

• Represent data, Y, with a lower dimensional set of latent

variables X.

• Assume a linear relationship of the form

yi ,: = Wxi ,: + εi ,:,

where

εi ,: ∼ N
(
0, σ2I

)
.



Linear Latent Variable Model

Probabilistic PCA

• De�ne linear-Gaussian

relationship between

latent variables and data.

• Standard Latent variable

approach:
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Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

Y

W
X

σ2

p (Y|W) =
n∏

i=1

N
(
yi ,:|0,WW> + σ2I

)



Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p (Y|W) =
n∏

i=1

N (yi ,:|0,C) , C = WW> + σ2I

log p (Y|W) = −n

2
log |C| − 1

2
tr
(
C−1Y>Y

)
+ const.

If Uq are �rst q principal eigenvectors of n−1Y>Y and the

corresponding eigenvalues are Λq,

W = UqLR
>, L =

(
Λq − σ2I

) 1
2

where R is an arbitrary rotation matrix.



Relation between RBM and PCA/FA

• RBM is PCA with latent variables and data variables restricted

binary.

• Binary restriction means latent features combine in a

non-linear way.

• In PCA latent features always combine in a linear way.



PCA and RBM
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PCA and RBM

Y

W
X

p (yi ,:|xi ,:,W) ∝ exp

(
− 1

2σ2
(yi ,: −Wxi ,:)

> (yi ,: −Wxi ,:)

)

p (xi ,:) ∝ exp

(
−1

2
x>i ,:xi ,:

)
p (yi ,:|W) = N

(
yi ,:|0,WW> + σ2I

)



Deep Models
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Deep Gaussian Processes

Work with Andreas Damianou

• Deep architectures allow abstraction of features (Bengio, 2009;

Hinton and Osindero, 2006; Salakhutdinov and Murray, 2008).

• We use variational approach to stack GP models.



Deep GPs

• Stacking PPCA still leads to a linear latent variable model.

• To stack latent variable models, need a non-linear model.

• The GP-LVM is a non-linear latent variable model.

• Stacking GP-LVM leads to hierarchical GP-LVM.



Hierarchical GP-LVM

(Lawrence and Moore, 2007)

Stacking Gaussian Processes

• Regressive dynamics provides a simple hierarchy.

• The input space of the GP is governed by another GP.

• By stacking GPs we can consider more complex hierarchies.

• Ideally we should marginalise latent spaces

• In practice we seek MAP solutions.



Two Correlated Subjects

(Lawrence and Moore, 2007)

Figure: Hierarchical model of a 'high �ve'.



Within Subject Hierarchy

(Lawrence and Moore, 2007)

Decomposition of Body

Figure: Decomposition of a subject.



Single Subject Run/Walk

(Lawrence and Moore, 2007)

Figure: Hierarchical model of a walk and a run.

Return



Bayesian GP-LVM

• Bayesian GP-LVM allows variational marginalization of X and

W.

Y

W X

σ2

• This leads to a Bayesian model where latent dimensionality

can be learnt.



Selecting Data Dimensionality

• GP-LVM Provides probabilistic non-linear dimensionality

reduction.

• How to select the dimensionality?

• Need to estimate marginal likelihood.

• In standard GP-LVM it increases with increasing q.



Variational Latent Variables

• Variational marginalizing of X is also analytic.

• Need to assume Gaussian q(X).

• Compute expectations of q(X) then analytically marginalize
p(u) as before. (Titsias and Lawrence, 2010; Hensman et al., 2012)

• Requires expectations of Kf,u and Kf,uKu,f .



Non-linear f (x)

• In linear case equivalence because f (x) = w>x

p(wi ) ∼ N (0, αi )

• In non linear case, need to scale columns of X in prior for f (x).

• This implies scaling columns of X in covariance function

k(xi ,:, xj ,:) = exp

(
−1

2
(x:,i − x:,j)

>A(x:,i − x:,j)

)
A is diagonal with elements α2i . Now keep prior spherical

p (X) =

q∏
j=1

N (x:,j |0, I)

• Covariance functions of this type are known as ARD (see e.g.

Neal, 1996; MacKay, 2003; Rasmussen and Williams, 2006).



Automatic dimensionality detection 

• Achieved by employing an Automatic Relevance Determination 
(ARD) covariance function for the prior on the GP mapping 
 

•                                 with  

 

 

• Example 
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Face Demo



Gaussian Process Dynamical Systems

Work with Andreas Damianou and Michalis Titsias
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Gaussian Process over Latent Space

• Assume a GP prior for p(X).

• Input to the process is time, p(X|t).



Gaussian Process over Latent Space

• Allows to interpret high dimensional video.

• Examples: Missa and Dog Generation.



Modeling Multiple `Views'

• Single space to model correlations between two di�erent data
sources, e.g., images & text, image & pose.

• Shared latent spaces: (Shon et al., 2006; Navaratnam et al., 2007; Ek et al.,

2008b)

Y(1)

X

Y(2)

• E�ective when the `views' are correlated.

• But not all information is shared between both `views'.

• PCA applied to concatenated data vs CCA applied to data.



Shared-Private Factorization

• In real scenarios, the `views' are neither fully independent, nor fully
correlated.

• Shared models

• either allow information relevant to a single view to be mixed
in the shared signal,

• or are unable to model such private information.

• Solution: Model shared and private information (Virtanen et al., 2011;

Ek et al., 2008a; Leen and Fyfe, 2006; Klami and Kaski, 2007, 2008; Tucker,

1958)

Z(1)

Y(1)

X

Y(2)

Z(2)

• Probabilistic CCA is case when dimensionality of Z matches Y(i) (cf
Inter Battery Factor Analysis (Tucker, 1958)).



Manifold Relevance Determination

Work with Andreas Damianou and Carl Henrik Ek
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Shared GP-LVM
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Separate ARD parameters for mappings to Y(1) and Y(2).



Example: Yale faces 

29 

 
 
 
 
 
 
 
 

 
 
 

• Dataset Y: 3 persons under all illumination conditions 

• Dataset Z: As above for 3 different persons 

• Align datapoints xn and zn only based on the lighting direction 

Deep Gaussian processes 



Results 

30 

• Latent space X initialised with 
14 dimensions 
 
 

• Weights define a segmentation 
of X 
 

• Video / demo… 

Deep Gaussian processes 

[Damianou et al. ‘12] 



Potential applications..? 

31 Deep Gaussian processes 



Motion Capture

• Revisit 'high �ve' data.

• This time allow model to learn structure, rather than imposing

it.



Deep hierarchies – motion capture 

38 Deep Gaussian processes 



Digits Data Set

• Are deep hierarchies justi�ed for small data sets?

• We can lower bound the evidence for di�erent depths.

• For 150 6s, 0s and 1s from MNIST we found at least 5 layers

are required.



Deep hierarchies – MNIST 

37 Deep Gaussian processes 



Summary

• Deep models allow abstract representation of data sets at

higher levels.

• Deep GPs allow structure learning.

• Current limitation is on data set size.

• Addressing this through work by James Hensman on

Stochastic Variational Inference for GPs (NIPS Workshop

Poster `GPs for Big Data').

• Intention is to deploy these models for assimilating a wide

range of data types in personalized health (text, survival times,

images, genotype, phenotype).

• Requires population scale models with millions of features.
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