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irection for further research.

11.1. HAVE WE THROWN THE BABY OUT WITH THE BATH WATER?

According to the hype of 1987, neural networks were meant to be intelligent
models which discovered features and patterns in data. Gaussian processes
in contrast are simply smoothing devices. How can Gaussian processes pos-
sibly replace neural networks? What is going on?

I think what the work of Williams and Rasmussen (1996) shows is that
many real-world data modelling problems are perfectly well solved by sensi-
ble smoothing methods. The most interesting problems, the task of feature
discovery for example, are not ones which Gaussian processes will solve. But
maybe multilayer perceptrons can’t solve them either. On the other hand,
it may be that the limit of an infinite number of hidden units, to which
(GGaussian processes correspond, was a bad limit to take; maybe we should
backtrack, or modify the prior on neural network parameters, so as to cre-
ate new models more interesting than Gaussian processes. Evidence that
this infinite limit has lost something compared with finite neural networks
comes from the observation that in a finite neural network with more than
one output, there are non—trivial correlations between the outputs (since
they share inputs from common hidden units); but in the limit of an infi-
nite number of hidden units, these correlations vanish. Radford Neal has
suggested the use of non—Gaussian priors in networks with multiple hid-
den layers. Or perhaps a completely fresh start is needed, approaching the
problem of machine learning from a paradigm different from the supervised
feedforward mapping.




Structure of Priors

MacKay: NIPS Tutorial 1997 “Have we thrown out the baby with
the bathwater?” (Published as MacKay, 1998) Also noted by
(Wilson et al., 2012)



Deep Models

e Universal approximator arguments ignore interesting priors.
e Gaussian process priors are amazing, but still limited.

e Struggle to learn unusual long range correlations
e Makes covariance functions inappropriate for ‘multitask
learning'.
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USPS Data Set Handwritten Digit

e 3648 Dimensions
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Template Model of Digits

e Design a set of ‘latent’ features, which generate the 6.

o Global template: memorize data set.




Latent Variable Model
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Template Matching

Each latent node associated with a ‘template’ digit.

If as many nodes as data then model is like ‘nearest neighbour’
with a particular distance measure.

If less nodes than data then model is like a mixture of
Bernoulli distributions.

What if we allow several nodes to be switched on together?



Templates to Features

In template matching ith node had an associated set of
probabilities, p;.
These probabilities can be reshaped into a matrix and sampled
from to see the sixes.
If the ith node is on the ith vector of probabilities is used.
What if the ith node and the kth node are on?

e How do we combine p; and px to give probabilities of pixels?



Squashing Function

e One solution is to first reparameterise p; ; as a squashing
function,
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Addition Before Squashing

e Example: if latent node 1 and 6 are on.

e Can't add p.; to p.g to obtain probability that node is on.
e Instead add w.; to w.e and push through squashing function.
e In general for p; . compute Wx; ..

e Then p;; = o(w/ x; ;) where o(-) is the sigmoid function.
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Localized Receptive Fields

e Model can now fit global model as sum of parts.
e Each latent node associated with local features.

e Structure of model combines local features in products of
experts manner (7).
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Restricted Boltzmann Machine

Represent data, Y, through a set of unobserved latent variables
=Y P(Y|X)P(X)
X

Data and latent variables are binary.

Assume latent variables, x; ;, are ‘on’ with probability 7;.

[T - me-=

i=1j=1

Set m; = o(b;) where o(-) is the sigmoid function! and b; is a
‘bias’ parameter.

exo(z)
1+exp(z)’

'The sigmoid function is o(z) =



Restricted Boltzmann Machine: Binomial Prior

e Parameterizing in this way means

X) x ﬁ exp (xlb)
i=1

which, because X is binary, is equivalent to

o<Hexp< .diag(b)x; )



Restricted Boltzmann Machine

e Assume a linear-logistic relationship of the form
P(yij) = pi (1 — pi )t )

where p; ; is the probability that y; ; = 1.
e For RBM it is often given by

T
pPij=0 (WJ;;X,',; + Cj)

e For convenience we will reparameterize

pij=0 (Cj [WJT’:X,'# — 1})



Restricted Boltzmann Machine

e Parameterizing in this way implies

n
P(Y|X, W) o [J exp (y,-T:diag(c) (Wi, — 1))
i=1
which, because Y is binary can be rewritten? as

P(Y|X,W) o< [ ] exp (— (yi: — Wx;.) " diag(c) (yi: — Wx,-,;))
i=1

2To complete the square where we extracted x;,W " diag(c)Wx;,. from the
constant of proportionality.



Restricted Boltzman Machine

RBM

e Define linear-logistic
relationship between
latent variables and data.

o Integrate out /latent
variables ... 77




Restricted Boltzman Machine

RBM
e Define linear-logistic
relationship between
latent variables and data.
e Standard Latent variable
approach:

p(YIX,W) = HHPY” 1—p; ;)2 =%
i=1j=1



Restricted Boltzman Machine

RBM W
e Define linear-logistic
relationship between
latent variables and data.
e Standard Latent variable
approach:
e Define binomial prior

Yi 1 i
over latent space, X. p(YIX, W) = HHP I (1—p; ;)i
i=1j=1

=TT - mpens

i=1j=1



Restricted Boltzman Machine

RBM

o Define linear-logistic
relationship between
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Marginalization of X

P(YIX,W) o [ ] exp (— (yi: — Wx;.) " diag(c) (yi: — Wx,-,;))
i=1

n




Marginalization of X

P (Y]X, W) oc [T exp (— (vi, — Wx;)" diag(c) (yi,

i=1
P (X) f[exp (xldiag(b)xfzr)
i=1

P(YIW) =) P(Y|X,W)P(X)
X

- Wx,-7;)>



Model Factorizes Across Data

P (yi:|xi., W) o exp (— (yi- — Wx;.) " diag(c) (yi. — WXi,:))
P (x;.) o exp (x,-T:diag () Xi,:)

Pyi W) =" P (yi.lxi.;, W) P (xi.)



Model Factorizes Across Data

P (yi,:

X;.., W) ox exp (— (yi: — Wx,-7;)T diag(c) (yi. — Wx,-7;)>
P (xj.) o< exp (x,-T:diag (b) Xi,:)

P (yi,:

W) = Z P (YI,: X,'7;,W) P (xi,i)

Unfortunately this sum still contains 29 terms.



Linear Dimensionality Reduction

Linear Latent Variable Model
e Represent data, Y, with a lower dimensional set of latent
variables X.
e Assume a linear relationship of the form

Yi: = Wxi,: + €

where

.~ N (0,0%).



Linear Latent Variable Model

Probabilistic PCA

e Define linear-Gaussian W
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latent variables and data.

p(YIX, W) =[N (vi:|Wx; ., o?1)
i=1
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Linear Latent Variable Model

Probabilistic PCA
e Define linear-Gaussian
relationship between
latent variables and data.
e Standard Latent variable
approach:

e Define Gaussian prior
over latent space, X.

p(YIX,W) =[N (vi,.|Wx;.., o?1)
i=1

p(X) = HN (Xi,:|07 I)



Linear Latent Variable Model

Probabilistic PCA

e Define linear-Gaussian
relationship between «—;2
latent variables and data.

e Standard Latent variable

approach: n
. Y|X, W) = i |Wx; ., 0?1
o Define Gaussian prior p(YIX, W) ’EN(y"" Xivs )

over latent space, X.
o Integrate out /atent 2

variables. p(X)= EN (xi.0,1)
p(YIW) = [TV (i, 10, Www T + 1)

i=1



Linear Latent Variable Model Il

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

(X

< — 2

p(YIW) = [ (y,-7;|0,WWT + 02|>
i=1



Linear Latent Variable Model Il

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

n

p(Y|W) = H/\/(y,',;\O,C), C=WW' 152
i

1
log p (Y|W) = —g log |C| — §tr (C*IYTY) + const.

If Ug are first g principal eigenvectors of n1YTY and the
corresponding eigenvalues are A,

N[ =

W =UgLR", L= (A;—7%)

where R is an arbitrary rotation matrix.



Relation between RBM and PCA/FA

e RBM is PCA with latent variables and data variables restricted
binary.

e Binary restriction means latent features combine in a
non-linear way.

e In PCA latent features always combine in a linear way.



PCA and RBM

P (yi,:[xi,:; W) o< exp (_ (vi: — Wx,-,:)T diag(c) (yi, — Wx,-,:)>

T e




PCA and RBM

1
1% (Yi,:|xi,:a W) X €Xp <_F (Yi,: - Wxi,:)T (Yi,: - WXi,:))
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Deep Gaussian Processes

Work with Andreas Damianou

e Deep architectures allow abstraction of features (Bengio, 2009;
Hinton and Osindero, 2006; Salakhutdinov and Murray, 2008).

e We use variational approach to stack GP models.



Deep GPs

Stacking PPCA still leads to a linear latent variable model.
To stack latent variable models, need a non-linear model.
The GP-LVM is a non-linear latent variable model.
Stacking GP-LVM leads to hierarchical GP-LVM.



Hierarchical GP-LVM

(Lawrence and Moore, 2007)

Stacking Gaussian Processes
e Regressive dynamics provides a simple hierarchy.
e The input space of the GP is governed by another GP.
e By stacking GPs we can consider more complex hierarchies.
e |deally we should marginalise latent spaces

e In practice we seek MAP solutions.



Two Correlated Subjects

(Lawrence and Moore, 2007)

Figure: Hierarchical model of a 'high five'.



Within Subject Hierarchy

(Lawrence and Moore, 2007)

Decomposition of Body

‘QHM.Q

Figure: Decomposition of a subject.



Single Subject Run/Walk

(Lawrence and Moore, 2007)

Figure: Hierarchical model of a walk and a run.

» Return



Bayesian GP-LVM

e Bayesian GP-LVM allows variational marginalization of X and
W.

< — 2

e This leads to a Bayesian model where latent dimensionality
can be learnt.



Selecting Data Dimensionality

GP-LVM Provides probabilistic non-linear dimensionality
reduction.

How to select the dimensionality?
Need to estimate marginal likelihood.

In standard GP-LVM it increases with increasing g.



Variational Latent Variables

e Variational marginalizing of X is also analytic.
e Need to assume Gaussian g(X).

e Compute expectations of g(X) then analytically marginalize
p(u) as before. (Titsias and Lawrence, 2010; Hensman et al., 2012)

o Requires expectations of K¢, and Kg K, ;.



Non-linear f(x)

e In linear case equivalence because f(x) = w'x

p(wi) ~ N (0,a;)
e In non linear case, need to scale columns of X in prior for f(x).
e This implies scaling columns of X in covariance function
1 T
k(xi,:axj,:) = €Xp *E(X:,i - X:,j) A(X:,i - X:,j)
A is diagonal with elements a?. Now keep prior spherical

q

p(X) = [V (x,l0.1)

Jj=1

e Covariance functions of this type are known as ARD (see e.g.
Neal, 1996; MacKay, 2003; Rasmussen and Williams, 2006).



Automatic dimensionality detection

Achieved by employing an Automatic Relevance Determination
(ARD) covariance function for the prior on the GP mapping

[~ GP(0,kf) with
2
ky (xis ) = o exp (—3 0wy (21— 3.

Example




Face Demo
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Gaussian Process over Latent Space

e Assume a GP prior for p(X).

e Input to the process is time, p(X|t).




Gaussian Process over Latent Space

o Allows to interpret high dimensional video.

o Examples: Missa and Dog Generation.




Modeling Multiple "Views'

Single space to model correlations between two different data
sources, e.g., images & text, image & pose.

Shared latent spaces: (Shon et al., 2006; Navaratnam et al., 2007; Ek et al.,
2008b)

Effective when the ‘views' are correlated.
But not all information is shared between both ‘views'.

PCA applied to concatenated data vs CCA applied to data.



Shared-Private Factorization

o In real scenarios, the 'views' are neither fully independent, nor fully
correlated.

e Shared models

o either allow information relevant to a single view to be mixed
in the shared signal,
e or are unable to model such private information.

e Solution: Model shared and private information (Virtanen et al., 2011;
Ek et al., 2008a; Leen and Fyfe, 2006; Klami and Kaski, 2007, 2008; Tucker,

@ & @
& @

e Probabilistic CCA is case when dimensionality of Z matches Y (cf
Inter Battery Factor Analysis (Tucker, 1958)).



Work with Andreas Damianou and Carl Henrik Ek

Manifold Relevance Determination
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Shared GP-LVM
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Example: Yale faces

* Dataset Y: 3 persons under all illumination conditions
* Dataset Z: As above for 3 different persons

* Align datapoints x,,and z, only based on the lighting direction

Deep Gaussian processes




Results

* Latent space X initialised with
14 dimensions

* Weights define a segmentation
of X

*Video / demo...
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Potential applications..?




Motion Capture

e Revisit 'high five' data.

o This time allow model to learn structure, rather than imposing
it.




Deep hierarchies — motion capture

Y(l)




Digits Data Set

o Are deep hierarchies justified for small data sets?
e We can lower bound the evidence for different depths.

e For 150 6s, Os and 1s from MNIST we found at least 5 layers
are required.



Deep hierarchies — MNIST

Outputs obtained
Optimised after sampling
weights from (certain nodes)
of layers 5,4,2,1
Generic
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Summary

Deep models allow abstract representation of data sets at
higher levels.

Deep GPs allow structure learning.
Current limitation is on data set size.

Addressing this through work by James Hensman on
Stochastic Variational Inference for GPs (NIPS Workshop
Poster ‘GPs for Big Data’).

Intention is to deploy these models for assimilating a wide
range of data types in personalized health (text, survival times,
images, genotype, phenotype).

Requires population scale models with millions of features.
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