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irection for further research.

11.1. HAVE WE THROWN THE BABY OUT WITH THE BATH WATER?

According to the hype of 1987, neural networks were meant to be intelligent
models which discovered features and patterns in data. Gaussian processes
in contrast are simply smoothing devices. How can Gaussian processes pos-
sibly replace neural networks? What is going on?

I think what the work of Williams and Rasmussen (1996) shows is that
many real-world data modelling problems are perfectly well solved by sensi-
ble smoothing methods. The most interesting problems, the task of feature
discovery for example, are not ones which Gaussian processes will solve. But
maybe multilayer perceptrons can’t solve them either. On the other hand,
it may be that the limit of an infinite number of hidden units, to which
(GGaussian processes correspond, was a bad limit to take; maybe we should
backtrack, or modify the prior on neural network parameters, so as to cre-
ate new models more interesting than Gaussian processes. Evidence that
this infinite limit has lost something compared with finite neural networks
comes from the observation that in a finite neural network with more than
one output, there are non—trivial correlations between the outputs (since
they share inputs from common hidden units); but in the limit of an infi-
nite number of hidden units, these correlations vanish. Radford Neal has
suggested the use of non—Gaussian priors in networks with multiple hid-
den layers. Or perhaps a completely fresh start is needed, approaching the
problem of machine learning from a paradigm different from the supervised
feedforward mapping.




Structure of Priors

MacKay: NIPS Tutorial 1997 “Have we thrown out the baby with
the bathwater?” (Published as MacKay, 1998) Also noted by
(Wilson et al., 2012)



Deep Models

e Universal approximator arguments ignore interesting priors.
e Gaussian process priors are amazing, but still limited.

e Struggle to learn unusual long range correlations
e Makes covariance functions inappropriate for ‘multitask
learning'.



Restricted Boltzman Machine

Linear Latent Variable Model
e Represent data, Y, with a set of latent variables X.

e Assume a linear-logistic relationship of the form
P(yij) = 07 (1 = 07/) =71

where
1

1—|—exp( wa, >’
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Restricted Boltzman Machine

RBM
o Define linear-logistic
relationship between
latent variables and data.
e Standard Latent variable
approach:

e Define binomial prior
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Restricted Boltzman Machine

RBM W

e Define linear-logistic
relationship between
latent variables and data.

e Standard Latent variable
approach:

e Define binomial prior

over latent space, X. P(YIX, W) = HHC’y’J(l o))
e Integrate out /latent ==

variables ... need to

sample ... HHhx”(l yA=%i.5)

i=1i=1

p (Y|W) =77
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Deep Gaussian Processes

Work with Andreas Damianou

e Deep architectures allow abstraction of features (Bengio, 2009;
Hinton and Osindero, 2006; Salakhutdinov and Murray, 2008).

e \We use variational approach to stack GP models.

e Similar to GPDS, but apply recursively.



Linear Dimensionality Reduction

Linear Latent Variable Model
e Represent data, Y, with a lower dimensional set of latent
variables X.
e Assume a linear relationship of the form

Yi: = Wxi,: + €

where

.~ N (0,0%).
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Linear Latent Variable Model

Probabilistic PCA
e Define linear-Gaussian
relationship between
latent variables and data.
e Standard Latent variable
approach:

e Define Gaussian prior
over latent space, X.

p(YIX,W) =[N (vi,.|Wx;.., o?1)
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Linear Latent Variable Model

Probabilistic PCA

e Define linear-Gaussian
relationship between «—;2
latent variables and data.

e Standard Latent variable

approach: n
. Y|X, W) = i |Wx; ., 0?1
o Define Gaussian prior p(YIX, W) ’EN(y"" Xivs )

over latent space, X.
o Integrate out /atent 2

variables. p(X)= EN (xi.0,1)
p(YIW) = [TV (i, 10, Www T + 1)

i=1



Linear Latent Variable Model Il

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

(X

< — 2

p(YIW) = [ (y,-7;|0,WWT + 02|>
i=1



Linear Latent Variable Model Il

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

n

p(Y|W) = H/\/(y,',;\O,C), C=WW' 152
i

1
log p (Y|W) = —g log |C| — §tr (C*IYTY) + const.

If Ug are first g principal eigenvectors of n1YTY and the
corresponding eigenvalues are A,

N[ =

W =UgLR", L= (A;—7%)

where R is an arbitrary rotation matrix.
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Dual Probabilistic PCA
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Linear Latent Variable Model Il

Dual Probabilistic PCA

o Define linear-Gaussian
relationship between
latent variables and data. « 2

¢ Novel Latent variable
approach:

e Define Gaussian prior

g
over parameters, W. p(YIX,W) =[N (vi.IWx; ., 0?1)
i=1

p(W) - HN (Wi,:|07 I)

i=1



Linear Latent Variable Model Il

Dual Probabilistic PCA

e Define linear-Gaussian
relationship between -2
latent variables and data.

e Novel Latent variable

approach: T
p(YIX,W) = [TV (i Wxi,., o1)

o Define Gaussian prior ey

over parameters, W.

o Integrate out P
W) = -0, 1
parameters. p(W) =TT (wil0,1)

i=1

P
P(YIX) = [TV (.510,XXT + o21)

j=1



Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004, 2005)




Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004, 2005)

P
p(YIX)=]]N (y.510,K), K=XXT+5
j=1

1
log p (Y|X) = _g log |K| — Etr (K_IYYT) + const.

If U; are first g principal eigenvectors of p~1YY T and the corresponding eigenvalues
are Ag,

X=U,LR", L=(Ag fazl)%

where R is an arbitrary rotation matrix.



Linear Latent Variable Model IV

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p(YW)=]]N (¥::10,C), C=wwT +5°

i=1

1
logp (Y|W) = 7% log |C| — Etr (C_lYTY) + const.

If Ug are first g principal eigenvectors of n~1YTY and the corresponding eigenvalues
are Ag,

M=

W =UgLRT, L= (A;—0?)

where R is an arbitrary rotation matrix.



Equivalence of Formulations

The Eigenvalue Problems are equivalent
e Solution for Probabilistic PCA (solves for the mapping)

Y YU, =UA, W=UjLR'

e Solution for Dual Probabilistic PCA (solves for the latent
positions)
YY'U, =U,A;, X=U,LR"

e Equivalence is from



Non-Linear Latent Variable Model

Dual Probabilistic PCA

e Define linear-Gaussian
relationship between
latent variables and data.

(o

e Novel Latent variable .
approach: p(YIX, W) = TN (i [Wx; ., 0%1)

0 0 0 i=1
o Define Gaussian prior
over parameteters, W. P
e Integrate out p(W) =[N (wi.[0,1)

=
parameters. '

P
P(YIX) = [TV (.510,XXT + o21)

j=1



Non-Linear Latent Variable Model

Dual Probabilistic PCA

¢ Inspection of the marginal
likelihood shows ...

< 70.2

P
p(YIX) =[NV (y:,,-|0,xxT + azl)

=



Non-Linear Latent Variable Model

Dual Probabilistic PCA

¢ Inspection of the marginal
likelihood shows ...

e The covariance matrix

is a covariance
function. <2

P
p(YIX) =[N (y.;10,K)

=1

K=XX" + o2l



Non-Linear Latent Variable Model

Dual Probabilistic PCA

o Inspection of the marginal
likelihood shows ...

e The covariance matrix

. . «— 2
is a covariance g
function.
o We recognise it as the P
‘linear kernel'. p(YIX) = HN(Yer’K)
j=1
K=XXT + 52l

This is a product of Gaussian processes

with linear kernels.



Non-Linear Latent Variable Model

Dual Probabilistic PCA

e Inspection of the marginal
likelihood shows ...

e The covariance matrix
is a covariance
function.

o We recognise it as the
‘linear kernel'.

e We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

< 70.2

p(YX) =[N (v.410.K)

i=1
K =7

Replace linear kernel with non-linear

kernel for non-linear model.



Non-linear Latent Variable Models

Exponentiated Quadratic (EQ) Covariance

e The EQ covariance has the form k; j = k (x;.,x;.), where

1%, — X'.:H2
k(i %j:) = aexp <—12£212 .

e No longer possible to optimise wrt X via an eigenvalue
problem.

e Instead find gradients with respect to X, «, ¢ and o2 and
optimise using conjugate gradients.
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Learning in Larger Datasets

(Lawrence, 2007; Titsias, 2009)

e Complexity of standard GP:

e O(n®) in computation.

e O(n?) in storage.
e Via low rank representations of covariance:

e O(nm?) in computation.

e O(nm) in storage.
e Where m is user chosen number of inducing variables. They

give the rank of the resulting covariance.



Inducing Variable Approximations

e Date back to (Williams and Seeger, 2001; Smola and Bartlett, 2001; Csaté
and Opper, 2002; Seeger et al., 2003; Snelson and Ghahramani, 2006). See
Quifionero Candela and Rasmussen (2005) for a review.

e \We follow variational perspective of (Titsias, 2009).

e This is an augmented variable method, followed by a collapsed
variational approximation (King and Lawrence, 2006; Hensman et al.,
2012).



Augmented Variable Model

Augment standard GP model with a set
of m new inducing variables, u.

ply) = / p(y, u)du




Augmented Variable Model

Augment standard GP model with a set
of m new inducing variables, u.

p(y) = [ plylu)p(u)du




Augmented Variable Model

Assume that relationship is through f.

p(y) = [ pl3If)p(flu)p(u)dfde




Augmented Variable Model

Very often likelihood factorizes.

py) = [ [T ploif)p(lu)p(u)dfe
i=1



Augmented Variable Model

Focus on integral over f.

(y) = (vilfi)p(f|u)dfp(u)du
p(y //i];[lpy p p



Augmented Variable Model

Focus on integral over f.

p(ylu) = [ T] pOilf)p(Flu)et




Variational Bound on p(y|u)

og p(ylu) =log [ p(yiPp(Flu)df

p(y[f)p(fu)
>/Q(f) log Tdf

e For variational approximation of (Titsias, 2009) set q(f) = p(f|u),

log p(y|u) > log / p(f[u) log p(y|F)df.

p(ylu) = exp [ p(Flu) log ply[F).



Deterministic Training Conditional

e The variational bound factorizes over data points.
e Marginalizing over p(u) is analytic.
e This results in a modified variant of the projected process
approximation (Rasmussen and Williams, 2006) or DTC (Quifionero
Candela and Rasmussen, 2005). Proposed by (Smola and Bartlett,
2001; Seeger et al., 2003; Csaté and Opper, 2002; Csaté, 2002).

L> "logci + log NV (y]0, 0?1 + K{ Ky tKy )
i=1



Deterministic Training Conditional

e The variational bound factorizes over data points.
e Marginalizing over p(u) is analytic.
e This results in a modified variant of the projected process
approximation (Rasmussen and Williams, 2006) or DTC (Quifionero
Candela and Rasmussen, 2005). Proposed by (Smola and Bartlett,
2001; Seeger et al., 2003; Csaté and Opper, 2002; Csaté, 2002).

L~ log N (y|0,0°1 + K{ Ky LKy 1)



Selecting Data Dimensionality

GP-LVM Provides probabilistic non-linear dimensionality
reduction.

How to select the dimensionality?
Need to estimate marginal likelihood.

In standard GP-LVM it increases with increasing g.



Variational Latent Variables

e Variational marginalizing of X is also analytic.
e Need to assume Gaussian g(X).

e Compute expectations of g(X) then analytically marginalize
p(u) as before. (Titsias and Lawrence, 2010; Hensman et al., 2012)

o Requires expectations of K¢, and Kg K, ;.



data
space

Work with Andreas Damianou and Michalis Titsias
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Gaussian Process over Latent Space

e Assume a GP prior for p(X).

e Input to the process is time, p(X|t).




Gaussian Process over Latent Space

o Allows to interpret high dimensional video.

o Examples: Missa and Dog Generation.




Modeling Multiple "Views'

Single space to model correlations between two different data
sources, e.g., images & text, image & pose.

Shared latent spaces: (Shon et al., 2006; Navaratnam et al., 2007; Ek et al.,
2008b)

Effective when the ‘views' are correlated.
But not all information is shared between both ‘views'.

PCA applied to concatenated data vs CCA applied to data.



Shared-Private Factorization

o In real scenarios, the 'views' are neither fully independent, nor fully
correlated.

e Shared models

o either allow information relevant to a single view to be mixed
in the shared signal,
e or are unable to model such private information.

e Solution: Model shared and private information (Virtanen et al., 2011;
Ek et al., 2008a; Leen and Fyfe, 2006; Klami and Kaski, 2007, 2008; Tucker,

@ & @
& @

e Probabilistic CCA is case when dimensionality of Z matches Y (cf
Inter Battery Factor Analysis (Tucker, 1958)).



Work with Andreas Damianou and Carl Henrik Ek

Manifold Relevance Determination
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Shared GP-LVM
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Separate ARD parameters for mappings to Y1) and Y(2),



Example: Yale faces

* Dataset Y: 3 persons under all illumination conditions
* Dataset Z: As above for 3 different persons

* Align datapoints x,,and z, only based on the lighting direction

Deep Gaussian processes




Results

* Latent space X initialised with
14 dimensions

* Weights define a segmentation
of X

*Video / demo...

XY.Z
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Potential applications..?
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Hierarchical GP-LVM

(Lawrence and Moore, 2007)

Stacking Gaussian Processes
e Regressive dynamics provides a simple hierarchy.
e The input space of the GP is governed by another GP.
e By stacking GPs we can consider more complex hierarchies.
e |deally we should marginalise latent spaces

e In practice we seek MAP solutions.



Two Correlated Subjects

(Lawrence and Moore, 2007)

Figure: Hierarchical model of a 'high five'.



Within Subject Hierarchy

(Lawrence and Moore, 2007)

Decomposition of Body

‘QHM.Q

Figure: Decomposition of a subject.



Single Subject Run/Walk

(Lawrence and Moore, 2007)

Figure: Hierarchical model of a walk and a run.

» Return



Motion Capture

e Revisit 'high five' data.

o This time allow model to learn structure, rather than imposing
it.




Deep hierarchies — motion capture

Y(l)




Digits Data Set

o Are deep hierarchies justified for small data sets?
e We can lower bound the evidence for different depths.

e For 150 6s, Os and 1s from MNIST we found at least 5 layers
are required.



Deep hierarchies — MNIST

Outputs obtained
Optimised after sampling
weights from (certain nodes)
of layers 5,4,2,1
Generic
z @ H H [. “ “ feature
encoding
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Summary

Variational GP-LVM gives dimensionality estimation in non
linear PCA.

Shared models use structure learning to do manifold relevance
determination.

Temporal models place a GP prior on the latent space to
ensure time dependence of variables.

Deep GPs place GP-LVM priors on each layer recursively.
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