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Structure of Priors

MacKay: NIPS Tutorial 1997 �Have we thrown out the baby with

the bathwater?� (Published as MacKay, 1998) Also noted by

(Wilson et al., 2012)



Deep Models

• Universal approximator arguments ignore interesting priors.

• Gaussian process priors are amazing, but still limited.
• Struggle to learn unusual long range correlations
• Makes covariance functions inappropriate for `multitask
learning'.



Restricted Boltzman Machine

Linear Latent Variable Model

• Represent data, Y, with a set of latent variables X.

• Assume a linear-logistic relationship of the form

P(yi ,j) = σ
yi,j
i ,j (1− σi ,j)

(1−σi,j )

where

σi ,j =
1

1+ exp
(
−w>j ,ixi ,:

) ,



Restricted Boltzman Machine

RBM

• De�ne linear-logistic

relationship between

latent variables and data.

• Standard Latent variable

approach:

• De�ne binomial prior
over latent space, X.

• Integrate out latent
variables ... need to
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Restricted Boltzman Machine
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Deep Gaussian Processes

Work with Andreas Damianou

• Deep architectures allow abstraction of features (Bengio, 2009;

Hinton and Osindero, 2006; Salakhutdinov and Murray, 2008).

• We use variational approach to stack GP models.

• Similar to GPDS, but apply recursively.



Linear Dimensionality Reduction

Linear Latent Variable Model

• Represent data, Y, with a lower dimensional set of latent

variables X.

• Assume a linear relationship of the form

yi ,: = Wxi ,: + εi ,:,

where

εi ,: ∼ N
(
0, σ2I

)
.



Linear Latent Variable Model

Probabilistic PCA

• De�ne linear-Gaussian

relationship between

latent variables and data.

• Standard Latent variable

approach:

• De�ne Gaussian prior
over latent space, X.

• Integrate out latent
variables.
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Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)
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Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p (Y|W) =
n∏

i=1

N (yi ,:|0,C) , C = WW> + σ2I

log p (Y|W) = −n

2
log |C| − 1

2
tr
(
C−1Y>Y

)
+ const.

If Uq are �rst q principal eigenvectors of n−1Y>Y and the

corresponding eigenvalues are Λq,

W = UqLR
>, L =

(
Λq − σ2I

) 1
2

where R is an arbitrary rotation matrix.



Linear Latent Variable Model III

Dual Probabilistic PCA

• De�ne linear-Gaussian

relationship between

latent variables and data.

• Novel Latent variable
approach:

• De�ne Gaussian prior
over parameters, W.
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Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004, 2005)

Y

W
X

σ2

p (Y|X) =
p∏
j=1

N
(
y:,j |0,XX> + σ2I

)



Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004, 2005)

p (Y|X) =
p∏
j=1

N
(
y:,j |0,K

)
, K = XX> + σ2I

log p (Y|X) = −
p

2
log |K| −

1

2
tr
(
K−1YY>

)
+ const.

If U′q are �rst q principal eigenvectors of p−1YY> and the corresponding eigenvalues
are Λq ,

X = U′qLR
>, L =

(
Λq − σ2I

) 1
2

where R is an arbitrary rotation matrix.
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Equivalence of Formulations

The Eigenvalue Problems are equivalent
• Solution for Probabilistic PCA (solves for the mapping)

Y
>
YUq = UqΛq W = UqLR

>

• Solution for Dual Probabilistic PCA (solves for the latent
positions)

YY
>
U
′
q = U

′
qΛq X = U

′
qLR

>

• Equivalence is from

Uq = Y
>
U
′
qΛ
− 1

2

q



Non-Linear Latent Variable Model

Dual Probabilistic PCA

• De�ne linear-Gaussian

relationship between

latent variables and data.

• Novel Latent variable
approach:

• De�ne Gaussian prior
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

• Inspection of the marginal

likelihood shows ...

• The covariance matrix
is a covariance
function.

• We recognise it as the
`linear kernel'.

• We call this the
Gaussian Process
Latent Variable model
(GP-LVM).
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

• Inspection of the marginal

likelihood shows ...

• The covariance matrix
is a covariance
function.

• We recognise it as the
`linear kernel'.

• We call this the
Gaussian Process
Latent Variable model
(GP-LVM).
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)

K = XX> + σ2I

This is a product of Gaussian processes

with linear kernels.



Non-Linear Latent Variable Model

Dual Probabilistic PCA

• Inspection of the marginal

likelihood shows ...

• The covariance matrix
is a covariance
function.

• We recognise it as the
`linear kernel'.

• We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

Y

W
X

σ2

p (Y|X) =
p∏
j=1

N
(
y:,j |0,K

)
K =?

Replace linear kernel with non-linear

kernel for non-linear model.



Non-linear Latent Variable Models

Exponentiated Quadratic (EQ) Covariance

• The EQ covariance has the form ki ,j = k (xi ,:, xj ,:) , where

k (xi ,:, xj ,:) = α exp

(
−
‖xi ,: − xj ,:‖22

2`2

)
.

• No longer possible to optimise wrt X via an eigenvalue

problem.

• Instead �nd gradients with respect to X, α, ` and σ2 and

optimise using conjugate gradients.
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Learning in Larger Datasets

(Lawrence, 2007; Titsias, 2009)

• Complexity of standard GP:
• O(n3) in computation.
• O(n2) in storage.

• Via low rank representations of covariance:
• O(nm2) in computation.
• O(nm) in storage.

• Where m is user chosen number of inducing variables. They

give the rank of the resulting covariance.



Inducing Variable Approximations

• Date back to (Williams and Seeger, 2001; Smola and Bartlett, 2001; Csató

and Opper, 2002; Seeger et al., 2003; Snelson and Ghahramani, 2006). See

Quiñonero Candela and Rasmussen (2005) for a review.

• We follow variational perspective of (Titsias, 2009).

• This is an augmented variable method, followed by a collapsed

variational approximation (King and Lawrence, 2006; Hensman et al.,

2012).



Augmented Variable Model

Augment standard GP model with a set

of m new inducing variables, u.

p(y) =

∫
p(y,u)du

y
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Augmented Variable Model

Assume that relationship is through f.

p(y) =

∫
p(y|f)p(f|u)p(u)dfdu

y

f

u



Augmented Variable Model

Very often likelihood factorizes.

p(y) =

∫ n∏
i=1

p(yi |fi )p(f|u)p(u)dfdu

yi

fi

u

i = 1 . . . n
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Augmented Variable Model

Focus on integral over f.

p(y|u) =
∫ n∏

i=1

p(yi |fi )p(f|u)df

yi

fi

u
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Variational Bound on p(y|u)

log p(y|u) = log

∫
p(y|f)p(f|u)df

≥
∫

q(f) log
p(y|f)p(f|u)

q(f)
df

• For variational approximation of (Titsias, 2009) set q(f) = p(f|u),

log p(y|u) ≥ log

∫
p(f|u) log p(y|f)df.

p(y|u) ≥ exp

∫
p(f|u) log p(y|f)df.



Deterministic Training Conditional

• The variational bound factorizes over data points.

• Marginalizing over p(u) is analytic.
• This results in a modi�ed variant of the projected process
approximation (Rasmussen and Williams, 2006) or DTC (Quiñonero

Candela and Rasmussen, 2005). Proposed by (Smola and Bartlett,

2001; Seeger et al., 2003; Csató and Opper, 2002; Csató, 2002).

L ≥
n∑

i=1

log ci + logN
(
y|0, σ2I+K>f,uK

−1
u,uKu,f,

)



Deterministic Training Conditional

• The variational bound factorizes over data points.

• Marginalizing over p(u) is analytic.
• This results in a modi�ed variant of the projected process
approximation (Rasmussen and Williams, 2006) or DTC (Quiñonero

Candela and Rasmussen, 2005). Proposed by (Smola and Bartlett,

2001; Seeger et al., 2003; Csató and Opper, 2002; Csató, 2002).

L ≈ logN
(
y|0, σ2I+K>f,uK

−1
u,uKu,f,

)



Selecting Data Dimensionality

• GP-LVM Provides probabilistic non-linear dimensionality

reduction.

• How to select the dimensionality?

• Need to estimate marginal likelihood.

• In standard GP-LVM it increases with increasing q.



Variational Latent Variables

• Variational marginalizing of X is also analytic.

• Need to assume Gaussian q(X).

• Compute expectations of q(X) then analytically marginalize
p(u) as before. (Titsias and Lawrence, 2010; Hensman et al., 2012)

• Requires expectations of Kf,u and Kf,uKu,f .



Gaussian Process Dynamical Systems

Work with Andreas Damianou and Michalis Titsias

y1 y2 y3 y4 y5 y6 y7 y8

x1 x2 x3 x4 x5 x6

t

latent

space

time

data

space



Gaussian Process over Latent Space

• Assume a GP prior for p(X).

• Input to the process is time, p(X|t).



Gaussian Process over Latent Space

• Allows to interpret high dimensional video.

• Examples: Missa and Dog Generation.



Modeling Multiple `Views'

• Single space to model correlations between two di�erent data
sources, e.g., images & text, image & pose.

• Shared latent spaces: (Shon et al., 2006; Navaratnam et al., 2007; Ek et al.,

2008b)

Y(1)

X

Y(2)

• E�ective when the `views' are correlated.

• But not all information is shared between both `views'.

• PCA applied to concatenated data vs CCA applied to data.



Shared-Private Factorization

• In real scenarios, the `views' are neither fully independent, nor fully
correlated.

• Shared models

• either allow information relevant to a single view to be mixed
in the shared signal,

• or are unable to model such private information.

• Solution: Model shared and private information (Virtanen et al., 2011;

Ek et al., 2008a; Leen and Fyfe, 2006; Klami and Kaski, 2007, 2008; Tucker,

1958)

Z(1)

Y(1)

X

Y(2)

Z(2)

• Probabilistic CCA is case when dimensionality of Z matches Y(i) (cf
Inter Battery Factor Analysis (Tucker, 1958)).



Manifold Relevance Determination

Work with Andreas Damianou and Carl Henrik Ek

y1 y2 y3 y4 y5 y6 y7 y8

x1 x2 x3 x4 x5 x6
Latent

space

Data

space



Shared GP-LVM

y
(1)
1

y
(1)
2

y
(1)
3

y
(1)
4

y
(2)
1

y
(2)
2

y
(2)
3

y
(2)
4

x1 x2 x3 x4 x5 x6
Latent

space

Data

space

Separate ARD parameters for mappings to Y(1) and Y(2).



Example: Yale faces 

29 

 
 
 
 
 
 
 
 

 
 
 

• Dataset Y: 3 persons under all illumination conditions 

• Dataset Z: As above for 3 different persons 

• Align datapoints xn and zn only based on the lighting direction 

Deep Gaussian processes 



Results 

30 

• Latent space X initialised with 
14 dimensions 
 
 

• Weights define a segmentation 
of X 
 

• Video / demo… 

Deep Gaussian processes 

[Damianou et al. ‘12] 



Potential applications..? 

31 Deep Gaussian processes 
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Hierarchical GP-LVM

(Lawrence and Moore, 2007)

Stacking Gaussian Processes

• Regressive dynamics provides a simple hierarchy.

• The input space of the GP is governed by another GP.

• By stacking GPs we can consider more complex hierarchies.

• Ideally we should marginalise latent spaces

• In practice we seek MAP solutions.



Two Correlated Subjects

(Lawrence and Moore, 2007)

Figure: Hierarchical model of a 'high �ve'.



Within Subject Hierarchy

(Lawrence and Moore, 2007)

Decomposition of Body

Figure: Decomposition of a subject.



Single Subject Run/Walk

(Lawrence and Moore, 2007)

Figure: Hierarchical model of a walk and a run.

Return



Motion Capture

• Revisit 'high �ve' data.

• This time allow model to learn structure, rather than imposing

it.



Deep hierarchies – motion capture 

38 Deep Gaussian processes 



Digits Data Set

• Are deep hierarchies justi�ed for small data sets?

• We can lower bound the evidence for di�erent depths.

• For 150 6s, 0s and 1s from MNIST we found at least 5 layers

are required.



Deep hierarchies – MNIST 

37 Deep Gaussian processes 



Summary

• Variational GP-LVM gives dimensionality estimation in non

linear PCA.

• Shared models use structure learning to do manifold relevance

determination.

• Temporal models place a GP prior on the latent space to

ensure time dependence of variables.

• Deep GPs place GP-LVM priors on each layer recursively.
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