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Online Resources

All source code and slides are available online

This talk available from home page (see talks link on side).

Scripts available in the ’gpsim’ toolbox

http://www.cs.man.ac.uk/~neill/gpsim/.

MATLAB commands used for examples given in typewriter
font.

Neil Lawrence, Guido Sanguinetti and Magnus Rattray Gaussian Processes for Network Inference

http://www.cs.man.ac.uk/~neill/gpsim/


Application
Latent Functions

Non-linear Response Model

Methodology & Application Overview
Covariance functions
Regression with Gaussian Processes

Framework

Latent functions

Many interaction networks have latent functions.

Assume a Gaussian process (GP) prior distribution for the
latent function.

Gaussian processes (GPs) are probabilistic models for
functions. O’Hagan [1978, 1992], Rasmussen and Williams [2006]

Our Approach

1 Take a differential equation model for the system.
2 Derive GP covariance jointly for observed and latent functions.
3 Maximise likelihood with respect to parameters (mostly

physically meaningful).
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This Talk

Transcription Network

Introduce Gaussian Processes for dealing with latent functions
in transcription networks.

Show how in a linear response model the latent function can
be dealt with analytically.

Discuss extensions to systems with non-linear responses.
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Linear Response Model

p53 Inference [Barenco et al., 2006]

Data consists of T measurements of mRNA expression level
for N different genes.

We relate gene expression, xj(t), to TFC, f (t), by

dxj (t)

dt
= Bj + Sj f (t)− Djxj (t) . (1)

Bj basal transcription rate of gene j ,
Sj is sensitivity of gene j

Dj is the decay rate of the mRNA.

Dependence of mRNA transcription rate on TF is linear.
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Linear Response Solution

Solve for TFC

The equation given in (3) can be solved to recover

xj (t) =
Bj

Dj
+ Sj exp (−Dj t)

∫ t

0
f (u) exp (Dju) du. (2)

If we model f (t) as a GP then as (2) only involves linear
operations xj (t) is also a GP.
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Gaussian Processes

GP Advantages

GPs allow for inference of continuous profies, accounting
naturally for temporal structure.

GPs allow joint estimation of a mRNA concentration and
production rates (derivative observations).
GPs deal consistently with the uncertainty inherent in the
measurements.
GPs outstrip MCMC for computational efficiency.

Note: GPs have previously been proposed for solving differential
equations [Graepel, 2003] and dynamical systems
[Murray-Smith and Pearlmutter].
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Defining a Distribution over Functions

Gaussian Process

What is meant by a distribution over functions?

Functions are infinite dimensional objects:

Defining a distribution over functions seems non-sensical.

Gaussian Distribution

Start with a standard Gaussian distribution.

Consider the distribution over a fixed number of instantiations
of the function.
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Gaussian Distribution

Zero mean Gaussian distribution

A multi-variate Gaussian distribution is defined by a mean and
a covariance matrix.

N (f|µ,K) =
1

(2π)
N
2 |K|

1
2

exp

(
−(f − µ)T K−1 (f − µ)

2

)
.

We will consider the special case where the mean is zero,

N (f|0,K) =
1

(2π)
N
2 |K|

1
2

exp

(
− fTK−1f

2

)
.
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Sampling a Function

Multi-variate Gaussians

We will consider a Gaussian with a particular structure of
covariance matrix.

Generate a single sample from this 25 dimensional Gaussian
distribution, f = [f1, f2 . . . f25].

We will plot these points against their index.
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Gaussian Distribution Sample

demGPSample
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Figure: (a) 25 instantiations of a function, fn, (b) greyscale covariance
matrix.
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Covariance Function

The covariance matrix

Covariance matrix shows correlation between points fm and fn
if n is near to m.

Less correlation if n is distant from m.

Our ordering of points means that the function appears
smooth.

Let’s focus on the joint distribution of two points form the 25.
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Covariance Function

The covariance matrix

Covariance matrix shows correlation between points fm and fn
if n is near to m.

Less correlation if n is distant from m.

Our ordering of points means that the function appears
smooth.

Let’s focus on the joint distribution of two points form the 25.
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Covariance Function

The covariance matrix
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Prediction of f2 from f1

demGPCov2D([1 2])
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.
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Prediction of f5 from f1

demGPCov2D([1 5])
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.
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Covariance Functions
Visualisation of RBF Covariance

RBF Kernel Function

k
(
t, t ′
)

= α exp

(
−(t − t ′)2

2l2

)

Covariance matrix is built
using the time inputs to
the function, t.

For the example above it
was based on Euclidean
distance.

The covariance function is
also known as a kernel.
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Covariance Samples

demCovFuncSample – sample from the prior
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Figure: RBF kernel with l = 0.3, α = 1
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Covariance Samples

demCovFuncSample – sample from the prior
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Figure: RBF kernel with l = 1, α = 1
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Covariance Samples

demCovFuncSample – sample from the prior
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Figure: RBF kernel with l = 0.3, α = 4
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Different Covariance Functions

MLP Kernel Function

k
(
t, t ′
)

= αsin−1

(
wtt ′ + b√

wt2 + b + 1
√

wt ′2 + b + 1

)

A non-stationary
covariance matrix Williams

[1997].

Derived from a multi-layer
perceptron (MLP).
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Covariance Samples

demCovFuncSample — samples from the prior
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Figure: MLP kernel with α = 8, w = 100 and b = 100
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Covariance Samples

demCovFuncSample — samples from the prior
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Figure: MLP kernel with α = 8, b = 0 and w = 100
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Prior to Posterior

Prediction with GPs

GPs provide a probabilistic prior over functions.

By combining with data we get a posterior over functions.

This is obtained through combining a covariance function with
data.

Toy Example: regression with GPs.
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Gaussian Process Regression

demRegression
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Figure: Going from prior to posterior with data.

Neil Lawrence, Guido Sanguinetti and Magnus Rattray Gaussian Processes for Network Inference



Application
Latent Functions

Non-linear Response Model

Methodology & Application Overview
Covariance functions
Regression with Gaussian Processes

Gaussian Process Regression
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Gaussian Process Regression

demRegression

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Going from prior to posterior with data.

Neil Lawrence, Guido Sanguinetti and Magnus Rattray Gaussian Processes for Network Inference



Application
Latent Functions

Non-linear Response Model

Methodology & Application Overview
Covariance functions
Regression with Gaussian Processes

Gaussian Process Regression
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p53 Inference [Barenco et al., 2006]

Recall Barenco et al.’s linear response model.

dxj (t)

dt
= Bj + Sj f (t)− Djxj (t) . (3)

Bj basal transcription rate of gene j ,
Sj is sensitivity of gene j

Dj is the decay rate of the mRNA.

We will place a prior distribution over the latent function.
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Prior Distribution for TFC

We assume that the TF concentration is a Gaussian Process.

We will assume an RBF covariance function

p (f) = N (f|0,K) k
(
t, t ′
)

= exp

(
−(t − t ′)

2l2

)
.
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Computation of Joint Covariance

Covariance Function Computation

We rewrite solution of differential equation as

xj (t) =
Bj

Dj
+ Lj [f ] (t)

where

Lj [f ] (t) = Sj exp (−Dj t)

∫ t

0
f (u) exp (Dju) du (4)

is a linear operator.
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Induced Covariance

Gene’s Covariance

The new covariance function is then given by

cov
(
Lj [f ] (t) , Lk [f ]

(
t ′
))

= Lj ⊗ Lk [kff ]
(
t, t ′
)
.

more explicitly

kxj xk

`
t, t′

´
= SjSk exp

`
−Dj t − Dkt

′´ Z t

0

exp (Dju)

×
Z t′

0

exp
`
Dku

′´ kff

`
u, u′

´
du′du.

With RBF covariance these integrals are tractable.
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Covariance for Transcription Model

RBF Kernel function for f (t)

xi (t) =
Bi

Di
+ Si exp (−Di t)

∫ t

0
f (u) exp (Diu) du.

Joint distribution
for x1 (t), x2 (t)
and f (t).

Here:
D1 S1 D2 S2
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Joint Sampling of x (t) and f (t)

gpsimTest
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Figure: Left: joint samples from the transcription covariance, blue: f (t),
cyan: x1 (t) and red : x2 (t). Right: numerical solution for f (t) of the
differential equation from x1 (t) and x2 (t) (blue and cyan). True f (t)
included for comparison.
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Noise Corruption

Estimate Underlying Noise

Allow the mRNA abundance of each gene at each time point
to be corrupted by noise, for observations at ti for
i = 1, . . . ,T ,

yj (ti ) = xj (ti ) + εj (ti ) (5)

with εj (ti ) ∼ N
(
0, σ2

ji

)
.

Estimate noise level using probe-level processing techniques of
Affymetrix microarrays (e.g. mmgMOS, [Liu et al., 2005]).

The covariance of the noisy process is then Kyy = Σ + Kxx,
with Σ = diag

(
σ2

11, . . . , σ
2
1T , . . . , σ2

N1, . . . , σ
2
NT

)
.
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Toy Problem

Results from an artificial data set.

We used a ‘known TFC’ and derived six ‘mRNA profiles’.

Known TFC composed of three Gaussian basis functions.
mRNA profiles derived analytically.

Fourteen subsamples were taken and corrupted by noise.

This ‘data’ was then used to:

Learn decays, sensitivities and basal transcription rates.
Infer a posterior distribution over the missing TFC.
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene

mRNA concentration profiles each obtained by using different parameter sets

{Bi , Si , Di}5
i=1 (lines) along with noise corrupted ‘data’ . Right: The inferred

TFC (with error bars).
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene

mRNA concentration profiles each obtained by using different parameter sets

{Bi , Si , Di}5
i=1 (lines) along with noise corrupted ‘data’ . Right: The inferred

TFC (with error bars).
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Results

Linear System

Recently published biological data set studied using linear
response model by Barenco et al. [2006].

Study focused on the tumour suppressor protein p53.

mRNA abundance measured for five targets: DDB2, p21,
SESN1/hPA26, BIK and TNFRSF10b.

Quadratic interpolation for the mRNA production rates to
obtain gradients.

They used MCMC sampling to obtain estimates of the model
parameters Bj , Sj , Dj and f (t).
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Linear response analysis

Experimental Setup

We analysed data using the linear response model.

Raw data was processed using the mmgMOS model of Liu
et al. [2005] which provides variance as well as expression level.

We present posterior distribution over TFCs.

Results of inference on the values of the hyperparameters Bj ,
Sj and Dj .

Samples from the posterior distribution were obtained using
Hybrid Monte Carlo (see e.g. Neal, 1996).
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Figure: Predicted protein concentration for p53. Solid line is mean, dashed

lines 95% credibility intervals. The prediction of [Barenco et al., 2006] was

pointwise and is shown as crosses.
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Estimation of Equation Parameters demBarenco1

DDB2 hPA26 TNFRSF20b p21 BIK
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Figure: Basal transcription rates. Our results (black) compared with
Barenco et al. [2006] (white).
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Figure: Sensitivities. Our results (black) compared with Barenco et al.
[2006] (white).
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Figure: Decays. Our results (black) compared with Barenco et al. [2006]
(white).
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Linear Response Discussion

GP Results

Note oscillatory behaviour, possible artifact of RBF covariance
Rasmussen and Williams [see page 123 in 2006].

Results are in good accordance with the results obtained by
Barenco et al..

Differences in estimates of the basal transcription rates
probably due to:

different methods used for probe-level processing of the
microarray data.
Our failure to constrain f (0) = 0.

Our results take about 13 minutes to produce Barenco et al.
required 10 million iterations of Monte Carlo.
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Non-linear Response Model

More Realistic Response

All the quantities in equation (3) are positive, but direct
samples from a GP will not be.

Linear models don’t account for saturation.

Solution: model response using a positive nonlinear function.
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Formalism

Non-linear Response

Introduce a non-linearity g (·) parameterised by θj

dxj

dt
= Bj + g(f (t), θj )− Djxj

xj (t) =
Bj

Dj
+ exp

`
−Dj t

´ Z t

0
du g(f (u), θj ) exp

`
Dju

´
.

The induced distribution of xj(t) is no longer a GP.

Derive the functional gradient and learn a MAP solution for
f (t).

Also compute Hessian so we can approximate the marginal
likelihood.
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Example: linear response

Using non-RBF kernels

Start by taking g(·) to be linear.

Provides ’sanity check’ and allows arbitrary covariance
functions.

Avoids double numerical integral that would normally be
required.
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Response Results
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Figure: Left: RBF prior on f (log likelihood -101.4); Right: MLP prior
on f (log likelihood -105.6).
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Non-linear response analysis

Non-linear responses

Exponential response model (constrains protein concentrations
positive).

log (1 + exp (f )) response model.
3

1+exp(−f )

Inferred MAP solutions for the latent function f are plotted
below.
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exp (·) Response Results

demBarencoMap3, demBarencoMap4
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Figure: Left: shows results of using a squared exponential prior covariance on

f (log likelihood -100.6); Right: shows results of using an MLP prior covariance

on f (log likelihood -106.4).
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log (1 + exp (f )) Response Results

demBarencoMap5, demBarencoMap6

0 5 10
0

1

2

3

4

5

6

0 5 10
0

1

2

3

4

5

6

Figure: Left: shows results of using a squared exponential prior covariance on

f (log likelihood -100.9); Right: shows results of using an MLP prior covariance

on f (log likelihood -110.0).
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3
1+exp(−f ) Response Results
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Figure: Left: shows results of using a squared exponential prior covariance on

f (log likelihood -104.1); Right: shows results of using an MLP prior covariance

on f (log likelihood -111.2).
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Discussion

We have described how GPs can be used in modelling
dynamics of a simple regulatory network motif.

Our approach has advantages over standard parametric
approaches:

there is no need to restrict the inference to the observed time
points, the temporal continuity of the inferred functions is
accounted for naturally.
GPs allow us to handle uncertainty in a natural way.
MCMC parameter estimation in a discretised model can be
computationally expensive. Parameter estimation can be
achieved easily in our framework by type II maximum likelihood
or by using efficient hybrid Monte Carlo sampling techniques

All code on-line
http://www.cs.man.ac.uk/~neill/gpsim/.
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Future Directions

What Next?

This is still a very simple modelling situation.

We are ignoring transcriptional delays.
Here we have single transcription factor: our ultimate goal is
to describe regulatory pathways with more genes.
All these issues can be dealt with in the general framework we
have described.
Need to overcome the greater computational difficulties.
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Covariance Result

Covariance Result

kxjxk

(
t, t ′
)

= SjSk

√
π

2

[
hkj

(
t ′, t
)

+ hjk

(
t, t ′
)]

where

hkj

`
t′, t

´
=

exp (γk )2

Dj + Dk

×


exp
ˆ
−Dk

`
t′ − t

´˜ »
erf

„
t′ − t

l
− γk

«
+ erf

„
t

l
+ γk

«–
−exp

ˆ
−

`
Dk t′ + Dj

´˜ »
erf

„
t′

l
− γk

«
+ erf (γk )

–ff
.

Here γk = Dk l
2 .
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Cross Covariance

Correlation of xj (t) and f (t ′)

Need the“cross-covariance” terms between xj (t) and f (t ′),
which is obtained as

kxj f

(
t, t ′
)

= Sj exp (−Dj t)

∫ t

0
exp (Dju) kff

(
u, t ′

)
du. (6)

For RBF we have

kxj f

`
t′, t

´
=

√
πlSje

2γj

2
exp

ˆ
−Dj

`
t′ − t

´˜ »
erf

„
t′ − t

l
− γj

«
+ erf

„
t

l
+ γj

«–
.
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Posterior for f

Prediction for TFC

Standard Gaussian process regression techniques [see e.g.

Rasmussen and Williams, 2006] yield

〈f 〉post = Kf xK
−1
xx x

K post

ff = Kff − Kf xK
−1
xx Kxf

Model parameters Bj , Dj and Sj estimated by type II
maximum likelihood,

log p (x) = N (x|0,Kxx)
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Implementation

Riemann quadrature

Implementation requires a discretised time.

Compute the gradient and Hessian on a grid.

Integrate them by approximate Riemann quadrature.

We choose a uniform grid {tp}M
p=1 so that ∆ = tp − tp−1 is

constant.

The vector f = {fp}M
p=1 is the function f at the grid points.

I (t) =

Z t

0
f (u) exp

`
Dju

´
du

I (t) ≈
MX

p=1

f (tp) exp
`
Dj tp

´
∆
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Log Likelihood

Functional Gradient

Given noise-corrupted data yj (ti ) the log-likelihood is

log p(Y |f , θj ) = −
1

2

TX
i=1

NX
j=1

" `
xj (ti )− yj (ti )

´2

σ2
ji

− log
“
σ2

ji

”#
−

NT

2
log(2π)

The functional derivative of the log-likelihood wrt f is

δ log p(Y |f )

δf (t)
= −

TX
i=1

Θ(ti − t)
NX

j=1

(xj (ti )− yj (ti ))

σ2
ji

g ′(f (t))e−Dj (ti−t)

Θ(x) — Heaviside step function.
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Log Likelihood

Functional Hessian

Given noise-corrupted data yj (ti ) the log-likelihood is

log p(Y |f , θj ) = −
1

2

TX
i=1

NX
j=1

" `
xj (ti )− yj (ti )

´2

σ2
ji

− log
“
σ2

ji

”#
−

NT

2
log(2π)

The negative Hessian of the log-likelihood wrt f is

w(t, t′) =
TX

i=1

Θ(ti − t)δ
`
t − t′

´ NX
j=1

`
xj (ti )− yj (ti )

´
σ2

ji

g ′′(f (t))e−Dj (ti−t)

+
TX

i=1

Θ(ti − t)Θ
`
ti − t′

´ NX
j=1

σ−2
ji g ′ (f (t)) g ′

`
f (t′)

´
e−Dj (2ti−t−t′)

g ′(f ) = ∂g/∂f and g ′′(f ) = ∂2g/∂f 2.
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Implementation II

Combine with Prior

Combine these with prior to compute gradient and Hessian of
log posterior Ψ(f) = log p(Y |f) + log p(f) [see Rasmussen and
Williams, 2006, chapter 3]

∂Ψ(f)

∂f
=

∂ log p(Y |f)
∂f

− K−1f

∂2Ψ(f)

∂f2
= −(W + K−1)

(7)

K prior covariance evaluated at the grid points.

Use to find a MAP solution via, f̂, using Newton’s algorithm.
The Laplace approximation is then

log p(Y ) ' log p(Y |̂f)− 1
2
f̂T K−1 f̂ − 1

2
log |I + KW |. (8)
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