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Online Resources

All source code and slides are available online

@ This talk available from home page (see talks link on side).
@ Scripts available in the 'gpsim’ toolbox
e http://www.cs.man.ac.uk/"neill/gpsim/.

@ MATLAB commands used for examples given in typewriter
font.
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Framework

Latent functions

@ Many interaction networks have latent functions.

@ Assume a Gaussian process (GP) prior distribution for the
latent function.
o Gaussian processes (GPs) are probabilistic models for
functions. O’'Hagan [1978, 1992], Rasmussen and Williams [2006]

@ Our Approach

© Take a differential equation model for the system.

@ Derive GP covariance jointly for observed and latent functions.

© Maximise likelihood with respect to parameters (mostly
physically meaningful).
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This Talk

Transcription Network

@ Introduce Gaussian Processes for dealing with latent functions
in transcription networks.

@ Show how in a linear response model the latent function can
be dealt with analytically.

@ Discuss extensions to systems with non-linear responses.
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Linear Response Model

p53 Inference [Barenco et al., 2006]

@ Data consists of T measurements of mMRNA expression level
for N different genes.

o We relate gene expression, x;(t), to TFC, f(t), by

dx; (t)
— = B+ Sif (1) = Dix (1) (1)
B, basal transcription rate of gene j,
S; is sensitivity of gene j
D; is the decay rate of the mRNA.
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@ Dependence of mRNA transcription rate on TF is linear.
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Linear Response Solution

Solve for TFC

@ The equation given in (3) can be solved to recover

50 =g+ See(-D0) [ FWepDud ()

o If we model f (t) as a GP then as (2) only involves linear
operations x; (t) is also a GP.
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Gaussian Processes

GP Advantages

@ GPs allow for inference of continuous profies, accounting
naturally for temporal structure.

o GPs allow joint estimation of a mRNA concentration and
production rates (derivative observations).

o GPs deal consistently with the uncertainty inherent in the
measurements.

o GPs outstrip MCMC for computational efficiency.

Note: GPs have previously been proposed for solving differential
equations [Graepel, 2003] and dynamical systems
[Murray-Smith and Pearlmutter].
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Defining a Distribution over Functions

Gaussian Process
@ What is meant by a distribution over functions?

@ Functions are infinite dimensional objects:

o Defining a distribution over functions seems non-sensical.

Gaussian Distribution
@ Start with a standard Gaussian distribution.

@ Consider the distribution over a fixed number of instantiations
of the function.
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Gaussian Distribution

yA mean Gaussian distribution

@ A multi-variate Gaussian distribution is defined by a mean and
a covariance matrix.

N(f],u,K): _(f_IU’)TK2_1 (f_H)
(27)

exp

N[Z]

KI?
@ We will consider the special case where the mean is zero,
< fTK_1f>
———exp| — .
(2m)? |K]? 2
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Sampling a Function

Multi-variate Gaussians

@ We will consider a Gaussian with a particular structure of
covariance matrix.

@ Generate a single sample from this 25 dimensional Gaussian
distribution, f =[fi, f2 ... fa5].

@ We will plot these points against their index.
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Gaussian Distribution Sample

demGPSample
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Figure: (a) 25 instantiations of a function, f,, (b) greyscale covariance
matrix.
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Covariance Function

The covariance matrix

@ Covariance matrix shows correlation between points f,, and f,
if nis near to m.
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Covariance Function

The covariance matrix

@ Covariance matrix shows correlation between points f,, and f,
if nis near to m.

@ Less correlation if n is distant from m.
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Covariance Function

The covariance matrix

@ Covariance matrix shows correlation between points f,, and f,
if nis near to m.

@ Less correlation if n is distant from m.

@ Our ordering of points means that the function appears
smooth.
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Covariance Function

The covariance matrix

@ Covariance matrix shows correlation between points f,, and f,
if nis near to m.

@ Less correlation if n is distant from m.

@ Our ordering of points means that the function appears
smooth.

@ Let's focus on the joint distribution of two points form the 25.

V.
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Prediction of £, from f;

demGPCov2D(
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Figure: Covariance for [ f ] is Kip = [ 0.966 1 } 25
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Prediction of £, from f;
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Prediction of f5 from f;

demGPCov2D(
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Figure: Covariance for [ £ ] is Kis = [ 0.574 1
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Prediction of f5 from f;
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Application

Covariance Functions

Visualisation of RBF Covariance

RBF Kernel Function

Methodology & Application Overview
Covariance functions
Regression with Gaussian Processes

@ Covariance matrix is built
using the time inputs to
the function, t.

@ For the example above it
was based on Euclidean
distance.

@ The covariance function is
also known as a kernel.

Gaussian Processes for Network Inference
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Covariance Samples

demCovFuncSample — sample from the p
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Covariance Samples

demCovFuncSample — sample from the prio
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Covariance Samples

demCovFuncSample — sample from the prior
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Figure: RBF kernel with / =0.3, a =4
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Different Covariance Functions

MLP Kernel Function

/
k(t,t) = asin™! ( wit + b >
Vw2 + b+ 1vVwt? +b+1

@ A non-stationary s
covariance matrix Williams y .
[1997]. : | o
@ Derived from a multi-layer N o5
perceptron (MLP). 1 28
25i B wn
5 10 15 20 25 ol
u=
£5
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Covariance Samples

demCovFuncSample — samples fi
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Figure: MLP kernel with & =8, w =100 and b = 100
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Covariance Samples

demCovFuncSample — samples fi
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Figure: MLP kernel with o =8, b =0 and w = 100
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Prior to Posterior

Prediction with GPs

@ GPs provide a probabilistic prior over functions.
@ By combining with data we get a posterior over functions.

@ This is obtained through combining a covariance function with
data.
@ Toy Example: regression with GPs.
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Gaussian Process Regression
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Figure: Going from prior to posterior with data.
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Gaussian Process Regression
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Figure: Going from prior to posterior with data.
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Gaussian Process Regression

demRegression
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Figure: Going from prior to posterior with data.
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Gaussian Process Regression

demRegression
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Figure: Going from prior to posterior with data.
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Gaussian Process Regression

demRegression
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Figure: Going from prior to posterior with data.
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Gaussian Process Regression

demRegression
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Figure: Going from prior to posterior with data.
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Gaussian Process Regression

demRegression
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Figure: Going from prior to posterior with data.
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Gaussian Process Regression

demRegression
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Gaussian Process Regression

demRegression
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Toy Problem

Latent Functions .
Biological Problem

Linear Response Model

p53 Inference [Barenco et al., 2006]

@ Recall Barenco et al.’s linear response model.

dx; (t)
dt

= Bj + Sf (t) — Djx; (t). (3)

B, basal transcription rate of gene j,
S; is sensitivity of gene j
D; is the decay rate of the mRNA.

o We will place a prior distribution over the latent function.
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Toy Problem

Latent Functions .
Biological Problem

Covariance of Latent Function

Prior Distribution for TFC
@ We assume that the TF concentration is a Gaussian Process.

@ We will assume an RBF covariance function

p(F) = N(f|0,K) k(t,t')=exp <—(t2_lzt/)> .
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Toy Problem

Latent Functions .
Biological Problem

Computation of Joint Covariance

Covariance Function Computation

@ We rewrite solution of differential equation as

@m=g+qmm

where

QMU)Z%WM@ﬂAfﬂOaM@de (4)

is a linear operator.
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Toy Problem

Latent Functions .
Biological Problem

Induced Covariance

Gene's Covariance

@ The new covariance function is then given by
cov (Lj [f] (t) , Ly [f] (t/)) = Lj & Ly [kff] (t, t/) .
more explicitly

t
kg, (t,t) = SiSkexp (—Djt — Dkt')/ exp (Dju)
0

t
X / exp (Dku') ke (u7 u') du' du.
0

@ With RBF covariance these integrals are tractable.
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Toy Problem

Latent Functions .
Biological Problem

Covariance for Transcription Model

RBF Kernel function for f (t)

t
xi(t) = % 4 o exp(—D,-t)/O f (u)exp (D;u) du.

and f (t).

@ Joint distribution )
for X1 (t), X2 (t)
Wiy Ny

o Here
(D[S [ D] 5] oot 2
(5 [ 5]05]05]| ’ £
[ at)  xa(t) é%
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Toy Problem

Latent Functions
Biological Problem

Joint Sampling of x (t) and f (t)
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Figure: Left: joint samples from the transcription covariance, blue: f (t),
cyan: xi (t) and red: x; (t). Right: numerical solution for f (t) of the
differential equation from x; (t) and xz (t) (blue and cyan). True f (t)
included for comparison.

.ty
er

The Universi
of Manchest

Neil Lawrence, Guido Sanguinetti and Magnus Rattray Gaussian Processes for Network Inference



Toy Problem

Latent Functions
Biological Problem

Joint Sampling of x (t) and f (t)
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Figure: Left: joint samples from the transcription covariance, blue: f (t),
cyan: xi (t) and red: x; (t). Right: numerical solution for f (t) of the
differential equation from x; (t) and xz (t) (blue and cyan). True f (t)
included for comparison.
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Toy Problem

Latent Functions
Biological Problem

Joint Sampling of x (t) and f (t)
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Figure: Left: joint samples from the transcription covariance, blue: f (t),
cyan: xi (t) and red: x; (t). Right: numerical solution for f (t) of the
differential equation from x; (t) and xz (t) (blue and cyan). True f (t)
included for comparison.
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Toy Problem

Latent Functions
Biological Problem

Noise Corruption

Estimate Underlying Noise

@ Allow the mRNA abundance of each gene at each time point
to be corrupted by noise, for observations at t; for
i=1,...,T,

yj (ti) = x; (ti) + € (&) (5)
with ¢; (t) ~ N <0, UJZI) .
@ Estimate noise level using probe-level processing techniques of

Affymetrix microarrays (e.g. mmgMOS, [Liu et al., 2005]).

@ The covariance of the noisy process is then Kyy = X + Ky,
: — g 2 2 2 2
with ¥ = diag (011,...,01T, e ONLy - ,O‘NT).

ty
€r

The Universi
of Manchest

Neil Lawrence, Guido Sanguinetti and Magnus Rattray Gaussian Processes for Network Inference



Toy Problem

Latent Functions .
Biological Problem

Artificial Data

Toy Problem

@ Results from an artificial data set.
@ We used a ‘known TFC' and derived six ‘mRNA profiles’.

o Known TFC composed of three Gaussian basis functions.
e mRNA profiles derived analytically.

@ Fourteen subsamples were taken and corrupted by noise.
@ This ‘data’ was then used to:

e Learn decays, sensitivities and basal transcription rates.
o Infer a posterior distribution over the missing TFC.
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Toy Problem
Biological Problem

Latent Functions

Artificial Data Results
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter sets

{B;,S;, Di}>_, (lines) along with noise corrupted ‘data’ . Right: The inferred %}E
TFC (with error bars). se
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o
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter sets
{B;,S;, Di}>_, (lines) along with noise corrupted ‘data’ . Right: The inferred
TFC (with error bars).
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter sets
{B;,S;, Di}>_, (lines) along with noise corrupted ‘data’ . Right: The inferred
TFC (with error bars).
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter sets
{B;,S;, Di}>_, (lines) along with noise corrupted ‘data’ . Right: The inferred
TFC (with error bars).
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter sets
{B;,S;, Di}>_, (lines) along with noise corrupted ‘data’ . Right: The inferred
TFC (with error bars).
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter sets
{B;,S;, Di}>_, (lines) along with noise corrupted ‘data’ . Right: The inferred
TFC (with error bars).
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter sets
{B;,S;, Di}>_, (lines) along with noise corrupted ‘data’ . Right: The inferred
TFC (with error bars).
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter sets
{B;,S;, Di}>_, (lines) along with noise corrupted ‘data’ . Right: The inferred
TFC (with error bars).
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter sets
{B;,S;, Di}>_, (lines) along with noise corrupted ‘data’ . Right: The inferred
TFC (with error bars).
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mRNA concentration profiles each obtained by using different parameter sets
{B;,S;, Di}>_, (lines) along with noise corrupted ‘data’ . Right: The inferred
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter sets
{B;,S;, Di}>_, (lines) along with noise corrupted ‘data’ . Right: The inferred
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter sets
{B;,S;, Di}>_, (lines) along with noise corrupted ‘data’ . Right: The inferred
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter sets
{B;,S;, Di}>_, (lines) along with noise corrupted ‘data’ . Right: The inferred
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter sets
{B;,S:, D;}>_, (lines) along with noise corrupted ‘data’ . Right: The inferred
TFC (with error bars).
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Toy Problem
Biological Problem

Latent Functions

@ Recently published biological data set studied using linear
response model by Barenco et al. [2006].

@ Study focused on the tumour suppressor protein p53.

@ mRNA abundance measured for five targets: DDB2, p21,
SESN1/hPA26, BIK and TNFRSFI10b.

@ Quadratic interpolation for the mRNA production rates to
obtain gradients.

@ They used MCMC sampling to obtain estimates of the model
parameters B;j, S;, D;j and f(t).
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Toy Problem

Latent Functions Biological Problem

Linear response analysis

Experimental Setup

@ We analysed data using the linear response model.
@ Raw data was processed using the mmgMOS model of Liu
et al. [2005] which provides variance as well as expression level.
@ We present posterior distribution over TFCs.
@ Results of inference on the values of the hyperparameters B;,
Sj and Dj.
e Samples from the posterior distribution were obtained using
Hybrid Monte Carlo (see €.g. Neal, 1996).
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Toy Problem

Latent Functions Biological Problem

Linear Response Results

0 5 10

Figure: Predicted protein concentration for p53. Solid line is mean, dashed
lines 95% credibility intervals. The prediction of [Barenco et al., 2006] was
pointwise and is shown as crosses.
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Latent Functions Biological Problem

Results — Transcription Rates

Estimation of Equation Parameters demBarencol

0.

0.2

01

DDB2 hPA26 TNFRSF20b p21 BIK
. . _ 25
Figure: Basal transcription rates. Our results (black) compared with a3
Barenco et al. [2006] (white). Eg
U=
£%
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Toy Problem

Latent Functions Biological Problem

Results — Transcription Rates
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0 DDB2 hPA26 TNFRSF20b p21 BIK
Figure: Sensitivities. Our results (black) compared with Barenco et al. £y
[2006] (white). §§
U=
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Latent Functions Biological Problem

Results — Transcription Rates

DDB2 hPA26 TNFRSF20b p21 BIK

Figure: Decays. Our results (black) compared with Barenco et al. [2006]
(white).
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Toy Problem

Latent Functions Biological Problem

Linear Response Discussion

GP Results

@ Note oscillatory behaviour, possible artifact of RBF covariance
Rasmussen and Williams [see page 123 in 2006].
@ Results are in good accordance with the results obtained by
Barenco et al..
@ Differences in estimates of the basal transcription rates
probably due to:
o different methods used for probe-level processing of the

microarray data.
o Our failure to constrain f (0) = 0.
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@ Our results take about 13 minutes to produce Barenco et al.
required 10 million iterations of Monte Carlo.
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Linear Response with MLP Kernel
Non-linear Responses

Non-linear Response Model

Non-linear Response Model

More Realistic Response

@ All the quantities in equation (3) are positive, but direct
samples from a GP will not be.

@ Linear models don't account for saturation.

@ Solution: model response using a positive nonlinear function.
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Linear Response with MLP Kernel

. Non-linear Responses
Non-linear Response Model P

Formalism

Non-linear Response

@ Introduce a non-linearity g (-) parameterised by 6;

dx;
% — B+ (7(1),6)) - Dy
B; t
xj(t) = 5 + exp (—Djt)/ du g(f(u), 6;) exp (Dju) .
j 0

@ The induced distribution of x;(t) is no longer a GP.
@ Derive the functional gradient and learn a MAP solution for

f(t).

. . . o
@ Also compute Hessian so we can approximate the marginal B2
5 o od
likelihood. £
o=

u
£%
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h MLP Kernel

it
ses

Non-linear Response Model

Example: linear response

Using non-RBF kernels

e Start by taking g(-) to be linear.

@ Provides 'sanity check’ and allows arbitrary covariance
functions.

@ Avoids double numerical integral that would normally be
required.
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Linear Response with MLP Kernel

. Non-linear Responses
Non-linear Response Model P

Response Results

demBarencoMapl, demBarencoMap2
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Figure: Left: RBF prior on f (log likelihood -101.4); Right: MLP prior
on f (log likelihood -105.6).
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Linear Response with MLP Kernel
Non-linear Responses

Non-linear Response Model

Non-linear response analysis

Non-linear responses

e Exponential response model (constrains protein concentrations
positive).
@ log (1 + exp(f)) response model.

3
1+exp(—f)
@ Inferred MAP solutions for the latent function f are plotted

below.
v
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Linear Response with MLP Kernel
Non-linear Responses

Non-linear Response Model

exp (+) Response Results

6

6

5r ] 5

Figure: Left: shows results of using a squared exponential prior covariance on 2%
f (log likelihood -100.6); Right: shows results of using an MLP prior covariance §§
=y
on f (log likelihood -106.4). 58
U=
£%
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Linear Response with MLP Kernel
Non-linear Responses

Non-linear Response Model

log (1 4 exp (f)) Response Results

demBarencoMap5, demBarencoMap6
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Figure: Left: shows results of using a squared exponential prior covariance on 2%
f (log likelihood -100.9); Right: shows results of using an MLP prior covariance §§
=y
on f (log likelihood -110.0). 58
U=
£%
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Linear Response with MLP Kernel
Non-linear Responses

Non-linear Response Model

B Response Results

1 0.8

Figure: Left: shows results of using a squared exponential prior covariance on
f (log likelihood -104.1); Right: shows results of using an MLP prior covariance
on f (log likelihood -111.2).
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Linear Response with MLP Kernel

. Non-linear Responses
Non-linear Response Model P

Discussion

@ We have described how GPs can be used in modelling
dynamics of a simple regulatory network motif.

@ Our approach has advantages over standard parametric
approaches:

e there is no need to restrict the inference to the observed time
points, the temporal continuity of the inferred functions is
accounted for naturally.

o GPs allow us to handle uncertainty in a natural way.

o MCMC parameter estimation in a discretised model can be
computationally expensive. Parameter estimation can be
achieved easily in our framework by type Il maximum likelihood
or by using efficient hybrid Monte Carlo sampling techniques

Yy
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@ All code on-line
http://www.cs.man.ac.uk/ neill/gpsim/.
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Future Directions

What Next?

@ This is still a very simple modelling situation.

We are ignoring transcriptional delays.

Here we have single transcription factor: our ultimate goal is
to describe regulatory pathways with more genes.

o All these issues can be dealt with in the general framework we
have described.

Need to overcome the greater computational difficulties.
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Acknowledgements

Covariance Result

Covariance Result

b (£.) = ;5T [y (£.1) + e (£.1)]
where
h (¢.0) =208
J
. {exp (=D (¢ — £)] [m(# —yk) +erf( +7k)}
—exp [~ (Dit' + D})] [erf (tT _yk) +erf('y;<)] }
Here vy = %. gé
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Non-linear Response Implementation
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Cross Covariance

Correlation of x; (t) and f ()

@ Need the “cross-covariance” terms between x; (t) and f (t'),
which is obtained as

t
kyr (t, 1) = Sjexp (—Djt)/0 exp (Dju) ke (u,t') du.  (6)

@ For RBF we have

. a27j ;o
kxjf (t,7 t) = @exp [—Dj (t' — t)] |:erf(t ] t —7j> + erf (; +7j):| .

The University
of Manchester

Neil Lawrence, Guido Sanguinetti and Magnus Rattray Gaussian Processes for Network Inference



Covariance Computation
Posterior for f
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Posterior for f

Prediction for TFC

@ Standard Gaussian process regression techniques [see e.g.
Rasmussen and Williams, 2006] yield

<f>post — KfXK)&lX
K™t = Kir — KKl K

@ Model parameters B;, D; and S; estimated by type Il
maximum likelihood,

Yy
€r

log p(x) = N (x|0, Kxx)
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Acknowledgements

Implementation

Riemann quadrature

@ Implementation requires a discretised time.

e Compute the gradient and Hessian on a grid.

@ Integrate them by approximate Riemann quadrature.

@ We choose a uniform grid {tp}g/lzl sothat A =t, —tp_1is
constant.

The vector f = {f, } _, is the function f at the grid points.

I(t) = /Ot f (u)exp (Dju) du

Yy
€r

I(t) sz tp) exp (Djtp) A
p=1
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Log Likelihood

Functional Gradient

@ Given noise-corrupted data y; (t;) the log-likelihood is

log p(Y|f,0;) = —= ZZ |:X‘/(tlyj(t')) — log (O’ﬁ):l - g log(27)
J

11_/]. !

@ The functional derivative of the log-likelihood wrt f is

5'0 Y|f Xj ff ] 1 2 — =i
75:’(2)') Ze(t t)gi( (¢ Jﬂy (D) g1 p(e))eitei=0

Yy
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©(x) — Heaviside step function.
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Log Likelihood

Functional Hessian

@ Given noise-corrupted data y; (t;) the log-likelihood is

log p(Y|f,0;) = ZZ |:(Xj(t'yj(t')) — log (aﬁ>:| — g log(27)
Ji

/1]1

@ The negative Hessian of the log-likelihood wrt f is

T N o tl ))
w(t,t') = Z ot — )3 (t—t') Y 71 g"(f(t)e ilti—0

j=1 JI

+Z@(t,—t)@ -_t/)z g/(f(t)g (f(t ) D;(2ti—t—t")

ity
€r
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Implementation Il

Combine with Prior

@ Combine these with prior to compute gradient and Hessian of
log posterior W(f) = log p(Y|f) + log p(f) [see Rasmussen and
Williams, 2006, chapter 3]

ow(f) _ dlogp(Y|f) _, —1¢
of of
(7)
o2V(f) _
= =—(W+K D)

K prior covariance evaluated at the grid points.

e Use to find a MAP solution via, f, using Newton's algorithm.
@ The Laplace approximation is then

Yy
€r

|ng(Y)Z|ng(Y|?)f%?TK71f7%|0g|I+KW‘. (8)
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