Variational Gaussian Processes

GP Variational Approximations

Neil D. Lawrence
Departments of Neuro- and Computer Science, University of
Sheffield, U.K.

MPI Tuebingen

11th March 2013



Outline




Notation

g— dimension of latent/embedded space
p— dimension of data space
n— number of data points
centred data, Y = [yr ., .. .,y,,7;]T =[y.1,...,Y.p] € R™*P
latent variables, X = [x1, ... ,x,,y;]T =[x.1,...,%. ] € R
mapping matrix, W € RP*9

a; . is a vector from the ith row of a given matrix A
a.; is a vector from the jth row of a given matrix A
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Reading Notation

X and Y are design matrices

e Covariance given by n71YTY.

e Inner product matrix given by YY .
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Linear Dimensionality Reduction

Linear Latent Variable Model
e Represent data, Y, with a lower dimensional set of latent
variables X.
e Assume a linear relationship of the form

Yi: = Wxi,: + €

where

.~ N (0,0%).

)/ Jepnlvm/tex/talks/nnca tax
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Linear Latent Variable Model

Probabilistic PCA

e Define linear-Gaussian W
relationship between
latent variables and data.

p(YIX, W) =[N (vi:|Wx; ., o?1)
i=1

)/ Jeplvm/tex/talks/nnca teax
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Linear Latent Variable Model

Probabilistic PCA

e Define linear-Gaussian W
relationship between
latent variables and data.

e Standard Latent variable « 2
approach:

p(YIX, W) =[N (vi:|Wx; ., o?1)
i=1
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Linear Latent Variable Model

Probabilistic PCA W

e Define linear-Gaussian

relationship between

latent variables and data. « 2
e Standard Latent variable

approach:

e Define Gaussian prior

2
over latent space, X. p(YIX, W) = [N (yi:[Wxi., o?1)
i=1

p(X) = HN (Xi,:|07 I)
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Linear Latent Variable Model

Probabilistic PCA

e Define linear-Gaussian
relationship between «—;2
latent variables and data.

e Standard Latent variable

approach: T
. Y|X, W) = i |Wx; ., 0?1
o Define Gaussian prior p(YIX, W) ’E/\/(y,,_l iz 1)

over latent space, X.
o Integrate out /atent 2

variables. p(X)= EN (xi.0,1)
p(YIW) = [TV (i, 10, Www T + 1)

i=1

) ] Jepnlvm/tex/talks/nnca teax
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Linear Latent Variable Model Il

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

(X

< — 2

p(YIW) = [ (y,-7;|0,WWT + 02|>
i=1
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Linear Latent Variable Model Il

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

n

p(YIW) =TV (yi:]0.C), C=wwT+52
i=1

1
log p (Y|W) = —g log |C| — §tr (C*IYTY) + const.

If Ug are first g principal eigenvectors of n1YTY and the
corresponding eigenvalues are A,

N[ =

W =UgLR", L= (A;—7%)

where R is an arbitrary rotation matrix.

) ] Jeplvm/tex/talks/nnca teax
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Linear Latent Variable Model Il

Dual Probabilistic PCA

e Define linear-Gaussian
relationship between
latent variables and data.

p(YIX, W) =[N (yi:|Wx; ., o?1)
i=1
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Linear Latent Variable Model Il

Dual Probabilistic PCA

e Define linear-Gaussian
relationship between
latent variables and data.

e Novel Latent variable
approach:

p(YIX, W) =[N (yi:|Wx; ., o?1)
i=1

) ] Jeplvm/tex/talks/nnco teax
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Linear Latent Variable Model Il

Dual Probabilistic PCA

o Define linear-Gaussian
relationship between
latent variables and data. « 2

¢ Novel Latent variable
approach:

e Define Gaussian prior

g
over parameters, W. p(YIX,W) =[N (vi.IWx; ., 0?1)
i=1

P

P (VV) - I_I~Af (Vviglorl)

i=1

) ] Jeplvm/tex/talks/nnco teax
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Linear Latent Variable Model Il

Dual Probabilistic PCA

o Define linear-Gaussian
relationship between

latent variables and data.

e Novel Latent variable
approach:

e Define Gaussian prior
over parameters, W.

o Integrate out
parameters.

)/ Jenlvm/tex/talks/nnco teax

p(YIX, W) =[N (yi:[Wxi., o?1)

i=1
P

p(W) = HN (Wi,:|07 I)

i=1

P
P(YIX) = [TV (.510,XXT + o21)

j=1
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Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004, 2005)



../../../gplvm/tex/talks/ppco.tex

Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004, 2005)

P
p(YIX)=]]N (y.510,K), K=XXT+5
j=1

1
log p (Y|X) = _g log |K| — Etr (K_IYYT) + const.

If Uﬁ; are first g principal eigenvectors of p~1YY T and the corresponding eigenvalues
are Ag,

X=U,LR", L=(Ag fazl)%

where R is an arbitrary rotation matrix.
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Linear Latent Variable Model IV

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p(YW)=]]N (¥::10,C), C=wwT +5°

i=1

1
logp (Y|W) = 7% log |C| — Etr (C_lYTY) + const.

If Ug are first g principal eigenvectors of n~1YTY and the corresponding eigenvalues
are Ag,

M=

W =UgLRT, L= (A;—0?)

where R is an arbitrary rotation matrix.
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Equivalence of Formulations

The Eigenvalue Problems are equivalent
e Solution for Probabilistic PCA (solves for the mapping)

Y YU, =UA, W=UjLR'

e Solution for Dual Probabilistic PCA (solves for the latent
positions)
YY'U, =U,A;, X=U,LR"

e Equivalence is from

) ] Jeplvm/tex/talks/nea neo eanivalence texy 10
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Sampling a Function

Multi-variate Gaussians

e We will consider a Gaussian with a particular structure of
covariance matrix.

e Generate a single sample from this 25 dimensional Gaussian
distribution, f = [f, ... f5].

e We will plot these points against their index.

1 ) Jon/tex/talkse/ocndistfunc tev 11
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Gaussian Distribution Sample
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(a) A 25 dimensiopal correlated ran-  (b) colormap showing correlations be-
dom variable (values ploted against in-  tween dimensions.
dex)

Figure: A sample from a 25 dimensional Gaussian distribution.
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Gaussian Distribution Sample

1
2
0.8
1 v I
xx * w®®x 0.6
= * * ®
=S 0 o® " < - II
» ® 0.4
-1 xngx I
0.2
-2
0] 5 10 15 20 25 0

(a) A 25 dimensiopal correlated ran-  (b) colormap showing correlations be-
dom variable (values ploted against in-  tween dimensions.
dex)

Figure: A sample from a 25 dimensional Gaussian distribution.

) Jon/tex/talkse/ocndistfunc tev 12


../../../gp/tex/talks/gpdistfunc.tex

Gaussian Distribution Sample
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Gaussian Distribution Sample
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Figure: A sample from a 25 dimensional Gaussian distribution.
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Gaussian Distribution Sample
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Gaussian Distribution Sample

1
2
0.8
1 - I
x’ » 22 0.6
- t 3 E 3 ®
w0y . - I
* » 0.4
_1 'ﬂx" l
0.2
-2
0 5 10 15 20 25 0

(a) A 25 dimensiopal correlated ran-  (b) colormap showing correlations be-
dom variable (values ploted against in-  tween dimensions.
dex)

Figure: A sample from a 25 dimensional Gaussian distribution.

) Jon/tex/talkse/ocndistfunc tev 12


../../../gp/tex/talks/gpdistfunc.tex

Gaussian Distribution Sample
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Gaussian Distribution Sample
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Figure: A sample from a 25 dimensional Gaussian distribution.
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Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (x x’) = aexp —7HX _ X/”g
’ 202

e Covariance matrix is built
using the inputs to the
function x.

e For the example above it
was based on Euclidean
distance.

e The covariance function is
also know as a kernel.

) ] Joen/tex/talks/covfunctions tex 13
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Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

p)
AN _HX_Xl”z
k(x,x)-aexp( Tz

e Covariance matrix is built
using the inputs to the
function x.

e For the example above it
was based on Euclidean
distance.

e The covariance function is
also know as a kernel.

) ] Joen/tex/talks/covfunctions tex 13
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Covariance Functions

Where did this covariance matrix come from?

Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance
function

_ o
k (x,x') = aexp <—’X2£2X‘)

e Covariance matrix is built
using the inputs to the
function x.

) ] Joen/tex/talks/covfunctions tex

14
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Covariance Functions

Where did this covariance matrix come from?

Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance
function

e Covariance matrix is built 0
using the inputs to the -0.5 Py

function x. -1
-15
-2

) ] Joen/tex/talks/covfunctions tex 14
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

e Define linear-Gaussian
relationship between
latent variables and data.

(o

e Novel Latent variable .
approach: p(YIX, W) = TN (i [Wx; ., 0%1)

0 0 0 i=1
o Define Gaussian prior
over parameteters, W. P
e Integrate out p(W) =[N (wi.[0,1)

=
parameters. '

P
P(YIX) = [TV (.510,XXT + o21)

j=1

) ) Jeplvm/tex/talks/nonlinearlatent tex 15
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

¢ Inspection of the marginal
likelihood shows ...

< 70.2

P
p(YIX) =[NV (y:,,-|0,xxT + a2|)

=

) ) Jenlvm/tex/talks/nonlinearlatent tex 15
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

¢ Inspection of the marginal
likelihood shows ...

e The covariance matrix

is a covariance
function. <2

P
p(YIX) =[N (y.;10,K)

=1

K=XX" + o2l

) ) Jeplvm/tex/talks/nonlinearlatent tex 15
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

o Inspection of the marginal
likelihood shows ...

e The covariance matrix

. . «— 2
is a covariance g
function.
o We recognise it as the P
‘linear kernel'. p(YIX) = HN(Yer’K)
j=1
K=XXT + 52l

This is a product of Gaussian processes

with linear kernels.

) ) Jeplvm/tex/talks/nonlinearlatent tex

15
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

e Inspection of the marginal
likelihood shows ...

e The covariance matrix
is a covariance
function.

o We recognise it as the P
‘linear kernel'. p(YX) =[N (v.410.K)

e We call this the =
Gaussian Process K —27
Latent Variable model
(GP—LVM). Replace linear kernel with non-linear

kernel for non-linear model.

< 70.2

) ) Jeplvm/tex/talks/nonlinearlatent tex 15
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Non-linear Latent Variable Models

Exponentiated Quadratic (EQ) Covariance

e The EQ covariance has the form k; j = k (x;.,x;.), where

1%, — X'.:H2
k(i %j:) = aexp <—12£212 .

e No longer possible to optimise wrt X via an eigenvalue
problem.

e Instead find gradients with respect to X, «, ¢ and o2 and
optimise using conjugate gradients.

) ) Jepnlvm/tex/talks/nonlinearlatent tex 16
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Learning in Larger Datasets

(Lawrence, 2007; Titsias, 2009)

e Complexity of standard GP:

e O(n®) in computation.

e O(n?) in storage.
e Via low rank representations of covariance:

e O(nm?) in computation.

e O(nm) in storage.
e Where m is user chosen number of inducing variables. They

give the rank of the resulting covariance.

) ) Joen/tex/talks/larcer ocranh intro tex
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Ny

Inducing Variable Approximations

e Date back to (Williams and Seeger, 2001; Smola and Bartlett, 2001; Csaté
and Opper, 2002; Seeger et al., 2003; Snelson and Ghahramani, 2006). See
Quifionero Candela and Rasmussen (2005) for a review.

e \We follow variational perspective of (Titsias, 2009).

e This is an augmented variable method, followed by a collapsed
variational approximation (King and Lawrence, 2006; Hensman et al.,
2012).

) Jon/tex/talkse/larcer ocranh intro tex
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Augmented Variable Model

Augment standard GP model with a set
of m new inducing variables, u.

ply) = / p(y, u)du
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Augmented Variable Model

Augment standard GP model with a set
of m new inducing variables, u.

p(y) = [ plylu)p(u)du
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Augmented Variable Model

Assume that relationship is through f.

p(y) = [ pl3If)p(flu)p(u)dfde
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Augmented Variable Model

Very often likelihood factorizes.

py) = [ [T ploif)p(lu)p(u)dfe
i=1
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Augmented Variable Model

Focus on integral over f.

(y) = (vilfi)p(f|u)dfp(u)du
p(y //i];[lpy p p
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Augmented Variable Model

Focus on integral over f.

p(ylu) = [ T] pOilf)p(Flu)et
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Variational Bound on p(y|u)

og p(ylu) =log [ p(yiPp(Flu)df
p(yIF)p(Flu)
Z/Q(f) log Tdf

e For variational approximation of (Titsias, 2009) set q(f) = p(f|u),

log p(y|u) > log / p(f[u) log p(y|F)df.

p(ylu) = exp [ p(Flu) log ply[F).

) ) Joen/tex/talke/larcer variational tex

20
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Factorizing Likelihoods

o If the likelihood, p(y|f), factorizes

plylu) = exp [ p(flu)log ]| p(lf)e.
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Factorizing Likelihoods

o If the likelihood, p(y|f), factorizes

p(ylu) > exp / p(flu)log [ [p( ).
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Factorizing Likelihoods

o If the likelihood, p(y|f), factorizes

pylu) = exp [ p(Flu)Y logal ).
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Factorizing Likelihoods

o If the likelihood, p(y|f), factorizes

pylu) = exp [ p(flu) Y log p( )<,
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Factorizing Likelihoods

o If the likelihood, p(y|f), factorizes

p(ylu) 2 exp ) / p(f|) log p(yil )df
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Factorizing Likelihoods

o If the likelihood, p(y|f), factorizes

pylu) 2 exp ) / p(f|u) log p(yil)df
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Factorizing Likelihoods

o If the likelihood, p(y|f), factorizes

p(yl) 2 [ e / p(f|u) log p(yil)df
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Factorizing Likelihoods

o If the likelihood, p(y|f), factorizes

p(ylu) 2 [ e / p(f|u) log p(yil)df

e Then the bound factorizes.
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Factorizing Likelihoods

o If the likelihood, p(y|f), factorizes

p(ylu) > [ [ exp (log p(yilf)) psju)
i=1

e Then the bound factorizes.
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Factorizing Likelihoods

o If the likelihood, p(y|f), factorizes

p(ylu) > [ exp (log p(ilf)) p(s )

i=1

e Then the bound factorizes.
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Gaussian p(y;|f;)

For Gaussian likelihoods:

(log P(YI|fi)>p(fi|u) = —% log 27702_$ (i — (fi>)2_% (<f’2> _ <f:>2)
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Gaussian p(y;|f;)

For Gaussian likelihoods:

(log p(yilfi)) pfiw) = —% log 27r02—$ (yi — (ﬁ))h% (<fi2> _ <fi)2>

Implying:

p(yilu) > exp (log i) N (yil (£) , o°)
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Gaussian Process Over f and u

Define:
p)
Gi,i = Varp(f;|u) (fi) = <fi2>p(f,~\u) - <f">p(f;\U)

qii
= (-34)

If joint distribution of p(f,u) is Gaussian then:

We can write:

T -1
gi,i = kiji — ki yKgukiu

¢i is not a function of u but /s a function of X,).

) ) Jon/tex/talke/larcer factorize tex 272
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Lower Bound on Likelihood

Substitute variational bound into marginal likelihood:

py) = [[ i [ A (y1(6).0%) p(u)du
i=1
Note that:

() priy = KeuKyu

is linearly dependent on u.

) ) Jon/tex/talke/larcer factorize tex 24
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Deterministic Training Conditional

Making the marginalization of u straightforward. In the Gaussian
case:

p(u) = N (u]0,Kyy)

/p(y{u)p(u)du > Hc;//\/ (y\KLuK;},u,g?)/\/(u\O, Ku,u)du
i=1

) ) Jon/tex/talke/larcer factorize tex 25
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Deterministic Training Conditional

Making the marginalization of u straightforward. In the Gaussian
case:

p(u) = N (u[0, Ky y)

n
/p(y|u)p(u)du > HC;N (y\0,02| + KfT’uK;},Kuf)
i=1

) ) Jon/tex/talke/larcer factorize tex 25
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Deterministic Training Conditional

Making the marginalization of u straightforward. In the Gaussian
case:

p(u) = N (u]0, Ky y)

/p(y|u)p(u)du > HC;N (y\O,Uzl + K;I:uKlIhKuf)
i=1

Maximize log of the bound to find covariance function parameters,

n
L>Y logci +log A’ (y|0,02I n KfT’uK;’},Kuﬁf,)
=1

) ) Jon/tex/talke/larcer factorize tex 25
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Deterministic Training Conditional

Making the marginalization of u straightforward. In the Gaussian
case:

p(u) = N (u]0, Ky y)

/p(y|u)p(u)du > HC;N (y\O,Uzl + K;I:uKlIhKuf)
i=1

Maximize log of the bound to find covariance function parameters,

n
L>Y logci +log A’ (y|0,02I n KfT’uK;’},Kuﬁf,)
=1

) ) Jon/tex/talke/larcer factorize tex 25
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Deterministic Training Conditional

Making the marginalization of u straightforward. In the Gaussian
case:

p(u) = N (ul0, Ky y)

/ p(y|u)p du>Hc, (y\0702|+KfTuK;},Ku7f>

Maximize log of the bound to find covariance function parameters,

L~ log ' (y10, 021 + K{ Ky hKug, )

e |f the bound is normalized, the ¢; terms are removed.

) ) Jon/tex/talke/larcer factorize tex

75
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Deterministic Training Conditional

Making the marginalization of u straightforward. In the Gaussian
case:

p(u) = N (u]0, Kyu)

/ p(y|u) du>Hc, (¥10,0%1 + K{ K hKug )

Maximize log of the bound to find covariance function parameters,

e If the bound is normalized, the ¢; terms are removed.

e This results in the projected process approximation (Rasmussen
and Williams, 2006) or DTC (Quifionero Candela and Rasmussen, 2005).
Proposed by (Smola and Bartlett, 2001; Seeger et al., 2003; Csat6 and
Opper, 2002; Csat6, 2002).

) ) Jon/tex/talke/larcer factorize tex
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Stochastic Variational Inference

James Hensman has shown this same bound can be used for
stochastic variational inference (Blei et al).

By retaining the variational distribution over u explicilty.
Currently running GPs over 120,000,000 data points.
This bound seems extendable to deep GPs.
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