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Notation

q� dimension of latent/embedded space
p� dimension of data space
n� number of data points

centred data, Y = [y1,:, . . . , yn,:]
> = [y:,1, . . . , y:,p] ∈ <n×p

latent variables, X = [x1,:, . . . , xn,:]
> = [x:,1, . . . , x:,q] ∈ <n×q

mapping matrix, W ∈ <p×q

ai ,: is a vector from the ith row of a given matrix A
a:,j is a vector from the jth row of a given matrix A
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Reading Notation

X and Y are design matrices

• Covariance given by n−1Y>Y.

• Inner product matrix given by YY>.
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Linear Dimensionality Reduction

Linear Latent Variable Model

• Represent data, Y, with a lower dimensional set of latent
variables X.

• Assume a linear relationship of the form

yi ,: = Wxi ,: + εi ,:,

where
εi ,: ∼ N

(
0, σ2I

)
.

../../../gplvm/tex/talks/ppca.tex 5

../../../gplvm/tex/talks/ppca.tex


Linear Latent Variable Model

Probabilistic PCA

• De�ne linear-Gaussian

relationship between
latent variables and data.

• Standard Latent variable
approach:

• De�ne Gaussian prior
over latent space, X.

• Integrate out latent

variables.

Y

W
X

σ2

p (Y|X,W) =
n∏
i=1

N
(
yi,:|Wxi,:, σ

2I
)
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Linear Latent Variable Model

Probabilistic PCA

• De�ne linear-Gaussian

relationship between
latent variables and data.

• Standard Latent variable
approach:

• De�ne Gaussian prior
over latent space, X.

• Integrate out latent

variables.

Y

W
X

σ2

p (Y|X,W) =
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i=1

N
(
yi,:|Wxi,:, σ

2I
)

p (X) =
n∏
i=1

N
(
xi,:|0, I

)

p (Y|W) =
n∏
i=1

N
(
yi,:|0,WW> + σ2I

)
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Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

Y

W
X

σ2

p (Y|W) =
n∏

i=1

N
(
yi ,:|0,WW> + σ2I

)
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Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p (Y|W) =
n∏

i=1

N (yi ,:|0,C) , C = WW> + σ2I

log p (Y|W) = −n

2
log |C| − 1

2
tr
(
C−1Y>Y

)
+ const.

If Uq are �rst q principal eigenvectors of n−1Y>Y and the
corresponding eigenvalues are Λq,

W = UqLR
>, L =

(
Λq − σ2I

) 1
2

where R is an arbitrary rotation matrix.
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Linear Latent Variable Model III

Dual Probabilistic PCA

• De�ne linear-Gaussian

relationship between
latent variables and data.

• Novel Latent variable
approach:

• De�ne Gaussian prior
over parameters, W.

• Integrate out
parameters.

Y

W
X

σ2

p (Y|X,W) =
n∏
i=1

N
(
yi,:|Wxi,:, σ

2I
)

../../../gplvm/tex/talks/ppco.tex 8

../../../gplvm/tex/talks/ppco.tex


Linear Latent Variable Model III

Dual Probabilistic PCA

• De�ne linear-Gaussian

relationship between
latent variables and data.

• Novel Latent variable
approach:

• De�ne Gaussian prior
over parameters, W.

• Integrate out
parameters.

Y

W
X

σ2

p (Y|X,W) =
n∏
i=1

N
(
yi,:|Wxi,:, σ

2I
)

../../../gplvm/tex/talks/ppco.tex 8

../../../gplvm/tex/talks/ppco.tex


Linear Latent Variable Model III

Dual Probabilistic PCA

• De�ne linear-Gaussian

relationship between
latent variables and data.

• Novel Latent variable
approach:

• De�ne Gaussian prior
over parameters, W.

• Integrate out
parameters.

Y

W
X

σ2

p (Y|X,W) =
n∏
i=1

N
(
yi,:|Wxi,:, σ

2I
)

p (W) =

p∏
i=1

N
(
wi,:|0, I

)

../../../gplvm/tex/talks/ppco.tex 8

../../../gplvm/tex/talks/ppco.tex


Linear Latent Variable Model III
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Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004, 2005)

Y

W
X

σ2

p (Y|X) =
p∏
j=1

N
(
y:,j |0,XX> + σ2I

)
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Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004, 2005)

p (Y|X) =
p∏
j=1

N
(
y:,j |0,K

)
, K = XX> + σ2I

log p (Y|X) = −
p

2
log |K| −

1

2
tr
(
K−1YY>

)
+ const.

If U′q are �rst q principal eigenvectors of p−1YY> and the corresponding eigenvalues
are Λq ,

X = U′qLR
>, L =

(
Λq − σ2I

) 1
2

where R is an arbitrary rotation matrix.
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Equivalence of Formulations

The Eigenvalue Problems are equivalent
• Solution for Probabilistic PCA (solves for the mapping)

Y
>
YUq = UqΛq W = UqLR

>

• Solution for Dual Probabilistic PCA (solves for the latent
positions)

YY
>
U
′
q = U

′
qΛq X = U

′
qLR

>

• Equivalence is from

Uq = Y
>
U
′
qΛ
− 1

2

q
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Sampling a Function

Multi-variate Gaussians

• We will consider a Gaussian with a particular structure of
covariance matrix.

• Generate a single sample from this 25 dimensional Gaussian
distribution, f = [f1, f2 . . . f25].

• We will plot these points against their index.
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Gaussian Distribution Sample
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Figure: A sample from a 25 dimensional Gaussian distribution.
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Gaussian Distribution Sample
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Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k
(
x, x′

)
= α exp

(
−
‖x− x′‖22

2`2

)

• Covariance matrix is built
using the inputs to the
function x.

• For the example above it
was based on Euclidean
distance.

• The covariance function is
also know as a kernel.

../../../gp/tex/talks/covfunctions.tex 13

../../../gp/tex/talks/covfunctions.tex


Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k
(
x, x′

)
= α exp

(
−
‖x− x′‖22

2`2

)

• Covariance matrix is built
using the inputs to the
function x.

• For the example above it
was based on Euclidean
distance.

• The covariance function is
also know as a kernel.

-3

-2

-1

0

1

2

3

-1 -0.5 0 0.5 1

../../../gp/tex/talks/covfunctions.tex 13

../../../gp/tex/talks/covfunctions.tex


Covariance Functions
Where did this covariance matrix come from?

Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance
function

k
(
x, x′

)
= α exp

(
−|x− x′|

2`2

)

• Covariance matrix is built
using the inputs to the
function x.

../../../gp/tex/talks/covfunctions.tex 14

../../../gp/tex/talks/covfunctions.tex


Covariance Functions
Where did this covariance matrix come from?

Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance
function

k
(
x, x′

)
= α exp

(
−|x− x′|

2`2

)
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using the inputs to the
function x.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

• De�ne linear-Gaussian

relationship between
latent variables and data.

• Novel Latent variable
approach:

• De�ne Gaussian prior
over parameteters, W.

• Integrate out
parameters.

Y

W
X

σ2

p (Y|X,W) =
n∏
i=1

N
(
yi,:|Wxi,:, σ

2I
)

p (W) =

p∏
i=1

N
(
wi,:|0, I

)

p (Y|X) =
p∏
j=1

N
(
y:,j |0,XX> + σ2I

)
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

• Inspection of the marginal
likelihood shows ...

• The covariance matrix
is a covariance
function.

• We recognise it as the
`linear kernel'.

• We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

Y

W
X

σ2

p (Y|X) =
p∏
j=1

N
(
y:,j |0,XX> + σ2I

)
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

• Inspection of the marginal
likelihood shows ...

• The covariance matrix
is a covariance
function.
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Gaussian Process
Latent Variable model
(GP-LVM).

Y

W
X

σ2

p (Y|X) =
p∏
j=1

N
(
y:,j |0,K

)

K = XX> + σ2I
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

• Inspection of the marginal
likelihood shows ...

• The covariance matrix
is a covariance
function.

• We recognise it as the
`linear kernel'.

• We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

Y

W
X

σ2

p (Y|X) =
p∏
j=1

N
(
y:,j |0,K

)

K = XX> + σ2I

This is a product of Gaussian processes

with linear kernels.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

• Inspection of the marginal
likelihood shows ...

• The covariance matrix
is a covariance
function.

• We recognise it as the
`linear kernel'.

• We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

Y

W
X

σ2

p (Y|X) =
p∏
j=1

N
(
y:,j |0,K

)
K =?

Replace linear kernel with non-linear

kernel for non-linear model.
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Non-linear Latent Variable Models

Exponentiated Quadratic (EQ) Covariance

• The EQ covariance has the form ki ,j = k (xi ,:, xj ,:) , where

k (xi ,:, xj ,:) = α exp

(
−
‖xi ,: − xj ,:‖22

2`2

)
.

• No longer possible to optimise wrt X via an eigenvalue
problem.

• Instead �nd gradients with respect to X, α, ` and σ2 and
optimise using conjugate gradients.
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Learning in Larger Datasets

(Lawrence, 2007; Titsias, 2009)

• Complexity of standard GP:
• O(n3) in computation.
• O(n2) in storage.

• Via low rank representations of covariance:
• O(nm2) in computation.
• O(nm) in storage.

• Where m is user chosen number of inducing variables. They
give the rank of the resulting covariance.
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Inducing Variable Approximations

• Date back to (Williams and Seeger, 2001; Smola and Bartlett, 2001; Csató

and Opper, 2002; Seeger et al., 2003; Snelson and Ghahramani, 2006). See
Quiñonero Candela and Rasmussen (2005) for a review.

• We follow variational perspective of (Titsias, 2009).

• This is an augmented variable method, followed by a collapsed
variational approximation (King and Lawrence, 2006; Hensman et al.,

2012).
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Augmented Variable Model

Augment standard GP model with a set
of m new inducing variables, u.

p(y) =

∫
p(y,u)du

y
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Augmented Variable Model

Augment standard GP model with a set
of m new inducing variables, u.

p(y) =

∫
p(y|u)p(u)du

y

u
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Augmented Variable Model

Assume that relationship is through f.

p(y) =

∫
p(y|f)p(f|u)p(u)dfdu

y

f

u
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Augmented Variable Model

Very often likelihood factorizes.

p(y) =

∫ n∏
i=1

p(yi |fi )p(f|u)p(u)dfdu

yi

fi

u

i = 1 . . . n
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Augmented Variable Model

Focus on integral over f.

p(y) =

∫ ∫ n∏
i=1

p(yi |fi )p(f|u)dfp(u)du

yi

fi

u

i = 1 . . . n
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Variational Bound on p(y|u)

log p(y|u) = log

∫
p(y|f)p(f|u)df

≥
∫

q(f) log
p(y|f)p(f|u)

q(f)
df

• For variational approximation of (Titsias, 2009) set q(f) = p(f|u),

log p(y|u) ≥ log

∫
p(f|u) log p(y|f)df.

p(y|u) ≥ exp

∫
p(f|u) log p(y|f)df.
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Factorizing Likelihoods

• If the likelihood, p(y|f), factorizes

p(y|u) ≥ exp

∫
p(f|u) log

n∏
i=1

p(yi |fi )df.

• Then the bound factorizes.
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Factorizing Likelihoods

• If the likelihood, p(y|f), factorizes
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• Then the bound factorizes.
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Gaussian p(yi |fi)

For Gaussian likelihoods:

〈log p(yi |fi )〉p(fi |u) = −
1

2
log 2πσ2− 1

2σ2
(yi − 〈fi 〉)2−

1

2σ2

(〈
f 2i
〉
− 〈fi 〉2

)
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Gaussian p(yi |fi)

For Gaussian likelihoods:

〈log p(yi |fi )〉p(fi |u) = −
1

2
log 2πσ2− 1

2σ2
(yi − 〈fi 〉)2−

1

2σ2

(〈
f 2i
〉
− 〈fi 〉2

)
Implying:

p(yi |u) ≥ exp 〈log ci 〉N
(
yi | 〈fi 〉 , σ2

)
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Gaussian Process Over f and u

De�ne:
qi ,i = varp(fi |u) (fi ) =

〈
f 2i
〉
p(fi |u)

− 〈fi 〉2p(fi |u)
We can write:

ci = exp
(
−

qi ,i

2σ2

)
If joint distribution of p(f,u) is Gaussian then:

qi ,i = ki ,i − k>i ,uK
−1
u,uki ,u

ci is not a function of u but is a function of Xu).
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Lower Bound on Likelihood

Substitute variational bound into marginal likelihood:

p(y) ≥
n∏

i=1

ci

∫
N
(
y| 〈f〉 , σ2I

)
p(u)du

Note that:
〈f〉p(f|u) = Kf,uK

−1
u,uu

is linearly dependent on u.
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Deterministic Training Conditional

Making the marginalization of u straightforward. In the Gaussian
case:

p(u) = N (u|0,Ku,u)∫
p(y|u)p(u)du ≥

n∏
i=1

ci

∫
N
(
y|Kf,uK

−1
u,uu, σ

2
)
N (u|0,Ku,u) du
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Deterministic Training Conditional

Making the marginalization of u straightforward. In the Gaussian
case:

p(u) = N (u|0,Ku,u)

∫
p(y|u)p(u)du ≥

n∏
i=1

ciN
(
y|0, σ2I+K>f,uK

−1
u,uKu,f

)
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Deterministic Training Conditional

Making the marginalization of u straightforward. In the Gaussian
case:

p(u) = N (u|0,Ku,u)

∫
p(y|u)p(u)du ≥

n∏
i=1

ciN
(
y|0, σ2I+K>f,uK

−1
u,uKu,f

)
Maximize log of the bound to �nd covariance function parameters,

L ≥
n∑

i=1

log ci + logN
(
y|0, σ2I+K>f,uK

−1
u,uKu,f,

)
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Deterministic Training Conditional

Making the marginalization of u straightforward. In the Gaussian
case:

p(u) = N (u|0,Ku,u)

∫
p(y|u)p(u)du ≥

n∏
i=1

ciN
(
y|0, σ2I+K>f,uK

−1
u,uKu,f

)
Maximize log of the bound to �nd covariance function parameters,

L ≈ logN
(
y|0, σ2I+K>f,uK

−1
u,uKu,f,

)

• If the bound is normalized, the ci terms are removed.

• This results in the projected process approximation (Rasmussen

and Williams, 2006) or DTC (Quiñonero Candela and Rasmussen, 2005).
Proposed by (Smola and Bartlett, 2001; Seeger et al., 2003; Csató and

Opper, 2002; Csató, 2002).
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Deterministic Training Conditional

Making the marginalization of u straightforward. In the Gaussian
case:

p(u) = N (u|0,Ku,u)

∫
p(y|u)p(u)du ≥

n∏
i=1

ciN
(
y|0, σ2I+K>f,uK

−1
u,uKu,f

)
Maximize log of the bound to �nd covariance function parameters,

• If the bound is normalized, the ci terms are removed.

• This results in the projected process approximation (Rasmussen

and Williams, 2006) or DTC (Quiñonero Candela and Rasmussen, 2005).
Proposed by (Smola and Bartlett, 2001; Seeger et al., 2003; Csató and

Opper, 2002; Csató, 2002).
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Stochastic Variational Inference

• James Hensman has shown this same bound can be used for
stochastic variational inference (Blei et al).

• By retaining the variational distribution over u explicilty.

• Currently running GPs over 120,000,000 data points.

• This bound seems extendable to deep GPs.
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