
GP-LVM
Hierarchical GP-LVM

Discussion

Hierarchical Gaussian Process Latent Variable
Models

Neil D. Lawrence and Andrew J. Moore
Machine Learning Group

School of Computer Science
University of Manchester, U.K.

22nd June 2007

Neil Lawrence The Gaussian Processes Latent Variable Model



GP-LVM
Hierarchical GP-LVM

Discussion

Outline

1 GP-LVM
Mathematical Foundations
Dynamics

2 Hierarchical GP-LVM
Two Correlated Subjects
Subject Decomposition

3 Discussion
Overfitting
Summary

Neil Lawrence The Gaussian Processes Latent Variable Model



GP-LVM
Hierarchical GP-LVM

Discussion

Online Resources

All source code and slides are available online

This talk available from my home page (see talks link on left
hand side).

Examples shown are in the ‘oxford’ toolbox (vrs 0.131).

http://www.cs.man.ac.uk/~neill/oxford/.

And the ‘hgplvm’ toolbox (vrs 0.1).

http://www.cs.man.ac.uk/~neill/hgplvm/.

MATLAB commands used for examples given in typewriter
font.
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Curse of Dimensionality

Incorporating assumptions about data structure

How do we model high dimensional data probabilistically?

1 Probabilistic models with sparse connectivity: tree structures,
junction trees, Markov random fields.

Dictactes conditional independecies in the data.

2 Assume data inherently lives on a low dimensional manifold.

Perhaps all data points are fully interdependent, but they live
in a low dimension space.

Can we combine these two approaches in one model?
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Modelling in High Dimensions

Avoiding the Curse of Dimensionality

Figure: Probabilistic non-linear dimensional reduction.
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Modelling in High Dimensions

Avoiding the Curse of Dimensionality

Figure: Hierarchical model (sparse connectivity).
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Modelling in High Dimensions

Avoiding the Curse of Dimensionality

Figure: Hierarchy of non-linear dimensional reductions (this talk).

Neil Lawrence The Gaussian Processes Latent Variable Model



GP-LVM
Hierarchical GP-LVM

Discussion

Mathematical Foundations
Dynamics

Notation

q— dimension of latent/embedded space
d— dimension of data space
n— number of data points

centred data, Y = [y1,:, . . . , yn,:]
T = [y:,1, . . . , y:,d ] ∈ <n×d

latent variables, X = [x1,:, . . . , xn,:]
T = [x:,1, . . . , x:,q] ∈ <n×q

mapping matrix, W ∈ <d×q

ai ,: is a vector from the ith row of a given matrix A
a:,j is a vector from the jth row of a given matrix A

Neil Lawrence The Gaussian Processes Latent Variable Model



GP-LVM
Hierarchical GP-LVM

Discussion

Mathematical Foundations
Dynamics

Reading Notation

X and Y are design matrices

Covariance given by n−1YTY.

Inner product matrix given by YYT.
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Mathematical Foundations
Dynamics

Linear Dimensionality Reduction

Linear Latent Variable Model

Represent data, Y, with a lower dimensional set of latent
variables X.

Assume a linear relationship of the form

yi ,: = Wxi ,: + ηi ,:,

where
ηi ,: ∼ N

(
0, σ2I

)
.
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Mathematical Foundations
Dynamics

Linear Latent Variable Model I

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach:

Define Gaussian prior
over parameters, W.
Integrate out
parameters.

W

Y

X

p (Y|X, W) =
nY

i=1

N
`
yi,:|Wxi,:, σ

2I
´
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Mathematical Foundations
Dynamics

Linear Latent Variable Model I

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach:

Define Gaussian prior
over parameters, W.
Integrate out
parameters.

W

Y

X

p (Y|X, W) =
nY

i=1

N
`
yi,:|Wxi,:, σ

2I
´

p (W) =
dY

i=1

N
`
wi,:|0, I

´
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Mathematical Foundations
Dynamics

Linear Latent Variable Model I

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach:

Define Gaussian prior
over parameters, W.
Integrate out
parameters.

W

Y

X

p (Y|X, W) =
nY

i=1

N
`
yi,:|Wxi,:, σ

2I
´

p (W) =
dY

i=1

N
`
wi,:|0, I

´

p (Y|X) =
dY

j=1

N
“
y:,j |0, XXT + σ2I

”
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Linear Latent Variable Model II

Dual Probabilistic PCA Max. Likelihood Soln [Lawrence, 2004, 2005]

W

Y

X

p (Y|X) =
dY

j=1

N
“
y:,j |0, XXT + σ2I

”

Neil Lawrence The Gaussian Processes Latent Variable Model



GP-LVM
Hierarchical GP-LVM

Discussion

Mathematical Foundations
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Linear Latent Variable Model II

Dual Probabilistic PCA Max. Likelihood Soln [Lawrence, 2004, 2005]

p (Y|X) =
dY

j=1

N
`
y:,j |0, K

´
, K = XXT + σ2I

log p (Y|X) = −
d

2
log |K| −

1

2
tr

“
K−1YYT

”
+ const.

If U′
q are first q principal eigenvectors of d−1YYT and the corresponding eigenvalues

are Λq ,

X = U′
qLV

T, L =
`
Λq − σ2I

´ 1
2

where V is an arbitrary rotation matrix.
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Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

p (Y|W) =
nY

i=1

N
`
yi,:|0, C

´
, C = WWT + σ2I

log p (Y|W) = −
n

2
log |C| −

1

2
tr

“
C−1YTY

”
+ const.

If Uq are first q principal eigenvectors of n−1YTY and the corresponding eigenvalues
are Λq ,

W = UqLV
T, L =

`
Λq − σ2I

´ 1
2

where V is an arbitrary rotation matrix.
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Equivalence of Formulations

The Eigenvalue Problems are equivalent

Solution for Probabilistic PCA (solves for the mapping)

YTYUq = UqΛq W = UqLV
T

Solution for Dual Probabilistic PCA (solves for the latent
positions)

YYTU′
q = U′

qΛq X = U′
qLV

T

Equivalence is from

Uq = YTU′
qΛ

− 1
2

q
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Mathematical Foundations
Dynamics

Non-Linear Latent Variable Model

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach:

Define Gaussian prior
over parameteters, W.
Integrate out
parameters.

W

Y

X

p (Y|X, W) =
nY

i=1

N
`
yi,:|Wxi,:, σ

2I
´

p (W) =
dY

i=1

N
`
wi,:|0, I

´

p (Y|X) =
dY

j=1

N
“
y:,j |0, XXT + σ2I

”
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Inspection of the marginal
likelihood shows ...

The covariance matrix
is a covariance
function.
We recognise it as the
‘linear kernel’.
We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

W

Y

X

p (Y|X) =
dY

j=1

N
“
y:,j |0, XXT + σ2I

”
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W

Y
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Mathematical Foundations
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Inspection of the marginal
likelihood shows ...

The covariance matrix
is a covariance
function.
We recognise it as the
‘linear kernel’.
We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

W

Y

X

p (Y|X) =
dY

j=1

N
`
y:,j |0, K

´

K = XXT + σ2I

This is a product of Gaussian processes

with linear kernels.
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Mathematical Foundations
Dynamics

Non-Linear Latent Variable Model

Dual Probabilistic PCA

Inspection of the marginal
likelihood shows ...

The covariance matrix
is a covariance
function.
We recognise it as the
‘linear kernel’.
We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

W

Y

X

p (Y|X) =
dY

j=1

N
`
y:,j |0, K

´
K =?

Replace linear kernel with non-linear

kernel for non-linear model.
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Mathematical Foundations
Dynamics

Stick Man

Generalization with less Data than Dimensions

Powerful uncertainty handling of GPs leads to suprising
properties.

Non-linear models can be used where there are fewer data
points than dimensions without overfitting.

Example: Modelling a stick man in 102 dimensions with 55
data points!
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Stick Man II

demStick1

Figure: The latent space for the stick man motion capture data.
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Stick Man II

demStick1
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Figure: The latent space for the stick man motion capture data.
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Adding Dynamics

MAP Solutions for Dynamics Models

Introduce dynamical model in latent space.

Marginalising such dynamics is intractable.
But: MAP solutions are trivial to implement.

Wang et al. [2006] suggest using a auto regressive Gaussian
Process.

Here we use a regressive Gaussian process.
p (Y|t) =

∫
p (Y|X) p (X|t) dX
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Regressive Dynamics

Direct use of Time Variable

Take t as an input, use a prior p (X|t).
User a Gaussian process prior for p (X|t) .

Also allows us to consider variable sample rate data.
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Motion Capture Results

demStick1 and demStick5

Figure: The latent space for the motion capture data without dynamics
(left) and with regressive dynamics (right) based on an RBF kernel.
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Figure: The latent space for the motion capture data without dynamics
(left) and with regressive dynamics (right) based on an RBF kernel.
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Two Correlated Subjects
Subject Decomposition

Hierarchical GP-LVM

Stacking Gaussian Processes

Regressive dynamics provides a simple hierarchy.

The input space of the GP is governed by another GP.

By stacking GPs we can consider more complex hierarchies.
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Two Correlated Subjects
Subject Decomposition

Hierarchical GP-LVM

Stacking GP-LVMs

This provides a route to incoporate conditional
independencies.

Ideally we should marginalise latent spaces

In practice we seek MAP solutions.
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Two Correlated Subjects

Simple hieararchy:

Motion capture data
with two subjects.

Subjects interact:
approach each other and
‘high five’.

Model as a very simple
tree.

Interaction

Subject 1 Subject 2

Data 1 Data 2

X 1

Y
1 2Y

3X

2X

p (Y1,Y2) =
R

p (Y1|X1)
R

p (Y2|X2)
R

p (X1|X3) p (X2|X3) dX1dX2dX3
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Two Correlated Subjects

demHighFive1

Figure: Hierarchical model of a ’high five’.
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Within Subject Hierarchy

Decomposition of Body

Figure: Decomposition of a subject.

Neil Lawrence The Gaussian Processes Latent Variable Model



GP-LVM
Hierarchical GP-LVM

Discussion

Two Correlated Subjects
Subject Decomposition

Single Subject Run/Walk

demRunWalk1

Figure: Hierarchical model of a walk and a run.
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Overfitting

More parameters than data

Large number of parameters: why doesn’t it overfit?

Standard GP-LVM: parameters increase linearly q
d ×N, q < d .

HGP-LVM: adding more latent variables (parameters), will we
overfit?

Upper levels only regularise the leaf nodes: if the leaf nodes
don’t overfit model won’t.
Best likelihood obtained by removing regularisation.
Counter this potential problem in two ways.

1 Provide a fixed dynamical prior at the top level.
2 Constraine the noise variance of each non-leaf Gaussian

process to 1 × 10−6.
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Summary

Conclusions

GP-LVM is a Probabilistic Non-Linear Generalisation of PCA.

We can stack GP-LVMs to provide:

A dynamical model.
A hierarchical decomposition of our data.

MAP Solutions still provide interesting decompositions.
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