

Hierarchical Gaussian Process Latent Variable Models

Neil D. Lawrence and Andrew J. Moore
Machine Learning Group
School of Computer Science
University of Manchester, U.K.

22nd June 2007

Outline

1 GP-LVM

- Mathematical Foundations
- Dynamics

2 Hierarchical GP-LVM

- Two Correlated Subjects
- Subject Decomposition

3 Discussion

- Overfitting
- Summary

Online Resources

All source code and slides are available online

- This talk available from my home page (see talks link on left hand side).
- Examples shown are in the 'oxford' toolbox (vrs 0.131).
 - <http://www.cs.man.ac.uk/~neill/oxford/>.
- And the 'hgplvm' toolbox (vrs 0.1).
 - <http://www.cs.man.ac.uk/~neill/hgplvm/>.
- MATLAB commands used for examples given in typewriter font.

Curse of Dimensionality

Incorporating assumptions about data structure

- How do we model high dimensional data probabilistically?
 - ① Probabilistic models with sparse connectivity: tree structures, junction trees, Markov random fields.
 - Dictates conditional independencies in the data.
 - ② Assume data inherently lives on a low dimensional manifold.
 - Perhaps all data points are fully interdependent, but they live in a low dimension space.
- Can we combine these two approaches in one model?

Modelling in High Dimensions

Avoiding the Curse of Dimensionality

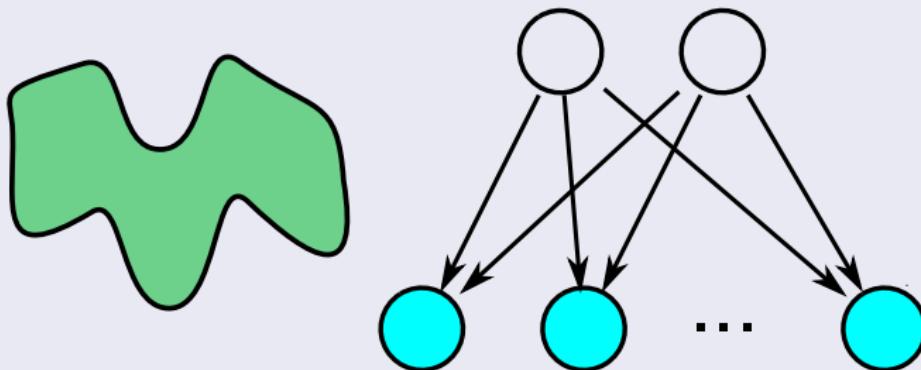


Figure: Probabilistic non-linear dimensional reduction.

Modelling in High Dimensions

Avoiding the Curse of Dimensionality

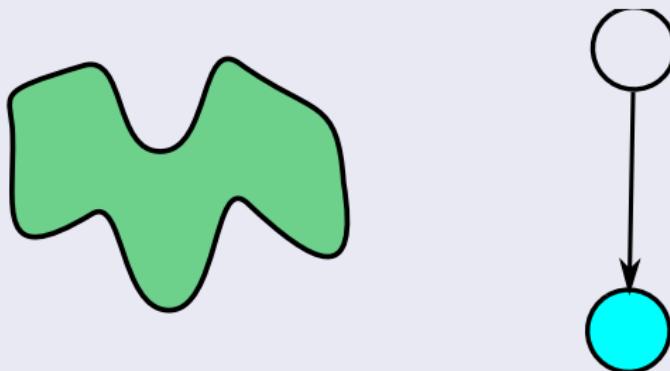


Figure: Probabilistic non-linear dimensional reduction.

Modelling in High Dimensions

Avoiding the Curse of Dimensionality

Figure: Probabilistic non-linear dimensional reduction.

Modelling in High Dimensions

Avoiding the Curse of Dimensionality

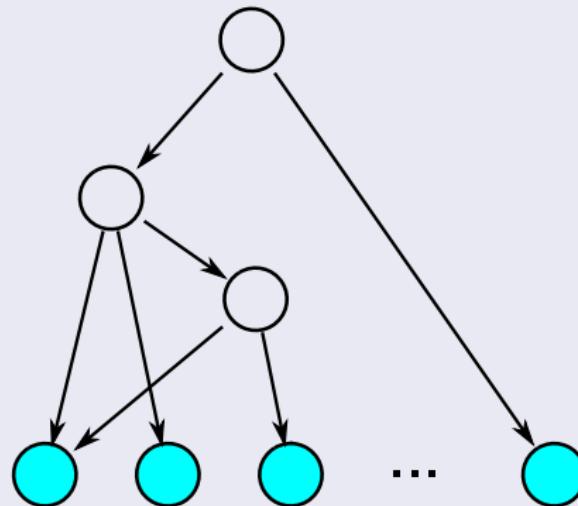


Figure: Hierarchical model (sparse connectivity).

Modelling in High Dimensions

Avoiding the Curse of Dimensionality

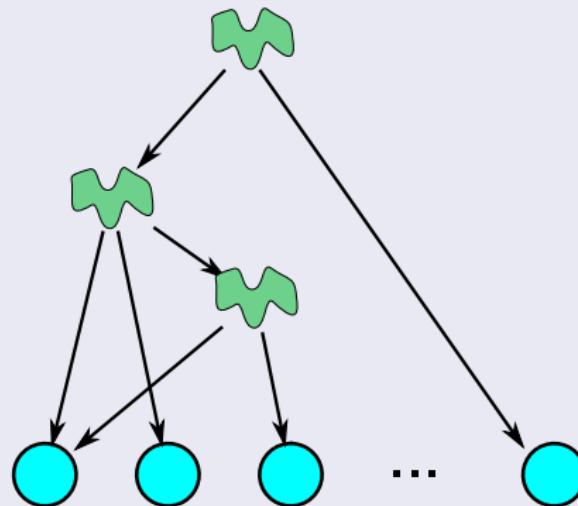


Figure: Hierarchy of non-linear dimensional reductions (this talk).

Notation

q — dimension of latent/embedded space

d — dimension of data space

n — number of data points

centred data, $\mathbf{Y} = [\mathbf{y}_{1,:}, \dots, \mathbf{y}_{n,:}]^T = [\mathbf{y}_{:,1}, \dots, \mathbf{y}_{:,d}] \in \Re^{n \times d}$

latent variables, $\mathbf{X} = [\mathbf{x}_{1,:}, \dots, \mathbf{x}_{n,:}]^T = [\mathbf{x}_{:,1}, \dots, \mathbf{x}_{:,q}] \in \Re^{n \times q}$
mapping matrix, $\mathbf{W} \in \Re^{d \times q}$

$\mathbf{a}_{i,:}$ is a vector from the i th row of a given matrix \mathbf{A}

$\mathbf{a}_{:,j}$ is a vector from the j th row of a given matrix \mathbf{A}

Reading Notation

X and **Y** are *design matrices*

- Covariance given by $n^{-1}\mathbf{Y}^T\mathbf{Y}$.
- Inner product matrix given by $\mathbf{Y}\mathbf{Y}^T$.

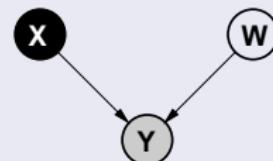
Linear Dimensionality Reduction

Linear Latent Variable Model

- Represent data, \mathbf{Y} , with a lower dimensional set of latent variables \mathbf{X} .
- Assume a linear relationship of the form

$$\mathbf{y}_{i,:} = \mathbf{W}\mathbf{x}_{i,:} + \boldsymbol{\eta}_{i,:},$$

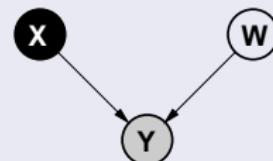
where


$$\boldsymbol{\eta}_{i,:} \sim N(\mathbf{0}, \sigma^2 \mathbf{I}).$$

Linear Latent Variable Model I

Dual Probabilistic PCA

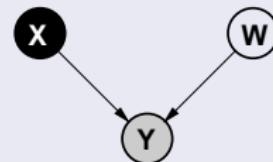
- Define *linear-Gaussian relationship* between latent variables and data.
- **Novel** Latent variable approach:
 - Define Gaussian prior over *parameters*, \mathbf{W} .
 - Integrate out *parameters*.


$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n N(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:}, \sigma^2 \mathbf{I})$$

Linear Latent Variable Model I

Dual Probabilistic PCA

- Define *linear-Gaussian relationship* between latent variables and data.
- **Novel** Latent variable approach:
 - Define Gaussian prior over *parameters*, \mathbf{W} .
 - Integrate out *parameters*.

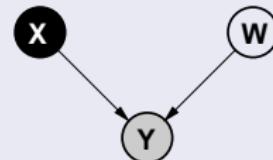

$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n N(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:}, \sigma^2 \mathbf{I})$$

Linear Latent Variable Model I

Dual Probabilistic PCA

- Define *linear-Gaussian relationship* between latent variables and data.
- **Novel** Latent variable approach:
 - Define Gaussian prior over *parameters*, \mathbf{W} .
 - Integrate out *parameters*.

$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n N(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:}, \sigma^2 \mathbf{I})$$

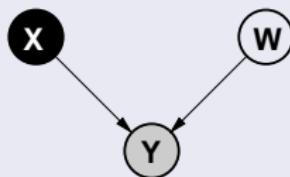

$$p(\mathbf{W}) = \prod_{i=1}^d N(\mathbf{w}_{i,:} | \mathbf{0}, \mathbf{I})$$

Linear Latent Variable Model I

Dual Probabilistic PCA

- Define *linear-Gaussian relationship* between latent variables and data.
- **Novel** Latent variable approach:
 - Define Gaussian prior over *parameters*, \mathbf{W} .
 - Integrate out *parameters*.

$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n N(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:}, \sigma^2 \mathbf{I})$$


$$p(\mathbf{W}) = \prod_{i=1}^d N(\mathbf{w}_{i,:} | \mathbf{0}, \mathbf{I})$$

$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^d N(\mathbf{y}_{:,j} | \mathbf{0}, \mathbf{X}\mathbf{X}^T + \sigma^2 \mathbf{I})$$

Linear Latent Variable Model II

Dual Probabilistic PCA Max. Likelihood Soln [Lawrence, 2004, 2005]

$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^d N(\mathbf{y}_{:,j}|\mathbf{0}, \mathbf{X}\mathbf{X}^T + \sigma^2 \mathbf{I})$$

Linear Latent Variable Model II

Dual Probabilistic PCA Max. Likelihood Soln [Lawrence, 2004, 2005]

$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^d N(\mathbf{y}_{:,j}|\mathbf{0}, \mathbf{K}), \quad \mathbf{K} = \mathbf{X}\mathbf{X}^T + \sigma^2 \mathbf{I}$$

$$\log p(\mathbf{Y}|\mathbf{X}) = -\frac{d}{2} \log |\mathbf{K}| - \frac{1}{2} \text{tr}(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^T) + \text{const.}$$

If \mathbf{U}'_q are first q principal eigenvectors of $d^{-1} \mathbf{Y} \mathbf{Y}^T$ and the corresponding eigenvalues are Λ_q ,

$$\mathbf{X} = \mathbf{U}'_q \mathbf{L} \mathbf{V}^T, \quad \mathbf{L} = (\Lambda_q - \sigma^2 \mathbf{I})^{\frac{1}{2}}$$

where \mathbf{V} is an arbitrary rotation matrix.

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

$$p(\mathbf{Y}|\mathbf{W}) = \prod_{i=1}^n N(\mathbf{y}_{i,:}|\mathbf{0}, \mathbf{C}), \quad \mathbf{C} = \mathbf{W}\mathbf{W}^T + \sigma^2\mathbf{I}$$

$$\log p(\mathbf{Y}|\mathbf{W}) = -\frac{n}{2} \log |\mathbf{C}| - \frac{1}{2} \text{tr}(\mathbf{C}^{-1} \mathbf{Y}^T \mathbf{Y}) + \text{const.}$$

If \mathbf{U}_q are first q principal eigenvectors of $n^{-1} \mathbf{Y}^T \mathbf{Y}$ and the corresponding eigenvalues are Λ_q ,

$$\mathbf{W} = \mathbf{U}_q \mathbf{L} \mathbf{V}^T, \quad \mathbf{L} = (\Lambda_q - \sigma^2 \mathbf{I})^{\frac{1}{2}}$$

where \mathbf{V} is an arbitrary rotation matrix.

Equivalence of Formulations

The Eigenvalue Problems are equivalent

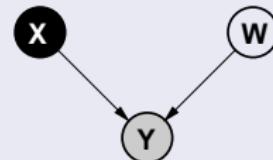
- Solution for Probabilistic PCA (solves for the mapping)

$$\mathbf{Y}^T \mathbf{Y} \mathbf{U}_q = \mathbf{U}_q \Lambda_q \quad \mathbf{W} = \mathbf{U}_q \mathbf{L} \mathbf{V}^T$$

- Solution for Dual Probabilistic PCA (solves for the latent positions)

$$\mathbf{Y} \mathbf{Y}^T \mathbf{U}'_q = \mathbf{U}'_q \Lambda_q \quad \mathbf{X} = \mathbf{U}'_q \mathbf{L} \mathbf{V}^T$$

- Equivalence is from


$$\mathbf{U}_q = \mathbf{Y}^T \mathbf{U}'_q \Lambda_q^{-\frac{1}{2}}$$

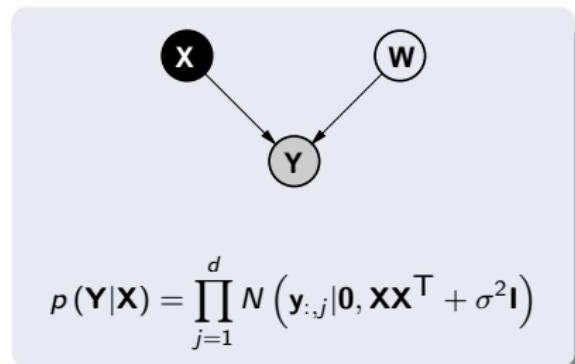
Non-Linear Latent Variable Model

Dual Probabilistic PCA

- Define *linear-Gaussian relationship* between latent variables and data.
- **Novel** Latent variable approach:
 - Define Gaussian prior over *parameters*, \mathbf{W} .
 - Integrate out *parameters*.

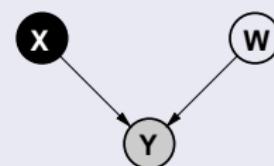
$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n N(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:}, \sigma^2 \mathbf{I})$$

$$p(\mathbf{W}) = \prod_{i=1}^d N(\mathbf{w}_{i,:} | \mathbf{0}, \mathbf{I})$$


$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^d N(\mathbf{y}_{:,j} | \mathbf{0}, \mathbf{X}\mathbf{X}^T + \sigma^2 \mathbf{I})$$

Non-Linear Latent Variable Model

Dual Probabilistic PCA

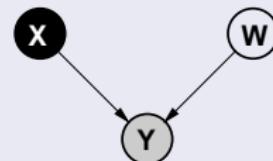

- Inspection of the marginal likelihood shows ...
 - The covariance matrix is a covariance function.
 - We recognise it as the 'linear kernel'.
 - We call this the Gaussian Process Latent Variable model (GP-LVM).

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- Inspection of the marginal likelihood shows ...
 - The covariance matrix is a covariance function.
 - We recognise it as the 'linear kernel'.
 - We call this the Gaussian Process Latent Variable model (GP-LVM).

$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^d N(\mathbf{y}_{:,j}|\mathbf{0}, \mathbf{K})$$


$$\mathbf{K} = \mathbf{X}\mathbf{X}^T + \sigma^2\mathbf{I}$$

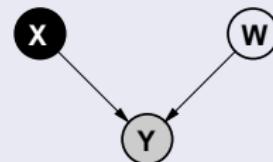
Non-Linear Latent Variable Model

Dual Probabilistic PCA

- Inspection of the marginal likelihood shows ...
 - The covariance matrix is a covariance function.
 - We recognise it as the 'linear kernel'.
 - We call this the Gaussian Process Latent Variable model (GP-LVM).

$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^d N(\mathbf{y}_{:,j}|\mathbf{0}, \mathbf{K})$$

$$\mathbf{K} = \mathbf{X}\mathbf{X}^T + \sigma^2\mathbf{I}$$


This is a product of Gaussian processes
with linear kernels.

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- Inspection of the marginal likelihood shows ...
 - The covariance matrix is a covariance function.
 - We recognise it as the 'linear kernel'.
 - We call this the Gaussian Process Latent Variable model (GP-LVM).

$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^d N(y_{:,j}|\mathbf{0}, \mathbf{K})$$

$$\mathbf{K} = ?$$

Replace linear kernel with non-linear kernel for non-linear model.

Stick Man

Generalization with less Data than Dimensions

- Powerful uncertainty handling of GPs leads to surprising properties.
- Non-linear models can be used where there are fewer data points than dimensions *without overfitting*.
- Example: Modelling a stick man in 102 dimensions with 55 data points!

Stick Man II

demStick1

Figure: The latent space for the stick man motion capture data.

Stick Man II

demStick1

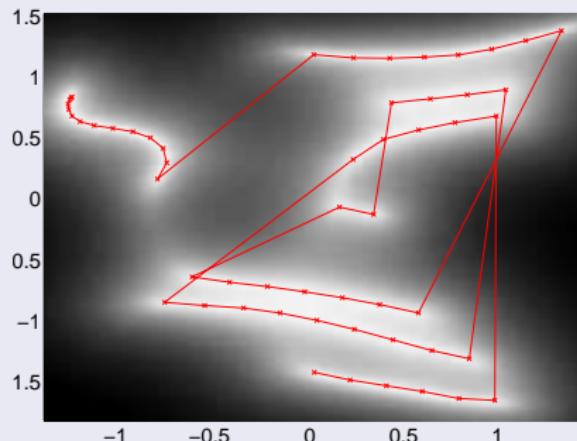


Figure: The latent space for the stick man motion capture data.

Adding Dynamics

MAP Solutions for Dynamics Models

- Introduce dynamical model in latent space.
 - Marginalising such dynamics is intractable.
 - But: **MAP solutions** are trivial to implement.
- Wang et al. [2006] suggest using a auto regressive Gaussian Process.
- Here we use a regressive Gaussian process.
$$p(\mathbf{Y}|\mathbf{t}) = \int p(\mathbf{Y}|\mathbf{X}) p(\mathbf{X}|\mathbf{t}) d\mathbf{X}$$

Regressive Dynamics

Direct use of Time Variable

- Take t as an input, use a prior $p(\mathbf{X}|t)$.
- Use a Gaussian process prior for $p(\mathbf{X}|t)$.
- Also allows us to consider variable sample rate data.

Motion Capture Results

demStick1 and demStick5

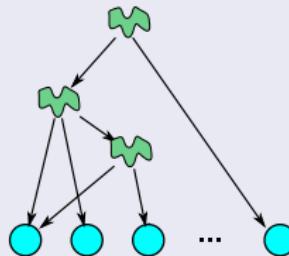
Figure: The latent space for the motion capture data without dynamics (*left*) and with regressive dynamics (*right*) based on an RBF kernel.

Motion Capture Results

demStick1 and demStick5

Figure: The latent space for the motion capture data without dynamics (*left*) and with regressive dynamics (*right*) based on an RBF kernel.

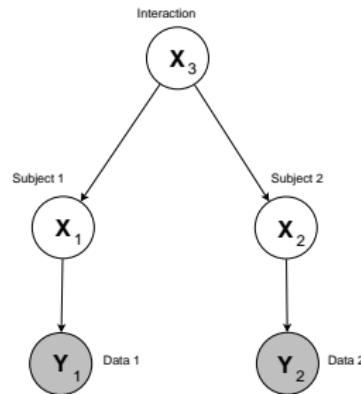
Hierarchical GP-LVM


Stacking Gaussian Processes

- Regressive dynamics provides a *simple hierarchy*.
 - The input space of the GP is governed by another GP.
- By stacking GPs we can consider more complex hierarchies.

Hierarchical GP-LVM

Stacking GP-LVMs



- This provides a route to incorporate conditional independencies.
- Ideally we should marginalise latent spaces
 - In practice we seek **MAP solutions**.

Two Correlated Subjects

- Simple hierarchy:
 - Motion capture data with two subjects.
- Subjects interact: approach each other and 'high five'.
- Model as a very simple tree.

$$p(\mathbf{Y}_1, \mathbf{Y}_2) = \int p(\mathbf{Y}_1|\mathbf{X}_1) \int p(\mathbf{Y}_2|\mathbf{X}_2) \int p(\mathbf{X}_1|\mathbf{X}_3) p(\mathbf{X}_2|\mathbf{X}_3) d\mathbf{X}_1 d\mathbf{X}_2 d\mathbf{X}_3$$

Two Correlated Subjects

demHighFive1

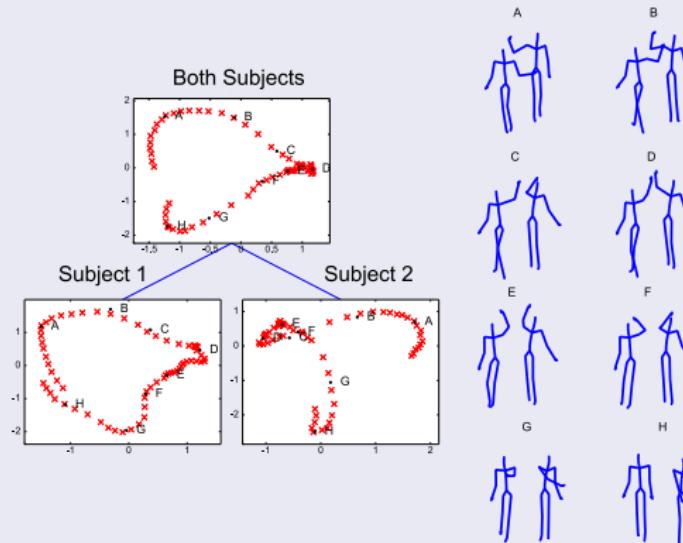


Figure: Hierarchical model of a 'high five'.

Within Subject Hierarchy

Decomposition of Body

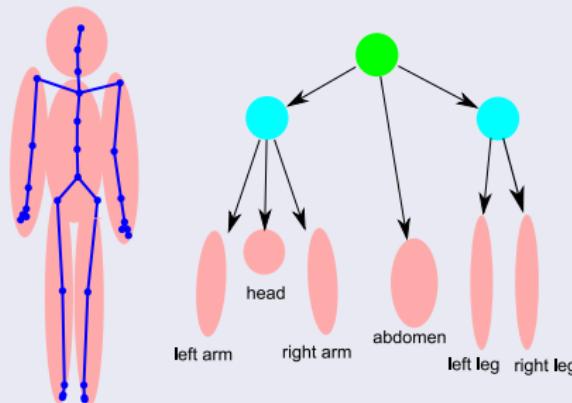


Figure: Decomposition of a subject.

Single Subject Run/Walk

demRunWalk1

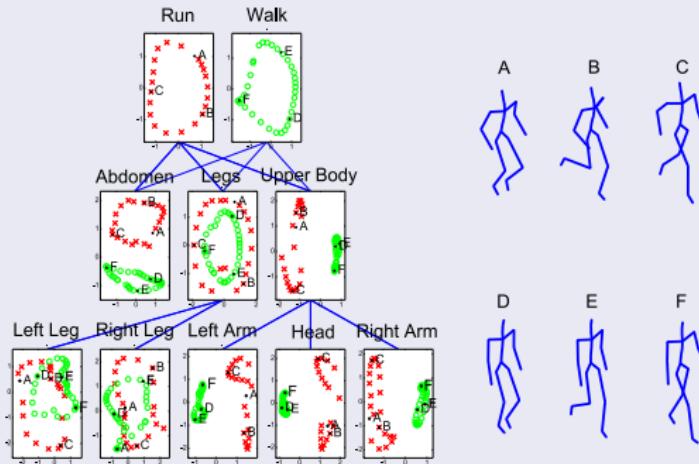


Figure: Hierarchical model of a walk and a run.

Overfitting

More parameters than data

- Large number of parameters: why doesn't it overfit?
- Standard GP-LVM: parameters increase linearly $\frac{q}{d} \times N$, $q < d$.
- HGP-LVM: adding more latent variables (parameters), will we overfit?
 - Upper levels only regularise the leaf nodes: if the leaf nodes don't overfit model won't.
 - Best likelihood obtained by *removing regularisation*.
 - Counter this potential problem in two ways.
 - ① Provide a fixed dynamical prior at the top level.
 - ② Constrain the noise variance of each non-leaf Gaussian process to 1×10^{-6} .

Summary

Conclusions

- GP-LVM is a Probabilistic Non-Linear Generalisation of PCA.
- We can stack GP-LVMs to provide:
 - A dynamical model.
 - A hierarchical decomposition of our data.
- MAP Solutions still provide interesting decompositions.

References

N. D. Lawrence. Gaussian process models for visualisation of high dimensional data. In S. Thrun, L. Saul, and B. Schölkopf, editors, *Advances in Neural Information Processing Systems*, volume 16, pages 329–336, Cambridge, MA, 2004. MIT Press.

N. D. Lawrence. Probabilistic non-linear principal component analysis with Gaussian process latent variable models. *Journal of Machine Learning Research*, 6:1783–1816, Nov 2005.

M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. *Journal of the Royal Statistical Society, B*, 6(3):611–622, 1999.

J. M. Wang, D. J. Fleet, and A. Hertzmann. Gaussian process dynamical models. In Y. Weiss, B. Schölkopf, and J. C. Platt, editors, *Advances in Neural Information Processing Systems*, volume 18, Cambridge, MA, 2006. MIT Press.

