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Online Resources

All source code and slides are available online

@ This talk available from my home page (see talks link on left
hand side).

@ Examples shown are in the ‘oxford" toolbox (vrs 0.131).
e http://www.cs.man.ac.uk/ neill/oxford/.

@ And the ‘hgplvm’ toolbox (vrs 0.1).
e http://www.cs.man.ac.uk/ neill/hgplvm/.

@ MATLAB commands used for examples given in typewriter
font.
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Curse of Dimensionality

Incorporating assumptions about data structure

@ How do we model high dimensional data probabilistically?

© Probabilistic models with sparse connectivity: tree structures,
junction trees, Markov random fields.

o Dictactes conditional independecies in the data.
@ Assume data inherently lives on a low dimensional manifold.

@ Perhaps all data points are fully interdependent, but they live
in a low dimension space.

@ Can we combine these two approaches in one model?
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Modelling in High Dimensions

Avoiding the Curse of Dimensionality

A

Figure: Probabilistic non-linear dimensional reduction.
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Figure: Probabilistic non-linear dimensional reduction.
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Modelling in High Dimensions

Avoiding the Curse of Dimensionality
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Figure: Probabilistic non-linear dimensional reduction.
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Modelling in High Dimensions

Avoiding the Curse of Dimensionality

Figure: Hierarchical model (sparse connectivity).
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Modelling in High Dimensions

Avoiding the Curse of Dimensionality

AN

Figure: Hierarchy of non-linear dimensional reductions (this talk).
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Mathematical Foundations
Dynamics

Notation

g— dimension of latent/embedded space
d— dimension of data space
n— number of data points

centred data, Y = [y1., ... ,ynV:]T =[y.1,...,¥.d] € Rxd
latent variables, X =[xy, .. ,x,,7;]T =[x.1,...,X.q] € R™
mapping matrix, W € R9*49

a; . is a vector from the jth row of a given matrix A
a.; is a vector from the jth row of a given matrix A
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Mathematical Foundations
Dynamics

Reading Notation

X and Y are design matrices

o Covariance given by n=tYTY.

@ Inner product matrix given by YYT.
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Mathematical Foundations
Dynamics

Linear Dimensionality Reduction

Linear Latent Variable Model

@ Represent data, Y, with a lower dimensional set of latent
variables X.

@ Assume a linear relationship of the form
Yi: = WX",Z + 77;,;7

where
Ni,: ~ N(O,O’2|) .

)
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Mathematical Foundations
Dynamics

Linear Latent Variable Model |

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

n
p(YIX,W) =[N (yi.|Wx;.,o1)
i=1
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Mathematical Foundations
Dynamics

Linear Latent Variable Model |

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

@ Novel Latent variable
approach:

n
p(YIX,W) =[N (yi.|Wx;.,o1)
i=1

Neil Lawrence The Gaussian Processes Latent Variable Model



Mathematical Foundations
Dynamics

Linear Latent Variable Model |

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

@ Novel Latent variable

approach: p(YIX,W) =[N (yi.IWx;.,o)
o 0 5 i=1
o Define Gaussian prior

over parameters, W.

d
p(W) =TT N (wi:[0,1)
i=1
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Mathematical Foundations
Dynamics

Linear Latent Variable Model |

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data. .

@ Novel Latent variable p(YIX,W) =[N (yi:IWx;.,o)

i=1
approach:
Define Gaussian prior d
° P p(W) =N (wi.l0,1)
over parameters, W. |
o Integrate out y
parameters. p(YX)=]]N (y:7j|0, xxT + g2l)
j=1

Neil Lawrence The Gaussian Processes Latent Variable Model



Mathematical Foundations
Dynamics

Linear Latent Variable Model 1l

Dual Probabilistic PCA Max. Likelihood Soln [Lawrence, 2004, 2005]

d
p(YX) = [TN (v.410,XXT +o21)
j=1
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Mathematical Foundations
Dynamics

Linear Latent Variable Model 1l

Dual Probabilistic PCA Max. Likelihood Soln [Lawrence, 2004, 2005]

p(Y|X) = HN JI0,K), K=XXT 402

d 1
log p (Y|X) = — log |K| — Str (K_IYYT) + const.

If qu are first g principal eigenvectors of d=1YYT and the corresponding eigenvalues
are Aq,

X=U T, L= (A, —o%)2

where V is an arbitrary rotation matrix.
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Mathematical Foundations
Dynamics

Linear Latent Variable Model 1l

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]
p(YW)=T]N (y::0,C), C=wWwWT +o
i=1

1
log p (Y|W) = —g log |C| — Etr (C_lYTY> + const.

If Uq are first g principal eigenvectors of n=2YTY and the corresponding eigenvalues
are Nq,

Nl

W=UvT, L= (A;—0%)

where V is an arbitrary rotation matrix.
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Mathematical Foundations
Dynamics

Equivalence of Formulations

The Eigenvalue Problems are equivalent

@ Solution for Probabilistic PCA (solves for the mapping)

Y'Yu,=u,A, W=ugv'
@ Solution for Dual Probabilistic PCA (solves for the latent
positions)
yyTu, =un, Xx=ulv'
@ Equivalence is from
_1
Ug=YTUA,
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Mathematical Foundations
Dynamics

Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

@ Novel Latent variable

approach:

o Define Gaussian prior
over parameteters, W.

o Integrate out
parameters.

Neil Lawrence

n
p(YIX,W) =[N (yi.IWx;.,o)
i=1

d

p(W) =TT N (wi.[0,1)

i=1

d
p(Y1X) = [TN (v.410,XXT + o21)
Jj=1
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Mathematical Foundations
Dynamics

Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

d
p(YIX) =[N (y:,j|0, xxT 4+ 02|>
j=1
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Mathematical Foundations
Dynamics

Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

e The covariance matrix
is a covariance
function.

d
p(YIX)=TTN(y.,10.K)

=t

K=xxT + 42
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Mathematical Foundations
Dynamics

Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

e The covariance matrix
is a covariance

d
function.
.. p(YIX)=]]N(y.,l0,K
o We recognise it as the 11:[1 A% 4)
‘linear kernel’.
K =XXT + 52

This is a product of Gaussian processes

with linear kernels.
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Mathematical Foundations
Dynamics

Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

e The covariance matrix
is a covariance

function. d
o Y|X) =TT N(y.;]0,K
o We recognise it as the p(YIX) 11:[1 (v:410,K)
‘linear kernel'.
o We call this the K=?

Gaussian Process

Latent Variable model
(GP—LVM). kernel for non-linear model.

Replace linear kernel with non-linear
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Mathematical Foundations
Dynamics

Stick Man

Generalization with less Data than Dimensions

@ Powerful uncertainty handling of GPs leads to suprising
properties.

@ Non-linear models can be used where there are fewer data
points than dimensions without overfitting.

o Example: Modelling a stick man in 102 dimensions with 55
data points!
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Mathematical Foundations
Dynamics

Stick Man I

Figure: The latent space for the stick man motion capture data.
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Mathematical Foundations
Dynamics

Stick Man I

-1 -0.5 0 0.5 1

Figure: The latent space for the stick man motion capture data.
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Mathematical Foundations
Dynamics

Adding Dynamics

MAP Solutions for Dynamics Models

@ Introduce dynamical model in latent space.

e Marginalising such dynamics is intractable.
e But: MAP solutions are trivial to implement.

@ Wang et al. [2006] suggest using a auto regressive Gaussian
Process.

@ Here we use a regressive Gaussian process.
p(Y|t) = [ p(Y|X)p(X]t)dX
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Mathematical Foundations
Dynamics

Regressive Dynamics

Direct use of Time Variable

e Take t as an input, use a prior p (X|t).
@ User a Gaussian process prior for p (X|t).

@ Also allows us to consider variable sample rate data.
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Mathematical Foundations
Dynamics

Motion Capture Results

demStickl and demStick5

Figure: The latent space for the motion capture data without dynamics
(left) and with regressive dynamics (right) based on an RBF kernel.
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Mathematical Foundations
Dynamics

Motion Capture Results

demStickl and demStickbh

Figure: The latent space for the motion capture data without dynamics
(left) and with regressive dynamics (right) based on an RBF kernel.
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Two Correlated Subjects
Subject Decomposition

Hierarchical GP-LVM

Hierarchical GP-LVM

Stacking Gaussian Processes

@ Regressive dynamics provides a simple hierarchy.
e The input space of the GP is governed by another GP.

@ By stacking GPs we can consider more complex hierarchies.
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Two Correlated Subjects
Subject Decomposition

B\

@ This provides a route to incoporate conditional
independencies.

Hierarchical GP-LVM

Hierarchical GP-LVM

Stacking GP-LVMs

o ldeally we should marginalise latent spaces

o In practice we seek MAP solutions.
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Two Correlated Subjects

Hierarchical GP-LVM Subject Decomposition

Two Correlated Subjects

@ Simple hieararchy:

e Motion capture data @
with two subjects.

Subject 1 Subject 2

@ Subjects interact:

approach each other and @ @

‘high five'.
@ Model as a very simple 0 @
tree.
p(Y1,Y2) = [ p(Yi[X1) [ p(Y2|Xz) [ p(X1|Xs) p (X2|X3) dX1dX2dX3 |
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Two Correlated Subjects

Hierarchical GP-LVM Subject Decomposition

Two Correlated Subjects

Both Subjects
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Figure: Hierarchical model of a 'high five'. g
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Two Correlated Subjects

Hierarchical GP-LVM Subject Decomposition

Within Subject Hierarchy

Decomposition of Body

PN
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ight
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Figure: Decomposition of a subject.
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. . Two Correlated Subjects
Hierarchical GP-LVM Sufbfizs: DesemsEsiien

Single Subject Run/Walk

A it ]| e

Figure: Hierarchical model of a walk and a run.
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Overfitting
Discussion

Overfitting

More parameters than data

@ Large number of parameters: why doesn't it overfit?
o Standard GP-LVM: parameters increase linearly 7 x N, g < d .

e HGP-LVM: adding more latent variables (parameters), will we
overfit?

o Upper levels only regularise the leaf nodes: if the leaf nodes
don't overfit model won't.

o Best likelihood obtained by removing regularisation.

e Counter this potential problem in two ways.

@ Provide a fixed dynamical prior at the top level.
@ Constraine the noise variance of each non-leaf Gaussian
process to 1 x 1075,
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Summary

Conclusions

@ GP-LVM is a Probabilistic Non-Linear Generalisation of PCA.
@ We can stack GP-LVMs to provide:

e A dynamical model.
@ A hierarchical decomposition of our data.

@ MAP Solutions still provide interesting decompositions.
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