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Notation

q— dimension of latent/embedded space
d— dimension of data space
n— number of data points

centred data, Y = [y1,:, . . . , yn,:]
T = [y:,1, . . . , y:,d ] ∈ <n×d

latent variables, X = [x1,:, . . . , xn,:]
T = [x:,1, . . . , x:,q] ∈ <n×q

mapping matrix, W ∈ <d×q

ai ,: is a vector from the ith row of a given matrix A
a:,j is a vector from the jth row of a given matrix A

X and Y are design matrices
Covariance given by n−1YTY.

Inner product matrix given by YYT.
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Linear Dimensionality Reduction

Linear Latent Variable Model

Represent data, Y, with a lower dimensional set of latent variables X.

Assume a linear relationship of the form

yi ,: = Wxi ,: + ηi ,:,

where
ηi ,: ∼ N

(
0, σ2I

)
.
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Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

X W

Y

p (Y|W) =
nY

i=1

N
“

yi,:|0,WWT + σ2I
”

p (Y|W) =
nY

i=1

N
`
yi,:|0,C

´
, C = WWT + σ2I

log p (Y|W) = −
n

2
log |C| −

1

2
tr
“

C−1YTY
”

+ const.

If Uq are first q principal eigenvectors of n−1YTY and the corresponding eigenvalues are Λq ,

W = UqLVT, L =
`
Λq − σ2I

´ 1
2

where V is an arbitrary rotation matrix.
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Dual Probabilistic PCA Max. Likelihood Soln [Lawrence, 2004]

W

Y

X

p (Y|X) =
dY

j=1

N
“

y:,j |0,XXT + σ2I
”

p (Y|X) =
dY

j=1

N
`
y:,j |0,K

´
, K = XXT + σ2I

log p (Y|X) = −
d

2
log |K| −

1

2
tr
“

K−1YYT
”

+ const.

If U′q are first q principal eigenvectors of d−1YYT and the corresponding eigenvalues are Λq ,

X = U′qLVT, L =
`
Λq − σ2I

´ 1
2

where V is an arbitrary rotation matrix.
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Equivalence of Formulations

The Eigenvalue Problems are equivalent

Solution for Probabilistic PCA (solves for the mapping)

YTYUq = UqΛq W = UqLVT

Solution for Dual Probabilistic PCA (solves for the latent positions)

YYTU′q = U′qΛq X = U′qLVT

Equivalence is from

Uq = YTU′qΛ
− 1

2
q
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Gaussian Processes

Zero mean Gaussian Process

A (zero mean) Gaussian process likelihood is of the form

p (y|X) = N (y|0,K) ,

where K is the covariance function or kernel.

I The linear kernel with noise has the form

K = XXT + σ2I

I Priors over non-linear functions are also possible.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach:

I Define Gaussian prior
over parameteters, W.

I Integrate out
parameters.

W

Y

X

p (Y|X,W) =
nY

i=1

N
`
yi,:|Wxi,:, σ

2I
´

p (W) =
dY

i=1

N
`
wi,:|0, I

´

p (Y|X) =
dY

j=1

N
“

y:,j |0,XXT + σ2I
”
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Inspection of the marginal
likelihood shows ...

I The covariance matrix
is a covariance
function.

I We recognise it as the
‘linear kernel’.

I We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

W

Y

X

p (Y|X) =
dY

j=1

N
“

y:,j |0,XXT + σ2I
”
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Inspection of the marginal
likelihood shows ...

I The covariance matrix
is a covariance
function.

I We recognise it as the
‘linear kernel’.

I We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

W

Y

X

p (Y|X) =
dY

j=1

N
`
y:,j |0,K

´

K = XXT + σ2I

This is a product of Gaussian processes

with linear kernels.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Inspection of the marginal
likelihood shows ...

I The covariance matrix
is a covariance
function.

I We recognise it as the
‘linear kernel’.

I We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

W

Y

X

p (Y|X) =
dY

j=1

N
`
y:,j |0,K

´
K =?

Replace linear kernel with non-linear

kernel for non-linear model.
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Non-linear Latent Variable Models

RBF Kernel

The RBF kernel has the form kij = k (xi ,:, xj ,:) , where

k (xi ,:, xj ,:) = α exp

(
−

(xi ,: − xj ,:)
T (xi ,: − xj ,:)

2l2

)
.

No longer possible to optimise wrt X via an eigenvalue problem.

Instead find gradients with respect to X, α, l and σ2 and optimise
using conjugate gradients.
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Extensions

MAP Solutions for Dynamics Models

Autoregressive Gaussian Processes. Wang et al. [2006]

Force the Model to Respect Local Distances

Back constrained GP-LVM.

Developments Made Under Pump Priming Grant

Sparse Approximations for Large Data Sets

Hierarchical Models for Subject Decomposition

Three Dimensional Pose Reconstruction from Images

Neil Lawrence () Human Dimensional Reduction 29th January 2008 11 / 31



Outline

1 Probabilistic Dimensionality Reduction

2 Model Extensions

3 Conclusions

Neil Lawrence () Human Dimensional Reduction 29th January 2008 12 / 31



Hierarchical GP-LVM

Stacking Gaussian Processes

Regressive dynamics provides a simple hierarchy.

The input space of the GP is governed by another GP.

By stacking GPs we can consider more complex hierarchies.

Ideally we should marginalise latent spaces

I In practice we seek MAP solutions.
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Two Correlated Subjects

demHighFive1

Figure: Hierarchical model of a ’high five’.

Neil Lawrence () Human Dimensional Reduction 29th January 2008 14 / 31



Within Subject Hierarchy

Decomposition of Body

Figure: Decomposition of a subject.
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Single Subject Run/Walk

demRunWalk1

Figure: Hierarchical model of a walk and a run.
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Complexity Issues

Gaussian processes inherently

I O
(
N3
)

complexity,
I O

(
N2
)

storage.

Sparse Gaussian processes normally give

I O
(
k2N

)
complexity,

I O (kN) storage

FITC Approximation [Snelson and Ghahramani, 2006, Quiñonero Candela

and Rasmussen, 2005, Presented/Developed at PASCAL workshop!].
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Sparse GP-LVM

Recreate results of Taylor et al. [2007] on human motion capture data
set.

Data was walking and running motions from subject 35 in the CMU
Mocap data base.

Used dynamical refinement of the GP-LVM proposed by Wang et al.
[2006]

Taylor et al. [2007] applied their binary latent variable model to two
missing data problems

I right leg was removed from the test seqence
I upper body was removed.

Reconstruction obtained compared with nearest neighbour.
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FITC Approximation

Used the FITC approximation with 100 inducing points.

The models were back constrained [Lawrence and Quiñonero Candela,
2006] .

The data set size was 2613 frames.
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Results

Root mean squared angle error results on test data.

Data Leg Body

GP-LVM (q = 3) 3.40 2.49
GP-LVM (q = 4) 3.38 2.72

GP-LVM (q = 5) 4.25 2.78

NN (s) 4.44 2.62

NN 4.11 3.20

Table: NN: nearest neighbour, NN (s): nearest neighbour in scaled space,
GP-LVM (latent dimension): the GP-LVM with different latent dimensions, q.
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Shared GP-LVM

!!Y

Y

ZX

Z

Learn two separate kernels from a single shared latent representation
X [Shon et al., 2006]

Objective

p(Y,Z|X,ΦY ,ΦZ ) = p(Y|X,ΦY )p(Z|X,ΦZ )

Neil Lawrence () Human Dimensional Reduction 29th January 2008 21 / 31



Shared GP-LVM Experiments1

Feature Pose

! !Z

!dyn

X

Z

W

Y

Y

Silhouette Features: yi ∈ <100, Pose Parameters: zi ∈ <54

Back constraints: force bijective mapping between latent space and
pose [Lawrence and Quiñonero Candela, 2006].

Dynamics: add GP auto regressive dynamics to latent space [Wang
et al., 2006].

Artificially generated training data: from Agarwal and Triggs
[2006].

1Ek et al. [2007]
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Shared GP-LVM Experiments

Highly multimodal latent space given silhouette.
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Shared GP-LVM Experiments

Highly multimodal latent space given silhouette.
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Video

runcca_all.sh runcca_only.sh
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Modified Model

g Z Z Zg h
!ZY!

Y Z

X XY X ZS

Y f Y Y fh
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Initialisation

Shared Latent space by kernel CCA:

Find directions {WY,WZ} in each feature space maximizing the
correlation

Canonical variate

{
aY = YWY

aZ = ZWZ

Solution through Eigenvalue problem.

Non Shared Latent Space

Find further directions orthogonal to CCA directions of maximum
variance.

We named these non-consolidating components.

Solution through eigenvalue problem.
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Kernels

Feature Spaces:

Many possible choices of feature space

1 Linear Kernel
2 RBF
3 Maximum Variance Unfolding, Isomap

Choose between them using GP-LVM likelihood [Harmeling, 2007].
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Results of Initialisation

runspectral_test.sh

runspectral_test.sh
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Summary

GP-LVM is a Probabilistic Non-Linear Generalisation of PCA.

Pump priming extensions:

I Hierarchical representations.
I Larger data sets.
I Shared latent space models.

Follow ups:

I Carl to visit Trevor Darrell in Berkeley later in year.
I Imminent EPSRC application building on the work.
I Other on going work on GPs, differential equations and human motion.
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