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g— dimension of latent/embedded space
d— dimension of data space
n— number of data points
centred data, Y = [y1., ... ,y,,’:]T =[y.1,---,y.4] € R
latent variables, X =[xy, .. ,x,,,:]T =[x.1,...,%X.q] € R"
mapping matrix, W € R9*49

a; . is a vector from the ith row of a given matrix A
a.; is a vector from the jth row of a given matrix A

X and Y are design matrices

Covariance given by n71YTY.
Inner product matrix given by YYT.
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Linear Dimensionality Reduction

Linear Latent Variable Model
@ Represent data, Y, with a lower dimensional set of latent variables X.

Assume a linear relationship of the form
Yi: = Wxi,: + "7,',;,

where
Ni: ~ N (0,0’2|) .
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Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

n
p(YIW) =T N (y,-,:|o,wa + 02I)
i=1

p(YIW) =[N (y::0,C), C=wwT 452
i=1

log p (Y|W) = _g log |C| — %tr (c—lvTY) + const.
If Uq are first g principal eigenvectors of n=1YTY and the corresponding eigenvalues are Ay,
W=UvT, L= (A —o2)?
where V is an arbitrary rotation matrix.
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Dual Probabilistic PCA Max. Likelihood Soln [Lawrence, 2004]

d
p(Y1X) = [T N (v.410,XXT +o21)
j=1

d
p(YIX) =[N (y.0.K), K=xxT+0
j=1

d 1
logp(Y|X) = ——log |K| — =tr (K_IYYT) + const.
2 2
If Uﬁ, are first g principal eigenvectors of d=YYT and the corresponding eigenvalues are Ay,
1
X=U,vT L= (A—0?)2
where V is an arbitrary rotation matrix.
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Equivalence of Formulations

The Eigenvalue Problems are equivalent
@ Solution for Probabilistic PCA (solves for the mapping)
Y'yu, =u,A, W=ugLv'
@ Solution for Dual Probabilistic PCA (solves for the latent positions)
yylu, =uA,  X=uULvT

@ Equivalence is from
_1
Ug=YTUA,
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Gaussian Processes

Zero mean Gaussian Process

@ A (zero mean) Gaussian process likelihood is of the form

p(yIX) = N(y|0,K),

where K is the covariance function or kernel.

» The linear kernel with noise has the form
K=XXT 4052

» Priors over non-linear functions are also possible.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

n
p(YIX,W) =[N (yi:|Wx;.,o?1)

@ Novel Latent variable Pty

approach:
d
» Define Gaussian prior p(W)=]]N(w.[0,1)
over parameteters, W. i1
> Integrate out d N
parameters. p(Y|X) = H N (y;,jlo, XX + 02|)

Jj=1
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

d
p(YIX) =T N (y:,,-|o, xxT 4 a2|)
j=1
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

» The covariance matrix
is a covariance
function. d

p(YIX)=T]N(y.0.K)

j=1

K=xxXT + 42l
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

» The covariance matrix
is a covariance

. d
function.
L. p(Y|X)=]]N(y.;I0,K
» We recognise it as the lell (0:710,)
‘linear kernel'.
K=xxT 42

This is a product of Gaussian processes

with linear kernels.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

» The covariance matrix
is a covariance

function. d

» We recognise it as the p(YIX) :EN (v:,10,K)
‘linear kernel’.

» We call this the K =7
Gaussian Process
Latent Variable model Replace linear kernel with non-linear
(GP_LVM)_ kernel for non-linear model.
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Non-linear Latent Variable Models

RBF Kernel
o The RBF kernel has the form kjj = k (x;.,%;.), where

T
xi7: — x'a: xiz: — x.,:
k(xj:,xj.) = aexp (—( J )212( j )) ‘

@ No longer possible to optimise wrt X via an eigenvalue problem.

e Instead find gradients with respect to X, a, / and o and optimise
using conjugate gradients.
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Extensions

MAP Solutions for Dynamics Models

@ Autoregressive Gaussian Processes. Wang et al. [2006]
Force the Model to Respect Local Distances

@ Back constrained GP-LVM.
Developments Made Under Pump Priming Grant

@ Sparse Approximations for Large Data Sets
@ Hierarchical Models for Subject Decomposition

@ Three Dimensional Pose Reconstruction from Images
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Hierarchical GP-LVM

Stacking Gaussian Processes

@ Regressive dynamics provides a simple hierarchy.

@ The input space of the GP is governed by another GP.

@ By stacking GPs we can consider more complex hierarchies.
@ ldeally we should marginalise latent spaces

» In practice we seek MAP solutions.
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Two Correlated Subjects
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Figure: Hierarchical model of a "high five'.
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Within Subject Hierarchy

Decomposition of Body
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Figure: Decomposition of a subject.
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Single Subject Run/Walk
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Figure: Hierarchical model of a walk and a run.
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Complexity Issues

@ Gaussian processes inherently
» O (N3) complexity,
» O (N?) storage.
@ Sparse Gaussian processes normally give

» O (k2N) complexity,
» O (kN) storage

@ FITC Approximation [Snelson and Ghahramani, 2006, Quifionero Candela
and Rasmussen, 2005, Presented/Developed at PASCAL workshop!].
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Sparse GP-LVM

@ Recreate results of Taylor et al. [2007] on human motion capture data
set.

e Data was walking and running motions from subject 35 in the CMU
Mocap data base.

@ Used dynamical refinement of the GP-LVM proposed by Wang et al.
[2006]

@ Taylor et al. [2007] applied their binary latent variable model to two
missing data problems

> right leg was removed from the test seqence
» upper body was removed.

@ Reconstruction obtained compared with nearest neighbour.
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FITC Approximation

@ Used the FITC approximation with 100 inducing points.

@ The models were back constrained [Lawrence and Quifionero Candela,
2006] .

@ The data set size was 2613 frames.
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Root mean squared angle error results on test data.

Data | Leg | Body
GP-LVM (g =3) | 3.40 | 2.49
GP-LVM (¢ =4) | 3.38 | 2.72
GP-LVM (¢ =5) | 4.25 | 2.78

NN (s) 444 | 2.62

NN 4.11 | 3.20

Table: NN: nearest neighbour, NN (s): nearest neighbour in scaled space,
GP-LVM (latent dimension): the GP-LVM with different latent dimensions, g.
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Shared GP-LVM

@ Learn two separate kernels from a single shared latent representation
X [Shon et al., 2006]

@ Objective

p(Y,Z|X,®dy,d7) = p(Y|X,dy)p(Z|X, d7)
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Shared GP-LVM Experiments!

o Silhouette Features: y; € R190, Pose Parameters: z; € ®>*

@ Back constraints: force bijective mapping between latent space and
pose [Lawrence and Quifionero Candela, 2006].

e Dynamics: add GP auto regressive dynamics to latent space [Wang
et al., 2006].

o Artificially generated training data: from Agarwal and Triggs
[2006].

'Ek et al. [2007]
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Shared GP-LVM Experiments
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Shared GP-LVM Experiments

@ Highly multimodal latent space given silhouette.
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runcca_all.sh runcca_only.sh
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Modified Model
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Initialisation

Shared Latent space by kernel CCA:

e Find directions {Wy, Wz} in each feature space maximizing the
correlation

ay = YWY

az = ZWZ

@ Solution through Eigenvalue problem.

@ Canonical variate {

Non Shared Latent Space

@ Find further directions orthogonal to CCA directions of maximum
variance.
@ We named these non-consolidating components.

@ Solution through eigenvalue problem.
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Kernels

Feature Spaces:

@ Many possible choices of feature space

@ Linear Kernel
@ RBF
© Maximum Variance Unfolding, Isomap

@ Choose between them using GP-LVM likelihood [Harmeling, 2007].
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Results of Initialisation

runspectral_test.sh

runspectral_test.sh
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@ GP-LVM is a Probabilistic Non-Linear Generalisation of PCA.
@ Pump priming extensions:

» Hierarchical representations.
» Larger data sets.
> Shared latent space models.

@ Follow ups:

» Carl to visit Trevor Darrell in Berkeley later in year.
» Imminent EPSRC application building on the work.
» Other on going work on GPs, differential equations and human motion.
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