
The Informative Vector Machine: A Practical

Probabilistic Alternative to the Support Vector

Machine

Neil D. Lawrence neil@dcs.shef.ac.uk

Department of Computer Science,
University of Sheffield, Sheffield S1 4DP, United Kingdom

Matthias Seeger seeger@tuebingen.mpg.de

Max Planck Institute for Biological Cybernetics,
Spemannstrasse 38, 72076 Tübingen, Germany

Ralf Herbrich rherb@microsoft.com

Microsoft Research Ltd.,
7 J J Thomson Avenue, Cambridge CB3 0FB, United Kingdom

December 7, 2005

Abstract

We present a practical probabilistic alternative to the popular support vector
machine (SVM). The algorithm is an approximation to a Gaussian process,
and is probabilistic in the sense that it maintains the process variance that is
implied by the use of a kernel function, which the SVM discards. We show
that these variances may be tracked and made use of selection of an active set
which gives a sparse representation for the model. For an active set size of d
our algorithm exhibits O(d2N) computational complexity and O(dN) storage
requirements. It has already been shown that the approach is comptetive with
the SVM in terms of performance and running time, here we give more details
of the approach and demonstrate that kernel parameters may also be learned
in a practical and effective manner.

1 Introduction

Since the parallel introduction of Gaussian processes (Williams and Rasmussen,
1996) and support vector machines (Cortes and Vapnik, 1995) to the machine learn-
ing community the growth in the use of kernel methods has been dramatic. Tradi-
tionally the community had prefered non-linear parameteric models such as neural
networks trained by backpropagation (Rumelhart et al., 1986). Some of the rea-
sons for the rapid acceptance of the non-parametric methods include the reduced
number of parameters in the models and concavity of the optimisation problems.
Practitioners of Gaussian processes and support vector machines normally take two
differing, but complementary, views of the kernel matrix. In support vector ma-
chines, and many other kernel algorithms, the kernel matrix is simply considered to
be a dot product matrix where the vectors exist in some, perhaps infinite dimen-
sional, space. Algorithms which take this view typically prove that some function
of interest can be written in terms of a kernel expansion:

µ (x) = αTk (x) + b , (1)

1

where b is a scalar offset, α is a vector containing N elements, k (x) := [k(x,x1) . . . k(x,xN)]T

is a vector evaluating the kernel function between a data-point x and all data-points
in the training data X := [x1 . . .xN]T, and N is the number of data-points. The
function itself can be non-linear in the input space, but it is linear in the feature
space that is implicitely defined by the kernel.

In Gaussian processes (O’Hagan, 1992) the kernel function is a treated as a
covariance function, where the covariance is from a Gaussian prior over latent func-
tions f . For particular training data X, the prior is often assumed to be zero mean,

p (f |X) = N (f ;0,K) ,

where f := [f(x1) . . . f(xN)]T contains the N values of the function f at the training
points xi and Ki,j := k(xi,xj). Typically a posterior distribution is sought which,
while not always Gaussian, will be approximated by a Gaussian process of the form

p (f |X,y) = N (f ; µ,Σ) ,

where y := [y1 . . . yN]T is a vector of N data labels, µ := [µ1 . . . µN]T is a vector
of N posterior mean values and Σ is the posterior covariance kernel. Note that the
mean values of this distribution will be computed by (1) applied to the training data-
points xi. It is therefore natural to talk about a mean function and we now have
a new covariance function associated with the posterior. The equivalence between
the functional form of the mean function and (1) shows the strong relationship
between the two perspectives. However when the dot product perspective is taken
the posterior covariance function does not arise.

In practice the former viewpoint is often taken because of the deceptive sim-
plicity of the notion of fitting linear algorithms in high dimensional feature spaces.
Furthermore, in the Gaussian process approach the posterior covariance function is
accounted for and must be propagated through the analysis. However, this prop-
agation can only rarely be done exactly so ignoring the existence of the posterior
covariance typically leads to simpler algorithms. We consider these algorithms to
be non-probabilistic, because the kernel function is considered to be a deterministic
function rather than a probabilistic process.

The aim of this paper is to emphasise the value associated with tracking this
covariance, thereby maintaining the probabilistic interpretation of the algorithm.
We aim is to show that in the classical machine learning domains of classification
and regression these variances can be handled, through approximations, without a
significant increase in algorithmic complexity. Indeed, we believe that the imple-
mentation of our approach is as simple as that of the popular SVM. The advantages
of tracking these variances are numerous, but perhaps foremost amoungst them is
the ability to learn the parameters of the kernel matrix through principled tech-
niques such as maximum likelihood. The cornerstone of our approach, approxima-
tions inspired by the technique of assumed density filtering, have been developed for
Gaussian processes (Csató and Opper, 2001; Csató, 2002; Minka, 2001). We com-
bine these approximations with a powerful, heuristic, active set selection scheme to
improve the speed of the algorithms. The resulting approach, which we refer to as
the informative vector machine (IVM), is competetive with the support vector ma-
chine in performance and brings added value in terms of its ability to automatically
determine the kernel parameters.

This paper is laid out as follows: In the next section we briefly review Gaussian
processes and the approximation known as assumed density filtering (ADF). We
illustrate how ADF is carried out for two very common noise models: the Gaussian
distribution for regression and a probit based classification model. In Section 3 we
address the computational problems that arise when implementing ADF in practice,

2

X

f
n

y
n

N

Figure 1: The Gaussian process model drawn graphically. We have made use of
‘plate’ notation to indicate the independence relationship between f and y.

introducing the IVM as a solution. This section is followed by results on real world
and toy data-sets and a brief discussion.

We use N (x; µ,Σ) to denote a Gaussian density at x with a mean vector µ
and covariance matrix Σ. When dealing one dimensional Gaussians the vectors and
matrices are replaced by scalars. If p is a density over x, we will write 〈g (x)〉p(x)

as a shorthand notation for the expectation of g over x,
∫

g (x) p (x) dx. If A is a
matrix and I and J are index sets, then AI,J denotes the submatrix obtained by
jointly selecting all rows in I and columns in J , that is, AI,J ∈ R

|I|×|J|. In this
context, we use : to denote the set of all row/column indicies. For example, A:,j is
the jth column of A.

2 Gaussian Processes

To start we will briefly review Gaussian process models; more detailed coverage
is given in O’Hagan (1992) and Williams (1998). We will follow up by consid-
ering the approximating scheme mentioned in the previous section. Consider a
simple latent variable model for data where the observations, y := [y1 . . . yN]T, are
independent from input data, X := [x1 . . .xN]T, given a set of latent variables,
f := [f(x1) . . . f(xN)]T. The prior distribution for these latent variables is given by
a Gaussian process,

p (f |X, θ) = N (f ;0,K) , (2)

with covariance function, or ‘kernel’, K which is parameterised by the vector θ and
evaluated at the points given in X, that is, Ki,j := k(xi,xj). The joint likelihood
of the data can be written as

p (y, f |X, θ) = p (f |X, θ) p (y|f) = p (f |X, θ)
N∏

n=1

p (yn|fn) , (3)

where p (yn|fn) gives the relationship between the latent variable and our observa-
tions and is sometimes referred to as the noise model. This relationship is shown
graphically in Figure 1. For the moment, let us assume that the noise model takes
the form of a Gaussian, p(yn|fn) = N (yn; fn, β−1

n), that is,

p (y|f) = N (y; f ,B−1
)

, (4)

where B is a diagonal matrix whose nth diagonal element is given by the precision
βn. These are the only assumptions made in Gaussian processes. Using Bayes’ rule,
we can now solve several problems.

3

Learning the Kernel Parameters In order to learn the parameter θ of the
kernel function we consider the marginalised likelihood of the data, p(y|X, θ). This
quantity can be obtained by integrating over f in (3). A straightforward calculdation
shows that in the Gaussian case,

p (y|X, θ) =
∫
N (f ;0,K)N (y; f ,B−1

)
df = N (y;0,K + B−1

)
. (5)

Learning to Predict Given a fixed set of kernel parameters, θ, we are interested
in the distribution of latent function values f(x) at a new data-point x. In order to
compute this quantity, we start by considering the posterior distribution p(f |X,y, θ)
which is the fraction of (3) and (5),

p (f |X,y, θ) =
p (y, f |X, θ)
p (y|X, θ)

= N (f ; µ,Σ) , µ = ΣBy , Σ =
(
B + K−1

)−1
.

(6)
Moreover, by the prior assumption of (2) applied to [f f(x)] and standard prop-
erties of multivariate Gaussians we have that

p (f (x) |f ,X,x, θ) = N
(
f (x) ;k (x)T K−1f , k (x,x)− k (x)T K−1k (x)

)
,

where we used the definitions of K and k(x) as defined in the previous section.
Henceforth, the distribution of latent function value f(x) at a new data-point x
is obtained by integrating over the latent outputs at the training data, f , and is
Gaussian,

p (f (x) |X,y,x, θ) =
∫

p (f (x) |f ,X,x, θ) p (f |X,y, θ) df = N (f (x) ; µ (x) , σ2 (x)
)

,

where the posterior mean function µ(x) and the posterior variance function σ2(x)
are given by

µ (x) = kTK−1ΣBy , σ2 (x) = k (x,x) + kTK−1 (Σ−K)K−1k .

Unfortunately, when the noise model is non-Gaussian, all these marginalisation
are not possible. In the next section we shall review the assumed density filter-
ing approximation which gives an approximation scheme that can deal with this
problem.

2.1 The ADF Approximation

If for each data-point (xn, yn), the non-Gaussian noise, p(yn|fn), as a function of
fn, can be sensibly approximated by a Gaussian distribution, N (mn; fn, β−1

n), by
selection of appropriate values for mn and βn, then we can make progress through
an approach known as assumed-density filtering (ADF). ADF has its origins in on-
line learning; it proceeds by incorporating one data-point at a time, computing the
modified posterior (or an approximation to it) each time a point is incorporated.
A thorough treatment of this approach is given by Minka (2001) and Csató (2002).
Here we review the main points of relevance for our algorithm.

Given a noise model, p(yn|fn), we note that the joint distribution p(y, f |X, θ)
factorises as shown in (3). If we view this as a function of f only (see also (6)), we
may write

p (y, f |X, θ) =
N∏

n=0

tn (f) ,

4

where we have defined tn (f) := p (yn|fn) and in a slight abuse of notation we
have taken t0 (f) := N (f ;0,K). Assumed density filtering takes advantage of this
factorised form to build up an approximation, q (f), to the true process posterior,
p (f |X,y, θ). The factorisation of the joint posterior is exploited by building up this
approximation in a sequential way so that after i points are included we have an
approximation qi (f). The starting point is to match the approximation to the prior
process, i.e. q0 (f) := t0 (f) = N (f ;0,K). The approximation is then constrained
to always have this functional form.

As the data-point inclusion process is sequential we will maintain two index
sets. The first, I, will be refered to as the active set and will represent the indices
of those data-points that have been included in our approximation. The second, J ,
will be referred to as the inactive set and represents the indices of those data-points
that have not yet been incorporated in our approximation. Initially I is empty and
J = {1 . . .N}. Thus, more formally the approximation qi is defined as

qi (f) ∝ N (f ;0,K)N
(
mI ; fI ,B−1

I,I

)
≈ p (f |XI,:,yI , θ) ,

where the |I| many parameters mni and βni are sequentially chosen such that the
approximation is as good as possible.

The approximation to the true posterior is built up by selecting a data-point
index, ni, from J . This point is included in the active set, I, leading to an updated
posterior distribution of the form,

p̂i (f) ∝ qi−1 (f) tni (f) . (7)

Our new approximation, qi (f), is the found by minimising the Kullback-Leibler
divergence between the two distributions,

KL (p̂i||qi) :=
〈

log
p̂i (f)
qi (f)

〉
p̂i(f)

. (8)

For the class of Gaussian distributions this minimsation leads to ‘moment matching’
equations (see Appendix A):

µi = 〈f〉p̂i(f) , (9)

Σi =
〈
ffT
〉

p̂i(f)
− 〈f〉p̂i(f)

〈f〉Tp̂i(f)
, (10)

where µi and Σi are respectively the mean and covariance of the approximating
distribution after the ith inclusion,

qi (f) := N (f ; µi,Σi) . (11)

It turns out that our ability to compute (9) and (10) depends only on the tractability
of the normalisation constant in (7),

Zi := Zi

(
µi−1,Σi−1

)
:=
∫

tni (f) qi−1 (f) df .

As shown in Appendix A.2, the required updates for the mean and covariance in a
form that applies regardless of our noise model (Csató, 2002; Minka, 2001; Seeger,
2004) are given by

µi = µi−1 + Σi−1gi , (12)

Σi = Σi−1 −Σi−1

(
gigT

i − 2Gi

)
Σi−1 , (13)

5

where we have defined gi := ∇µi−1
log(Zi(µi−1,Σi−1)) and Gi := ∇Σi−1 log(Zi(µi−1,Σi−1)).

It is important to observe that each factor tn is acting only one a one-dimensional
projection of f , that is, tn(f) = tn(eT

n f) where en is the nth unit vector. By the
chain rule of differentiation the ADF updates on µi−1 and Σi−1 can be written in
terms of one-dimensional functions Zni , gni and Gni ,

Zni (µi−1,ni , ςi−1,ni) =
∫

tni (f)N (f ; µi−1,ni , ςi−1,ni) , (14)

µi = µi−1 + gni ·Σi−1eni , (15)

Σi = Σi−1 −
(
g2

ni
− 2Gni

)︸ ︷︷ ︸
νni

·Σi−1enie
T
ni

Σi−1 , (16)

where µi−1,ni is the nith element of the vector µi−1 and ςi−1,ni is the nith di-
agonal element of Σi−1, gni := d log(Zni(µi−1,ni , ςi−1,ni)/d µi−1,ni and Gni :=
d log(Zni(µi−1,ni , ςi−1,ni)/d ςi−1,ni .

We can now consider a range of different noise models. Here we will review two
of the most important, the probit noise model for classification, which we deal with
in Section 2.3, and the standard Gaussian noise model for regression problems.

2.2 Gaussian Noise Model

One of the most widely used model fitting techniques is that of least squares. In the
context of regression this is equivalent to fitting a regression model with Gaussian
noise, the more general weighted least squares is equivalent to a Gaussian noise
model where each data-point has a different associated inverse variance, βni ,

p (yni |fni) = N (yni ; fni , β
−1
ni

)
.

We need the normalisation constant (14). Since the noise model is Gaussian, this
expectation may be evaluated as

Zni (µi−1,ni , ςi−1,ni) = N (yni ; µi−1,ni , ςi−1,ni + β−1
ni

)
and the log normaliastion constant log(Zni(µi−1,ni , ςi−1,ni)) may be differentiated
w.r.t. both parameters to find

gni =
yni − µi−1,ni

β−1
ni + ςi−1,ni

, Gni = − 1
2
(
ςi−1,ni + β−1

ni

) +
1
2
g2

ni
. (17)

This finally results in

νni = g2
ni
− 2Gni =

1
ςi−1,ni + β−1

ni

. (18)

These updates involve no approximations as the true posterior process is in fact
Gaussian: the updates are a scheme for on-line learning of Gaussian processes. In
the next section we will consider the probit classification noise model where the
updates lead to an approximation to the true posterior.

2.3 Probit Noise Model

Consider the probit noise model for modelling binary classification, yni ∈ {−1, 1},

p (yni |fni) = Φ (λyni (fni + b)) ,

6

where Φ(·) is the cumulative Gaussian1 the slope of which is controled by λ. The
normalisation constant is again found by evaluating the expectation (14) :

Zni (µi−1,ni , ςi−1,ni) =
∫

Φ (λyni (fni + b))N (fni ; µi−1,ni , ςi−1,ni) dfni .

Exchanging the order of integration and using standard results for the convolution of
two normal densities we get the following normalisation constant Zni(µi−1,ni , ςi−1,ni),

Zni (µi−1,ni , ςi−1,ni) =
∫

It≤0

[∫
N (t;−λyni (fni + b) , 1)N (fni ; µi−1,ni , ςi−1,ni) dfni

]
dt

=
∫

It≤0 N
(
t;−λyni (µi−1,ni + b) , 1 + λ2ςi−1,ni

)
dt

= Φ (ui−1,ni) ,

where we have defined ui−1,ni by

ui−1,ni := ci−1,ni (µi−1,ni + b) , ci−1,ni :=
yni√

λ−2 + ςi−1,ni

. (19)

Performing the derivatives of the log normalisation constant, log(Zni(µi−1,ni , ςi−1,ni))
we obtain for gni and Gni

2

gni =
ci−1,niN (ui−1,ni ; 0, 1)

Φ (ui−1,ni)
, (20)

Gni = −1
2
gniui−1,nici−1,ni .

This finally results in

νni = gni (gni + ui−1,nici−1,ni) . (21)

In practice we wish to summarise our Gausssian approximationN (mni ; fni , β
−1
ni

) to
the likelihood in terms of parameters mni and βni . This can be done by equating
the values of gni and νni in (20) and (21) with those derived for the Gaussian
above. Substitiuting the Gaussian target yni in (17) with the parameter mni and
re-arranging (17) and (18) we obtain

mni =
gni

νi,ni

+ µi−1,ni , (22)

βni =
νi,ni

1− νi,niςi−1,ni

. (23)

Updates for µi−1 → µi and Σi−1 → Σi, the parameters of qi(f ; µi,Σi), are identical
to those given in (15) and (16). Note from (19) that we can consider the slope, λ,
of the noise model to be ∞ and account for this noise by adding a matrix λ−2I
to the kernel matrix which will in turn cause ςi−1,ni to increase by λ−2 so the two
approaches are equivalent.

2.4 Ordinal Categorical Model

It may be the case that we are presented with data which can be viewed as a
discrete representation of a continuous space. We will consider the case where

1This function is defined by Φ (z) :=
R

It≤z N (t; 0, 1) dt =
R

It≤0 N (t;−z, 1) dt.
2In implementation care must be taken in computing gni : when ui−1,ni

has large magnitude
both Φ(ui−1,ni

) and N(ui−1,ni
; 0, 1) become very small and numerical precision issues arise.

7

a 1-D continuous space has been split into C discrete regions, the probability of
belonging to each region given by

p (yni |fni) =

Φ
(
λ
(
b +
∑yni

i=1 wi − fni

))− Φ
(
λ
(
b +
∑yni

−1

i=1 wi − fni

))
for 0 < yni < C − 1

Φ
(
λ
(
fni − b−∑C−2

i=1 wi

))
for yni = C − 1

Φ (λ (b + fni)) for yni = 0

,

where yni is an integer in the range [0, C − 1]. The normalisation or partition
function Zni(µi−1,ni , ςi−1,ni) is then given by

Zi =

Φ (ui−1,ni)− Φ
(
u′

i−1,ni

)
for 0 < yni < C − 1

Φ
(−u′

i−1,ni

)
for yni = C − 1

Φ (ui−1,ni) for yni = 0

with the variables ui−1,ni , u′
i−1,ni

given by

ui−1,ni = ci−1,ni

(
b +

yn∑
i=1

wi − µi−1,ni

)
,

u′
i−1,ni

= ci−1,ni

(
b +

yn−1∑
i=1

wi − µi−1,ni

)
,

ci−1,ni =
1√

λ−2 + ςi−1,ni

.

Performing the necessary derivatives to obtain3 gni and νni we have

gni =

−

ci−1,ni ·
N(ui−1,ni

;0,1)−N(u′
i−1,ni

;0,1)
Φ(ui−1,ni

;0,1)−Φ
“

u′
i−1,ni

;0,1
” for 0 < yni < C − 1

ci−1,ni ·
N(−u′

i−1,ni
;0,1)

Φ
“
−u′

i−1,ni
;0,1

” for yni = C − 1

ci−1,ni · N(ui−1,ni
;0,1)

Φ(ui−1,ni
;0,1) for yni = 0

, (24)

and

νni =

 g2

ni
+ c2

i−1,ni
· ui−1,ni

N(ui−1,ni
;0,1)−u′

i−1,ni
N(u′

i−1,ni
;0,1)

Φ(ui−1,ni)−Φ
“

u′
i−1,ni

” for 0 < yni < C − 1

gni (gni + ci−1,niui−1,ni) otherwise
.

(25)
As before we can summarise our approximation to the likelihood in terms of site
means and precisions as in (5).

3 The Informative Vector Machine

The assumed-density filtering approach outlined in the last section assumes that all
data-points will be made use of in determining the model. One problem with this is
that including all N data-points gives the algorithm O(N3) complexity. Even more
of a concern is that if we wish to find the parameters, θ, of the kernel by gradient
based optimisation of the approximation to the marginalised likelihood given by
(5), each gradient evaluation will be O(N3). It is important to find a method for
reducing this complexity. One way forward is to seek a sparse representation of the

3Care must be taken in computing gni when ui−1,ni
has large magnitude as both Φ (·)and

N (·) become small.

8

data-set. In Csató and Opper (2001) and Csató (2002) this is achieved by minimis-
ing a KL divergence between a sparse representation and the true process posterior.
In this paper we propose an alternative approach known as the informative vec-
tor machine (see also Lawrence et al., 2003; Seeger, 2004). By only estimating a
maximimum of d site parameters we force the vectors m and β to be sparse. As a
result we can reduce the computational requirements of the algorithm from O(N3)
to O(d2N) and the storage requirements form O(N2) to O(dN). In the informa-
tive vector machine (IVM) this ‘sparsification’ of the original Gaussian process is
imposed by carefully selecting a sub-set of the data. The ADF algorithm allows us
to select this sub-set in an online way; all we need is a data-point selection crite-
rion. The IVM uses an information theoretic selection heuristic to pick the next
data-point to include. In this way we greedily minimise the entropy of the posterior
process.

3.1 Data-point Selection

In a nutshell, the IVM selects the next data-point according to the change in entropy,
H(qi) := −〈log(qi(f))〉qi(f), of the posterior process after including this data-point.
This can be seen as a measure of reduction in the level of uncertainty. Note that this
can only be evaluated because we are propagating the posterior covariance function;
a similar mearsure cannot be evaluated for the SVM. Recalling that the entropy
of a Gaussian is H(N (·; µ,Σ)) = N

2 (1 + log 2π) + 1
2 log |Σ| and using the general

update equation (13) together with the sparse ADF update equation specified in
(16), the entropy change is given by

∆Hi,ni = −1
2

log |Σi|+ 1
2

log |Σi−1| = −1
2

log
∣∣ΣiΣ−1

i−1

∣∣
= −1

2
log
∣∣(I− νni ·Σi−1enie

T
ni

)∣∣
= −1

2
log (1− νi,niςi−1,ni) . (26)

Other criteria (such as information gain) are also straightforward to compute. Such
greedy selection criteria are inspired by information theory and have also been
applied in the context of active learning (see also MacKay, 1991; Seung et al., 1992),
however in active learning the label of the data-point is assumed to be unknown
before selection.

3.2 Efficient Representation: The Informative Vector Ma-
chine Algorithm

We will now disucss the issue of efficient representation of the distributions qi. To
this end, we will need to consider the column based representation of the covariance,
that is

Σi =
[

si,1 · · · si,N

]
, si,k := Σiek .

Looking at the data-point selection rule (26) and the general update equations (15)
and (16) we note that need we only need to maintain the following structures:

Posterior covariance (diagonal) The diagonal ςi := diag(Σi) of the posterior
covariance matrix Σi is necessary in order to be able to compute the score
∆Hi,ni as well as the terms gni and Gni which, in turn, are required to
compute the update factors νni . Applying the diag operator to (16) we have

ςi = ςi−1 − νi,nidiag
(
si−1,nis

T
i−1,ni

)
. (27)

9

Posterior mean The vector µi ∈ R
N of the posterior mean is necessary to com-

pute the terms gni and Gn1 necessary to compute the update factors νni which
are used both in the score (26) and update equations (15) and (16) . In fact,
re-stating (15) we see that the vector µi can be computed simply by

µi = µi−1 + gnisi−1,ni . (28)

Posterior covariance (low rank) In both of the above update equations (27)
and (28) we needed the nith column of the covariance Σi−1. However, by
virtue of the update equation (16) this matrix has a particular structure,
where successive outer products are added to the original prior covariance
Σ0 := K to form the current covariance. This can be re-written as

Σi = K−MT
i Mi , (29)

where the kth row of Mi ∈ R
i×N is given by √νk,nk

sk−1,nk
and nk represents

kth included data-point. Recalling that si−1,ni is the nith column of Σi−1

we note that , if we are not storing Σi−1 explicitely, we will not be able
to represent si−1,ni directly. However, by virtue of (29) this column can be
recomputed from Mi−1 and K,

si−1,ni = Σi−1eni = K:,ni −MT
i−1mi−1,ni , (30)

where, in this context, mi−1,ni is the nith column of Mi−1.

• Computing K:,ni requires N kernel computations between the data point
xni and all other data points.

• Computing mi−1,ni ∈ R
(i−1)×1 will require O((i − 1)N) operations as

Mi−1 ∈ R
(i−1)×N .

• Computing MT
i mi−1,ni will also require only O((i− 1)N) operations as

Mi−1 ∈ R
(i−1)×N and mi−1,ni ∈ R

(i−1)×1.

Note that the memory requirements are dominated by the last item. If we have d
data-points included, the memory requirements are O(dN); maintaining the whole
of covariance matrix Σi−1 would require O(N2) storage, which is undesirable and
unnecessary. An example of how these updates may be combined efficiently in
practice is given in Algorithm 1 which also is a barebones description of the software
we used in our experiments available from http://www.dcs.shef.ac.uk/~neil/
ivm.

3.3 Kernel Parameter Updates

So far we have discussed how the posterior’s mean and covariance functions can be
updated in an on-line way given a fixed kernel. We suggested in the introduction
that one of the main reasons we may wish to keep track of a representation of the
posterior covariance is to so that we may learn the kernel parameters.

Refering to the graphical representation of our model in Figure 1 our objective
is to marginalise the latent variable f and optimise the parameters of the kernel by
maximising the resulting likelihood. This approach is sometimes known as type II
maximum likelihood to reflect the fact that some marginalisation has been under-
taken before we use maximum likelihood. In general it is not tractable to form the
marginalised likelihood exactly, but the ADF framework we have described implies
that we are approximating the true marginalised likelihood with a Gaussian. This
true likelihood is given in (5) for the Gaussian case, but for the more general case

10

Algorithm 1 The informative vector machine learning algorithm.
[1]
A number d of active points.
Set ς0 = diag (K), µ0 = 0, M0 an empty matrix, J = {1, . . . , N} and I = ∅.
i ∈ {1, . . . , d}
n ∈ J
Compute gni (for example, using (17), (20) or (24)).
Compute νni (for example, using (18), (21) or (25)).
Compute ∆Hi,n according to (26).
*
ni = argmaxn∈J∆Hi,n.
Update mni and βni (for example, using (22) and (23)) (not necessary for Gaussian
noise).
Compute si−1,ni using (30).
Compute ςi and µi using (27) and (28).
Append the row √νi,nis

T
i−1,ni

to Mi−1 to form Mi.
I ← I ∪ {ni}, J ← J \ {ni}.
*

where a vector of site means m = y and site precisions β has been obtained using
the ADF updates, the implied approximation is

p (y|X, θ) ≈ N
(
m;0,K + B−1

)
, (31)

where the dependence of the likelihood on y is indirect and through the site pa-
rameters m and β. Computation of the site parameters was only possible because
we were keeping track of the process variances at every stage. For a Gaussian noise
model tracking of the site parameters is trivial, but for non-Gaussian noise mod-
els, such as the probit classification model discussed in Section 2.3, computation of
the site parameters for the ith is dependent on (9) and (10) which themselves are
dependent on the approximation to the posterior covariance after (i− 1)th point
inclusion. In other words our approximation to the marginalised likelihood is only
possible because we have kept track of the posterior covariances.

The ADF based IVM algorithm described in Algorithm 1 leads to sparse vectors
m and β each with d non-zero elements (see Line 9 in Algorithm 1). Maximising
with these sparse vectors of site parameters implies a further approximation to that
given in (31) where we only consider the likelihood of points in the active set,

p (yI |X, θ) ≈ N
(
mI ;0,KI + B−1

I

)
, (32)

where yI is a vector containing only those elements of y that are in the active set.
Note that the dependence of the approximation on the kernel parameters θ occurs
through the matrix KI .

Given the active set, I, and the site parameters, m and β, we can optimise
our approximation with respect to the kernel parameters by using a non-linear
optimiser such as scaled conjugate gradients. Note that in practice the quality of
the active set will depend on the kernel parameter selection as will the optimal
site parameters. We can certainly imagine more complex schema for optimising the
kernel parameters which take account of these dependencies in a better way, some
examples of which are given in Seeger (2004), but for our experiments we found this
simple approach to be effective.

11

Algorithm 2 The IVM algorithm for parameter optimisation.
Require d active points. T iterations.
i = 1 toT
Select points using Algorithm 1.
Maximise the approximation to the (log) likelihood (32) using a scaled conjugate
gradient optimiser (Nabney, 2001).
noise parameter updates are required.
Select points using Algorithm 1.
Maximise the sum of the log partition functions (34) using a scaled conjugate gra-
dient optimiser.
*
*

3.4 Noise Parameter Updates

As well as updating the parameters of the kernel, it may be helpful to update the
parameters of the noise function, particularly in the case of the ordered categorical
model which has a parameter for each inner category indicating the width of the
region associated with that category. However, the likelihood approximation (32)
is only indirectly dependent on those parameter values. One way forward would be
to optimise a variational lower bound,

N∑
n=1

∫
qd (fn) log p (yn|fn, θ) p (fn) dfn −

N∑
n=1

∫
qd (fn) log q (fn) dfn,

on the likelihood, where θ are the parameters of the noise model that we wish to
optimise. The relevant term in this bound is

N∑
n=1

∫
qd (fn) log p (yn|fn, θ) . (33)

This lower bound can be upper bounded by
N∑

n=1

log
∫

qd (fn) p (yn|fn, θ) =
N∑

n=1

log Zn. (34)

For many models it will be straightforward to compute (33), however for all noise
models it will be possible to compute (34). We found for the ordered categorical
noise model (where optimisation of the noise model parameters is more critical)
optimisation of (34) was sufficient.

4 Experiments

In the next section we turn to experimental evaluation of the algorithms we have
described. All the code used for generating these results is available online from
http://www.dcs.shef.ac.uk/~neil/ivm/. The algorithm for optimising kernel
and noise parameters is given in Algorithm 2.

The covariance function can be developed from any positive definite kernel,
furthermore a new positive definite kernel can be formed by adding kernels together.
In our experiments we make use of three different kernel functions.

• The linear kernel is simply the matrix of inner products,

klin (xi,xj) := θlin · xT
i xj ,

where θ is the process variance and controls the scale of the output functions.

12

• The popular RBF kernel leads to smooth functions

krbf (xi,xj) := θrbf · exp
(
−γ

2
(xi − xj)

T (xi − xj)
)

,

where γ is the inverse width parameter.

• We also considered the MLP kernel (Williams, 1997) which is derived by
considering a multi-layer perceptron with infinite hidden units,

kmlp (xi,xj) := θmlp · sin−1

 wxT

i xj + b√(
wxT

i xi + b + 1
) (

wxT
j xj + b + 1

)

 ,

where we call w the weight variance and b the bias variance (they have inter-
pretations as the variances of prior distributions in the neural network model).

• A white noise process has a kernel of the form

kwhite (xi,xj) := θwhite · δij ,

where δij is the Kronecker delta which is zero unless i = j when it takes the
value 1.

• It is possible to represent uncertainty in the bias by adding a constant term
to the kernel matrix,

kbias (xi,xj) := θbias ,

where we have denoted the variance, θbias.

Since all our kernels have a parameters which provides an overall scaling on these
inner products (the process variance, the inverse width and the weight variance for
the linear, RBF and MLP kernels respectively) we constrain these input scales to be
at most 1. All the parameters that are constrained to be positive are implemented
by reparameterising,

θ := log (1 + exp (θ′)) .

Note that as the transformed parameter tends to negative infinity, θ′ → −∞, the
parameter tends to zero, θ → 0. Similarly, as θ′ → ∞ we see that θ → θ′. Finally
we considered automatic relevance determination (ARD) versions of each our co-
variance functions. These priors are formed by replacing any inner product, xT

i xj ,
with a matrix inner product, xT

i Axj . If A is positive (semi-)definite then each ker-
nel will still be valid. The ARD kernels are the specific case where A is a diagonal
matrix, A = diag (α) and the ith diagonal element, αi, provides a scaling on the ith
input variable. The positive definite constraint means that they cannot go below 0
so we use the sigmoid funciton for reparameterising,

αi =
1

1 + exp (−α′)
.

Finally we used a consitent initialisation of the parameters for all experiments. This
was θlin = 1, θrbf = 1, γ = 1, θmlp = 1, w = 10, b = 10 and α = [0.999, . . . , 0.999]T.

4.1 Toy Problems

Before undertaking any large scale experiments we first present some illustrative
results on simple two dimensional toy problems.

13

−202 −2−1012

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1 0 1 2
−2

0

2

−3

−2

−1

0

1

2

Figure 2: Regression toy problems, input data was sampled from a data-points
sampled regression function sampled form a mixture of two Gaussians. The outputs
were then generated from left : a sample from Gaussian process prior with an RBF
ARD kernel. One of the input scale parameters was set to zero. Right : a similar
kernel but now with input scales α = [1, 0.2]T. In both plots the data-points are
red dots, the active set are blue spots and the mean of the process posterior as
approximated by the IVM algorithm is a shaded surface.

4.1.1 Regression

For both the following regression examples we sampled input data poisitions from
a mixture of two Gaussians with means [−1,−1] and [1, 1] and a shared covariance
of 0.25I. In the first problem we sampled y-values by taking a sample form a GP
prior with an RBF ARD kernel function. The process variance for this kernel was
θrbf = 1, the inverse width γ = 20, and the input scales , α = [0, 1]T. We then added
Gaussian noise with a variance of 0.001. Figure 2, left, then shows the regression
surface infered by an IVM. The approximating model used a combination of a linear
ARD kernel and an RBF ARD kernel, the input scale parameters being shared
across the kernels. The IVM was optimised using four iterations of Algorithm 2
and with an active set size of d = 50. The infered parameters were, θrbf = 1.22,
γ = 18.0, θlin = 9.63×10−9, α = [9.22×10−11, 1.00]T. In other words the algorithm
was able to infer that there was no linear trend present in the function made good
approximations of the true generating functions parameters.

In the second simple regression example (Figure 2, right) the data was generated
in a similar manner, but the generating input scales were now set to α = [1, 0.2]T.
The IVM was trained as before with the exception of the active set size, d, which
was now set at d = 100. The infered parameters were, θrbf = 1.12, γ = 22.5,
θlin = 9.12 × 10−6, α = [1.00, 0.163]T. Once again the algoritm seems to have
arrived at a good approximation of the generating function’s parameters.

4.1.2 Classification

For classification with the probit noise model we considered two data-sets. The
first was sampled from a two dimensional mixture of Gaussians (Figure 3, left)
with three components. The components shared the same covariance matrix but
had different means. The means were aligned in such a way that only one input
direction was relevant in determining class (the y-axis in the figure). An IVM model
with a combined MLP ARD and linear ARD kernel was used, and its parameters
were inferred by using four iterations of Algorithm 2 . From Figure 3, left, it can
clearly be seen that the model has learnt that the x-axis direction is irrelevant. The
linear portion of the kernel was also switched off. This is reflected in the infered

14

−4 −2 0 2 4
−10

−5

0

5

10

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 3: Classification toy problems. In both plots data from the negative class
is shown as green crosses and that from the positive class is shown as red circles.
The posterior probability of class membership is visualised as a contour (red solid
line) at p (y|x) = 0.5 and two contours (blue dashed lines) at p (y|x) = 0.25 and
p (y|x) = 0.75. Points used in the active set are marked with blue dots. Left :
data sampled from from a mixture of Gaussians. The IVM uses an ARD based
prior and disregards the x-axis direction. Right : Data uniformly sampled on the
2–dimensional unit square. Class labels are assigned by sampling from a known
Gaussian process prior.

parameters which were θmlp = 31.8, w = 0.473, b = 4.95, θlin = 1.70 × 10−7,
α = [6.12× 10−8, 1.00]T.

For a second demonstation we sampled 500 data points uniformly from a unit
square in two dimensions. A sample was then made from a GP prior of a function at
these points. The covariance function (kernel) of the prior was an RBF with process
variance of θrbf = 100 and an inverse width of γ = 10. This function was ’squashed’
by a cumulative Gaussian distirbution function and a class was assigned to each
point randomly with a probability given by the output of the cumulative Gaussian.
An IVM was then trained with an RBF kernel and d = 200. The data and resulting
decision boundary are shown in Figure 3, right. The inverse width learnt by the
model was γ = 8.51, which is close to that from the generating Gaussian process
of 10, the process variance was θrbf = 6.54, which is somewhat different from that
of the generating distribution. This is not suprising as squashing the function with
the cumulative Gaussian has the effect of removing a lot of the information in the
data about the process variance.

4.1.3 Ordered Categories

Finally we show results from two problems on ordered categorical data. In the first
example each category was generated from an isotropic white Gaussian distribution.
The means of each category were located 3 units apart along one direction (the y-
axis in Figure 4, left). It should be possible to seperate the categories with only one
input direction using a linear model. We infered the parameters of an IVM with
an RBF ARD kernel and a linear ARD kernel. The parameters were infered using
four iterations of Algorithm 2 using the optional noise parameter optimisation and
setting d = 200. As expected the RBF kernel was switched off (θrbf = 8.85× 10−5)
as was one dimension of the linear kernel (α = [6.03× 10−8, 1.00]T).

In our second experiment we sampled ordered categorical data in polar co-
ordinates to provide a non-linear decision boundary (Figure 4, right). Note in
particular that the uncertainty in the decision boundary is reduced in the region

15

−3 −2 −1 0 1 2 3

−10

−5

0

5

10

−20 −10 0 10 20

−20

−10

0

10

20

Figure 4: Ordered categories toy problems, the different categories are shown with
different coloured symbols. Active data-points are marked with blue spots. Left :
this problem can be solved with a linear model. Right : this categories in this exam-
ple were sampled in polar co-ordinates. In both examples the decision boundaries
between the categories are shown as red solid lines with blue dashed lines repre-
senting the expected quartiles.

Table 1: Table of results on the USPS digit data. The figures show the results for
the individual binary classification tasks and the overall error computed from the
combined classifiers. Each result is sumarised by the % classification error.

0 1 2 3 4 5 6 7 8 9 Overall
RBF 0.648 0.698 1.40 1.05 1.49 1.25 0.747 0.598 1.20 0.747 4.58
MLP 0.548 0.698 1.49 1.20 1.64 1.25 0.797 0.598 1.20 0.747 4.78

RBF ARD 0.548 0.598 1.49 1.10 1.79 1.20 0.797 0.498 1.20 0.847 4.68

towards the bottom of the plot where there is less data.

4.2 USPS digits

For a more realistic challenge we chose the USPS digit data set of 16× 16 greyscale
images. The data contains 7291 training images and 2007 test images. We imple-
mented three different kernels with the IVM algorithm. For each data-set we used
a ‘base kernel’ consisting of a linear part, a white noise term and a bias part. Three
variations on this base kernel were then used: it was changed by adding first an
RBF kernel, then an MLP kernel and finally a variant of the RBF ARD kernel4. We
ran the experiments for five iterations using Algorithm 2 using the optional noise
parameters and setting d = 500. The results are summarised in Table 1. A compar-
ison with a summary of results on this data-set (Schölkopf and Smola, 2001, Table
7.4) shows that the IVM is in line with other results on this data. Furthermore
these results were achieved with fully automated model selection.

4To prevent too many free parameters we placed hard constraints on many of the ARD pa-
rameters. We spilt the 16 × 16 input data into 16 seperate blocks, each containing 16 pixels. The
input scale parameter was then shared within each of these blocks.

16

5 Discussion

In this paper, we have introduced the informative vector machine—a sparse and
efficient variant of Gaussian proceeses algorithm. At its core, the new algorithm uses
an ADF approximation to the Gaussian proccess posterior of the latent function
outputs at the sample data points combined with an entropy-reduction based data
point selection cirterion. We have demonstrated that the resulting algorithm is
fast in runtime and matches state-of-the-art prediction performance in a variety of
applications ranging from classification, regression to ordinal regression. There are
a number of interesting questions related to learning sparse predictors that we have
not addressed in this work:

Accurate Posterior Approximation In the current framework, we approximate
the posterior qd(f) sequentially without re-considering early inclusions. The
expectation-propagation (EP) algorithm addresses this problem by re-iterating
over the data points to refine and improve the posterior approximation, q(f)
(Minka, 2001). A naive implementation of the EP in the IVM framework
would lead to an increase in both the memory and computational complexity
as the number of columns of the M matrix would grow without bound (see
Line 12 in Algorithm 1). Our current research is focused on an approximate
EP algorithm which uses Cholesky approximations to the posterior covari-
ance matrix Σi thus overcoming both the representational and computational
issues.

References

J. A. Anderson and E. Rosenfeld, editors. Neurocomputing: Foundations of Re-
search, Cambridge, MA, 1988. MIT Press.

C. Cortes and V. N. Vapnik. Support vector networks. Machine Learning, 20:
273–297, 1995.

L. Csató. Gaussian Processes — Iterative Sparse Approximations. PhD thesis,
Aston University, 2002.

L. Csató and M. Opper. Sparse representation for Gaussian process models. In T. K.
Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information
Processing Systems, volume 13, pages 444–450, Cambridge, MA, 2001. MIT Press.

N. D. Lawrence, M. Seeger, and R. Herbrich. Fast sparse Gaussian process methods:
The informative vector machine. In S. Becker, S. Thrun, and K. Obermayer,
editors, Advances in Neural Information Processing Systems, volume 15, pages
625–632, Cambridge, MA, 2003. MIT Press.

D. J. C. MacKay. Bayesian Methods for Adaptive Models. PhD thesis, California
Institute of Technology, 1991.

T. P. Minka. A family of algorithms for approximate Bayesian inference. PhD
thesis, Massachusetts Institute of Technology, 2001.

I. T. Nabney. Netlab: Algorithms for Pattern Recognition. Advances
in Pattern Recognition. Springer, Berlin, 2001. Code available from
http://www.ncrg.aston.ac.uk/netlab/.

A. O’Hagan. Some Bayesian numerical analysis. In J. M. Bernardo, J. O. Berger,
A. P. Dawid, and A. F. M. Smith, editors, Bayesian Statistics 4, pages 345–363,
Valencia, 1992. Oxford University Press.

17

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal represen-
tations by error propagation. In Parallel Distributed Programming: Explorations
in the Microstructure of Cognition, volume 1: Foundations, pages 318–362. MIT
Press, Cambridge, MA, 1986. Reprinted in (Anderson and Rosenfeld, 1988).

B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2001.

M. Seeger. Bayesian Gaussian Process Models: PAC-Bayesian Generalisation Error
Bounds and Sparse Approximations. PhD thesis, The University of Edinburgh,
2004.

H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Conference
on Computational Learning Theory 10, pages 287–294. Morgan Kauffman, 1992.

C. K. I. Williams. Computing with infinite networks. In M. C. Mozer, M. I. Jordan,
and T. Petsche, editors, Advances in Neural Information Processing Systems,
volume 9, Cambridge, MA, 1997. MIT Press.

C. K. I. Williams. Prediction with Gaussian processes: From linear regression to
linear prediction and beyond. In M. I. Jordan, editor, Learning in Graphical
Models, volume 89 of Series D: Behavioural and Social Sciences, Dordrecht, The
Netherlands, 1998. Kluwer.

C. K. I. Williams and C. E. Rasmussen. Gaussian processes for regression. In
D. Touretzky, M. Mozer, and M. Hasselmo, editors, Advances in Neural Informa-
tion Processing Systems, volume 8, pages 514–520, Cambridge, MA, 1996. MIT
Press.

A Matching Expected Natural Statistics

In this appendix we show that minimising the Kullback-Leibler divergence (8) over a
family in the class of exponential distributions is achieved by matching the expected
natural statistic. We will also give an explicit update formula for distributions with
only one likelihood term.

A set of distributions over R
N is in the exponential family if its densities can be

written as
pθ (x) =

1
Z (θ)

exp
(
θTφ (x)

)
,

where φ(x) is known as the natural statistic of x and Z(θ) :=
∫

exp(θTφ(x))dx
ensure normalisation. The exponential family includes many known families of
distributions including the Gaussian distribution. For example, in the Gaussian
case, the natural statistic φ (x) is simply the vector of all first and second moments,
φ (x) = (x1, . . . , xN , x2

1, x1x2, . . . , xNxN−1, x
2
N). Note that the expected natural

statistic of pθ(x) is given in terms of the gradient of log(Z(θ)) w.r.t. θ, that is,

∇θ log (Z (θ)) =

∫ [∇θ exp
(
θTφ (x)

)]
dx

Z (θ)
= 〈φ (x)〉pθ(x) . (35)

For any distribution p, the distribution pθ∗ which minimises the Kullback-Leibler
divergence, KL (p||pθ∗), over the exponential family with natural statistic φ is im-
plicitly given by

〈φ (x)〉pθ∗ (x) = 〈φ (x)〉p(x) . (36)

18

Recall the Kullback-Leibler divergence from (8) and consider it as a function f
of the parameters θ,

f (θ) = KL (p||pθ) =
〈

log
(

p (x)
pθ (x)

)〉
p(x)

= 〈log (p (x))〉p(x) + 〈log (Z (θ))〉p(x) −
〈
θTφ (x)

〉
p(x)

= 〈log (p (x))〉p(x) + log (Z (θ))− θT 〈φ (x)〉p(x) .

A necessary condition for the minimum θ∗ is ∇θf (θ∗) = 0. From (35) we have

∇θf (θ) = 〈φ (x)〉pθ(x) − 〈φ (x)〉p(x) .

It remains to show that θ∗ such that 〈φ(x)〉pθ∗ (x) = 〈φ(x)〉p(x) is a minimum. To
this end, consider the matrix of second derivatives,

[∇∇θf (θ)]i,j =
∂2 log (Z (θ))

∂θi∂θj
=

∂

∂θj

∫
φi (x) exp

(
θTφ (x)

)
dx

Z (θ)
= 〈φi (x) φj (x)〉pθ(x) − 〈φi (x)〉pθ(x) 〈φj (x)〉pθ(x) .

At the solution θ∗, this is the covariance matrix of the natural statistic φ (x) over
the distribution pθ∗ . By definition, this is positive semi-definite matrix (in fact, for
every distribution pθ) and thus we have proven the theorem.

In the case of the Gaussian family, {N (·; µ,Σ)}, minimising the KL divergence
reduces to matching the mean and covariance (which are related in a one-to-one
way to the first and second moments),

µ∗ = 〈x〉p(x) , (37)

Σ∗ =
〈
xxT
〉

p(x)
− 〈x〉p(x) 〈x〉Tp(x) . (38)

A.1 General Update Equations

We will now derive an explicit update formula for matching the expected natural
statistic if p(x) has the simple form

p (x) =
1

Z̃ (θ)
· t (x) pθ (x) ,

where Z̃(θ) :=
∫

t(x)pθ(x)dx ensures normalisation5. In fact, similar to (35), the
expected natural statistic under p(x) can again be expressed solely in terms of the
gradient of Z̃(θ) w.r.t. θ. In order to see this, note that

∇θpθ (x) =
[
∇θ

1
Z (θ)

]
exp
(
θTφ (x)

)
+

1
Z (θ)

[
∇θ exp

(
θTφ (x)

)]
= − [∇θZ (θ)]

Z (θ)
pθ (x) + φ (x) pθ (x)

= −〈φ (x)〉pθ(x) · pθ (x) + φ (x) pθ (x) .

Multiplying both sides by Z̃−1(θ)t(x), integrating over x and re-arranging terms
we get

Z̃−1 (θ)∇θZ̃ (θ) = −〈φ (x)〉pθ(x) + 〈φ (x)〉p(x)

〈φ (x)〉p(x) = ∇θ log
(
Z̃ (θ)

)
+ 〈φ (x)〉pθ(x) . (39)

5Please note that the normalisation constant Z̃(θ) should not be confused with the normalisa-
tion constant Z(θ).

19

Finally, using the fact that matching the natural statistics minimises the Kullback-
Leibler divergence and (35) we obtain

∇θ log (Z (θ∗)) = ∇θ log
(
Z̃ (θ)

)
+∇θ log (Z (θ)) .

All that is required to solve the above equation for a given exponential family is to
know the analytical solution of the gradient equation of log(Z(θ)) and log(Z̃(θ)).
These two equations only depend on the particular natural statistic function φ and
the function t. This is applicable, for example, for Gamma densities.

However, some exponential families are usually not parameterised in terms of
θ but rather in terms of τ (θ) := 〈φ(x)〉pθ (x)—a parameterisation also known as
the moment representation. This representation has particular advantages when
minimising the KL divergence as Theorem 1 directly specifies the update equation
for the parameters. In this case, (39) can still be used together with the chain rule
of differtiation to obtain the update equation for a particular class of exponential
densities if the mapping to τ �→ θ is easy to differentiate. We can also follow the
above argument simply in the new parameterisation. In the next section we give
a detailed derivation for the Gaussian family (which is represented in terms of its
moments).

A.2 Update Equations for the Gaussian Family

We consider a family of Gaussians parameterised in terms of its mean, µ, and
covariance, Σ,

q (x) := q (x; µ,Σ) := N (x; µ,Σ) .

Our ability to compute (37) and (38) when p(x) ∝ t(x)q (x) depends only on the
tractability of the normalisation constant,

Z̃ := Z̃ (µ,Σ) :=
∫

t (x) q (x; µ,Σ) dx .

Matching the Mean We will consider the mean of x under t(x)q(x). First note
that

∇µq (x) = Σ−1 (x− µ) q (x) ,

which can be re-expressed in terms of xq (x),

xq (x) = µq (x) + Σ∇µq (x) .

Now multiplying both sides by Z̃−1t(x), integrating over x, and exploiting the
linearity of the gradient operator gives

〈x〉p(x) = µ + Z̃−1 ·Σ
[
∇µ

∫
t (x) q (x) dx

]
= µ + Z̃−1 (µ,Σ) ·Σ∇µZ̃ (µ,Σ)

= µ + Σ∇µ log
(
Z̃ (µ,Σ)

)
= µ + Σg , (40)

where we have defined g := ∇µ log(Z̃(µ,Σ)).

20

The Second Moment Matrix Once again we take gradients6 of q(x), but this
time with respect to the covariance matrix Σ,

∇Σq (x) =
1
2

(
−Σ−1 + Σ−1 (x− µ) (x− µ)T Σ−1

)
q (x) ,

which can be re-arranged, as we did before, in order to obtain

xxTq (x) = 2Σ [∇Σq (x)]Σ +
(
Σ + xµT + µxT − µµT

)
q (x) .

Multiplying both sides by Z̃−1t(x), integrating over x and exploiting the linearity
of the gradient operator gives〈
xxT
〉

p(x)
= Σ + 2Σ

(
Z̃−1 (µ,Σ)∇ΣZ̃ (µ,Σ)

)
Σ + 〈x〉p(x) µT + µ 〈x〉Tp(x) − µµT

= Σ + 2Σ
(
∇Σ log

(
Z̃ (µ,Σ)

))
Σ + 〈x〉p(x) µT + µ 〈x〉Tp(x) − µµT

= Σ + 2ΣGΣ + 〈x〉p(x) µT + µ 〈x〉Tp(x) − µµT ,

where we have defined G := ∇Σ log(Z̃(µ,Σ)).

Matching the Covariance The update (38) for the covariance requires to com-
pute 〈

xxT
〉

p(x)
− 〈x〉p(x) 〈x〉Tp(x) = Σ−Σ

(
ggT − 2G

)
Σ , (41)

where we used (40). Substituting (40) and (41) into (37) and (38) we obtain the
required updates for the mean and covariance in a form that applies regardless of
our noise model (Csató, 2002; Minka, 2001; Seeger, 2004):

µ∗ = µ + Σg ,

Σ∗ = Σ−Σ
(
ggT − 2G

)
Σ .

6It helps to remember that ∇Σ log(q(x)) = (q(x))−1 · ∇Σq(x)).

21

