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Dimensionality Reduction |

e Linear relationship between the data, X € RV*9, and a reduced
dimensional representation, F € ®V*9 where ¢ < d.

X =FW +¢,

e~N(0,X)
@ Integrate out F, optimize with respect to W.

@ For temporal data and a particular Gaussian prior in the latent space:
Kalman filter/smoother

@ More generally consider a Gaussian process (GP) prior,

q
p(F’t) = HN (f;,,"o, Kf;,i,f:,i) :

i=1
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Dimensionality Reduction Il

@ Given the covariance functions for {f;(t)} the implied covariance
functions for {x;(t)} — semi-parametric latent factor model (Teh

et al., 2005).
e Kalman filter/smoother approach has been preferred
> linear computational complexity in N.
» Advances in sparse approximations have made the general GP

framework practical. (Snelson and Ghahramani, 2006; Quifionero Candela
and Rasmussen, 2005, also Titsias tomorrow).
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Mechanical Analogy

@ These models rely on the latent variables to provide the dynamic
information.

@ We now introduce a further dynamical system with a mechanistic
inspiration.

@ Physical Interpretation:

>

vV vy vVvVYVvYy

the latent functions, f;(t) are g forces.

We observe the displacement of d springs to the forces.,

Interpret system as the force balance equation, XD = FS + €.

Forces act, e.g. through levers — a matrix of sensitivities, S € Raxd,
Diagonal matrix of spring constants, D € R9*¢.

Original System: W = SD1.
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Extend Model

@ Add a damper and give the system mass.
FS = XM + XC + XD + e.

@ Now have a second order mechanical system.
@ It will exhibit inertia and resonance.

@ There are many systems that can also be represented by differential
equations.

» When being forced by latent function(s), {fi(t)}7_;, we call this a
latent force model.
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Gaussian Process priors and Latent Force Models

@ For Gaussian process we can compute the covariance matrices for the
output displacements.

@ For one displace the model is

M

myXi(t) + cexi(t) + diexic(t) = br + Zsikfi(t)7 (1)
i=0

where, my is the kth diagonal element from M and similarly for ¢,
and dk. sic is the i, kth element of S.

@ Model the latent forces as g independent, GPs with RBF covariances

t —t')?
kf;ﬁ(t, t/) = exp (_(0'—2)) (5,’/.

i
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Covariance for ODE Model

e RBF Kernel function for f (t)

1
mjwj

xj(t) =

;Sjiexp(—ajt)/o fi(u)exp(aju)sin(wj(t_ u))du

\

1(t)

@ Joint distribution
for x1 (t), x2 (t),
x3 (t) and £ (t).
Damping ratios:
L a [&]¢G]
|0.125 | 2 | 1 |

¥,

¥,

AW

(9 no v, Y30
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Joint Sampling of x (t) and f (t)

@ demLfmSample
2

1.5¢

25 5 10 15 20

Figure: Joint samples from the ODE covariance, cyan: f (t), red:

x1 (t)(underdamped) and green: x; (t) (overdamped) and blue: x3 (t)
(critically damped).
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Joint Sampling of x (t) and f (t)

@ demLfmSample
2
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Figure: Joint samples from the ODE covariance, cyan: f (t), red:
x1 (t)(underdamped) and green: x; (t) (overdamped) and blue: x3 (t)
(critically damped).
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Joint Sampling of x (t) and f (t)

@ demLfmSample
2

15¢

0 5 10 15 20
Figure: Joint samples from the ODE covariance, cyan: f (t), red:

x1 (t)(underdamped) and green: x; (t) (overdamped) and blue: x3 (t)
(critically damped).
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Joint Sampling of x (t) and f (t)

@ demLfmSample
2

1.5¢

25 5 10 15 20

Figure: Joint samples from the ODE covariance, cyan: f (t), red:

x1 (t)(underdamped) and green: x; (t) (overdamped) and blue: x3 (t)
(critically damped).
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Covariance for ODE

e RBF Kernel function for f (t)

1
mjwj

xj(t) =

;Sjiexp(—ajt)/o fi(u)exp(aju)sin(wj(t_ u))du

\

@ Joint distribution
for x1 (t), x2 (1),
x3(t) and f (t).

@ Damping ratios:
L a [elG]
10125 2 | 1 |

no

¥,

AW

(9 no v, Y30
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Example: Transcriptional Regulation

@ First Order Differential Equation

dx; (¢)

I = Bt () - Dix(t)
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Example: Transcriptional Regulation

@ First Order Differential Equation

dx; (¢)

I = Bt () - Dix(t)

@ Can be used as a model of gene transcription: Barenco et al., 2006.
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Example: Transcriptional Regulation

@ First Order Differential Equation

dx; (¢)

I = Bt () - Dix(t)

@ Can be used as a model of gene transcription: Barenco et al., 2006.

@ x;(t) — concentration of gene j's mRNA
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Example: Transcriptional Regulation

@ First Order Differential Equation
dx; (t)
— = B Sf(0)-Dx(y)

@ Can be used as a model of gene transcription: Barenco et al., 2006.
@ x;(t) — concentration of gene j's mRNA

@ f(t) — concentration of active transcription factor
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Example: Transcriptional Regulation

@ First Order Differential Equation

dx; (t
Y g 56 (6) - Dy (1)

@ Can be used as a model of gene transcription: Barenco et al., 2006.
@ x;(t) — concentration of gene j's mRNA
@ f(t) — concentration of active transcription factor

@ Model parameters: baseline B;, sensitivity S; and decay D;
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Example: Transcriptional Regulation

@ First Order Differential Equation

dx; (t
Y g 56 (6) - Dy (1)

Can be used as a model of gene transcription: Barenco et al., 2006.
xj(t) — concentration of gene j's mMRNA
f(t) — concentration of active transcription factor

Model parameters: baseline B}, sensitivity S; and decay D;

Application: identifying co-regulated genes (targets)
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Example: Transcriptional Regulation

@ First Order Differential Equation

Y g 56 (6) - Dy (1)
@ Can be used as a model of gene transcription: Barenco et al., 2006.
@ x;(t) — concentration of gene j's mRNA

e f(t) — concentration of active transcription factor

@ Model parameters: baseline B;, sensitivity S; and decay D;

@ Application: identifying co-regulated genes (targets)

@ Problem: how do we fit the model when f(t) is not observed?
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Covariance for Transcription Model

RBF covariance function for f (t)

. t
xi(t) = % + Siexp (—D,-t)/0 f (u)exp (Dju)du.

@ Joint distribution f(t)\‘ ‘
for xq (t), X2 (t) | M
" % %

> Here: \ -
ni .

(D[S0 % ]
5 [5]05]05|

f@) a(t) ()
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Artificial Example: Inferring f(t)
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Artificial Example: Inferring f(t)
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Artificial Example: Inferring f(t)
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Artificial Example: Inferring f(t)
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p53 “Guardian of the Cell”

@ Responsible for Repairing DNA damage
@ Activates DNA Repair proteins
@ Pauses the Cell Cycle (prevents replication of damage DNA)

e Initiates apoptosis (cell death) in the case where damage can't be
repaired.

@ Large scale feeback loop with NF-xB.
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p53 DNA Damage Repair

Figure: pb3. Left unbound, Right bound to DNA. Images by David S. Goodsell
from http://www.rcsb.org/ (see the “Molecule of the Month” feature).
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http://www.rcsb.org/

Figure: Repair of DNA damage by p53. Image fromGoodsell (1999).
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Modelling Assumption

@ Assume pb3 affects targets as a single input module network motif
(SIM).

TNFRSF10b

PA26

Figure: p53 SIM network motif as modelled by Barenco et al. 2006.
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p53 (RBF covariance)

Pei Gao

Inferred p53 protein gene TNFRSF20b mRNA gene DDB2 mRNA

B=0.4489
D =0.4487
S =0.40601

3
2 A T
1
-0.5 0 0
0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12
gene p21 MRNA gene BIK mRNA

B=022518
D=08

s=1
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Ranking with ERK Signalling

o Target Ranking for Elk-1.

@ Elk-1 is phosphorylated by ERK from the EGF signalling pathway.
@ Predict concentration of Elk-1 from known targets.

@ Rank other targets of Elk-1.
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Elk-1 (MLP covariance)

Jennifer Withers
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Elk-1 target selection

Fitted model used to rank potential targets of Elk-1

Predicted target gene Predicted non-target gene

4 6 4
time (h) time (h)
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© Convolutions and Computational Complexity
o
o
o
7]
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Convolutions and Computational Complexity

Mauricio Alvarez

@ Solutions to these differential equations is normally as a convolution.

x,-(t):/f(u)k,-(u— £y du+ by ()

x,-(t)=/0tf(u)g,-(u)du+h,-(r)

@ Convolution Processes (Higdon, 2002; Boyle and Frean, 2005).

@ Convolutions lead to N x d size covariance matrices O (N3d3)
complexity, O (N?d?) storage.

o Model is conditionally independent over {x; (t)}2_; given f (t).
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Independence Assumption

Mauricio Alvarez

e Can assume conditional independence given given {f(t,-)}f-‘zl.

> Result is very similar to PITC approximation (Quifionero Candela and
Rasmussen, 2005).

Reduces to O (N3dk?) complexity, O (N?dk) storage.

Can also do a FITC style approximation (Snelson and Ghahramani, 2006).
Reduces to O (Ndk?) complexity, O (Ndk) storage.

vy

v
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Tide Sensor Network

Mauricio Alvarez

@ Network of tide height sensors in the solent — tide heights are
correlated.

@ Data kindly provided by Alex Rogers (see Rogers et al., 2008).

@ d =3 and N = 1000 of the 4320 for the training set.

@ Simulate sensor failure by knocking out onse sensor for a given time.
@ For the other two sensors we used all 1000 training observations.

o Take k = 100.
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Tide Height Results

Mauricio Alvarez

“Tide Height (m)

Tide Height (m)

-

! !
o o 05 15 25 0 05 15 25
Time (days) Time (days)
(a) Bramblemet Indepen- (b) Bramblemet PITC
dent

Tide Height (m)

X 05 1 15 2

25
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Cokriging Jura

Mauricio Alvarez

@ Jura dataset — concentrations of several heavy metals.
@ Prediction 259 data, validation 100 data points.

@ Predict primary variables (cadmium and copper) at prediction
locations in conjunction with some secondary variables (nickel and
zinc for cadmium; lead, nickel and zinc for copper) (Goovaerts, 1997,
p. 248,249).
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Swiss Jura Results

Mauricio Alvarez

o
2
3 056 3™
o 14
& 054 e}
o4 £ 13]
& os2 i}
w w 12|
5 o5 5
2 Fu
o}
@ 048 g 0
;0.46 Z 9
: 5
< 044 s
o IGP P(50) P(100) P(200) P(500) FGP  CK "TI1GP P(50) P(100) P200) P(800) FGP  CK
(a) Cadmium (b) Copper

Figure: Mean absolute error. IGP stands for independent GP, P(M) stands for
PITC with M inducing values, FGP stands for full GP and CK stands for ordinary
co-kriging.
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o
Qo
o
@ Non-linear Response Models
o
o
o
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Models of non-linear regulation

Neil D. Lawrence (BARK 08) Latent Force Models



Models of non-linear regulation

@ Non-linear Activation: Michaelis-Menten Kinetics

dx (t) _ B, Sif (t)
dt 7 4+ 1 (1)

— D,'X,' (t)

used by Rogers and Girolami (2006)
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Models of non-linear regulation

@ Non-linear Activation: Michaelis-Menten Kinetics

dx; (t) Sif (t)
=B+ ——75 —Dixi(t
dt * vi + () xi ()
used by Rogers and Girolami (2006)
@ Non-linear Repression
dx; (t) S;
dt '+’y,-+f(t) i (t)

used by Khanin et al., 2006, PNAS 103

Neil D. Lawrence (BARK 08) Latent Force Models



MAP Laplace Approximation

Consider the following modification to the model,

dx; (t)
dt

= B+ 5g(f (1)) = Dpx (1),

where g (+) is a non-linear function. The differential equation can still be
solved,

B; t ey
(0= Z+5 [ &P g (7 (w)du
J 0

Use Laplace's method (Laplace, 1774),

p(f10 =N (Ra ) wen (5 (1) A (1))

where f = argmaxp(f | x) and A = —VV log p (f | y) l¢_¢ is the Hessian
of the negative posterior at that point.
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p53 and Michaelis-Menten Kinetics

Pei Gao

@ The Michaelis-Menten activation model uses the following
non-linearity

. of (1)
. t)) = ——
5 (7 ()=
where we are using a GP f (t) to model the log of the TF activity.
Inferred p53 protein Inferred p53 protein

4 2

1.5]

1 .

ost S/ N

_]U 2 4 6 8 10 12 00 2 4 6 8 10 12
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Valdiation of Laplace Approximation

Michalis Titsias

% 2 4 6 8 10 12

Figure: Laplace approximation error bars along with samples from the true

posterior distribution.
Neil D. Lawrence (BARK 08) Latent Force Models



Use Samples to Represent Posterior

Michalis Titsias

@ Sample in Gaussian processes

p (flx) oc p (x|f) p ()

@ Likelihood relates GP to data through
B; t
x; (t) = aje Pit ¢ EJ + sj/ e Dt gi(f (u))du
i 0

@ We use control points for fast sampling.

>
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Sampling using control points

@ Separate the points in f into two groups:

» few control points f.
» and the large majority of the remaining points f, = f \ fc

@ Sample the control points f. using a proposal g <f§t+1)|f£-t)>

@ Sample the remaining points f, using the conditional GP prior
(t+1),g(t+1)
p(fo lfe

@ The whole proposal is
Q (f(t+1)|f(t)> —p <flgt+1)|f£t+1)> q (f£t+1)|f£t)>

o lts like sampling from the prior p(f) but imposing random walk
behaviour through the control points.
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p53 System Again

@ One transcription factor (p53) that acts as an activator. We consider
the Michaelis-Menten kinetic equation

Oo(t) . o exwlf(t)
dt T Texp(f(t)) +

— Djx;(t)

@ MCMC details:

» 7 control points are used (placed in a equally spaced grid)
» Running time 4/5 hours for 2 million sampling iterations plus burn in
» Acceptance rate for f after burn in was between 15% — 25%
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Data used by Barenco et al. (2006): Predicted gene

expressions for the 1st replica

DDB2 Gene - first Replica BIK Gene - first Replica TNFRSF10b Gene - first Replica

Clp1/p21 Gene - first Replica
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Data used by Barenco et al. (2006): Protein concentrations

Inferred p53 protein Inferred ps3 protein Inferred ps3 protein

Linear model (Barenco et al. predictions are shown as crosses)

Inferred protein Inferred protein Inferred protein
o o -~
0.6 0.6 K N 25
05 RN 05|
R 2|
0.4f K N 0.4
J . 15)
0.3] [ N, 0.3
i 1
02t el N e 02|
o L T T 0.1 . 0.5
A Tl T >
o 2 2 6 B 10 12 o 2 @ 6 B 10 12 0

Nonlinear (Michaelis-Menten kinetic equation)
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p53 Data Kinetic parameters

Basal rates Decay rates
1
9
14
i
12
7
f
o
o6 1
i 1
04
2 1
oz I
i 1
T ooe2 26 seant TNFRSFi0D Coi21 EQ T ooe2 076 sesni TNFRSFI0D G2t Bk
Sensitivities Gamma parameters
25|
o7
20| 06
05
04
10 03
H H :
s I I L
° ooez 26 sesni TNFRSFL0D Gzt Bk ooB2 26 sesnt TNFRSFIOD Gzt Bk

Our results (grey) compared with Barenco et al. (2006) (black). Note that

Barenco et al. use a linear model
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Cascaded Differential Equations
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Cascaded Differential Equations

Antti Honkela

@ Transcription factor protein also has governing mRNA.
@ This mRNA can be measured.

@ In signalling systems this measurement can be misleading because it is
activated (phosphorylated) transcription factor that counts.

@ In development phosphorylation plays less of a role.
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Drosophila Mesoderm Development

Data from Furlong Lab in EMBL Heidelberg.

@ Describe mesoderm development.
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Cascaded Differential Equations

Antti Honkela

We take the production rate of active transcription factor to be given by

%&_t)=0y(t)—6f(t)
() 5, o »
dt = Bj + 5f (t) — Djx; (1)

The solution for f(t), setting transient terms to zero, is

F(£) = o exp (—ot) /0 Y (1) exp (5u) du
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Covariance for Translation/Transcription Model

RBF covariance function for y (t)

f(t) = aexp(—ét)/oty(u)exp(éu)du
x(t) = %+S;exp(—D;t)/otf(u)exp(D,-u)du.

@ Joint distribution
for x1 (t), x2 (t), y(t‘ ‘ ‘ 1
f(t) and y (t).

@ Here: f(t. . . i
(0 [0 ] 0[5 ] "l @ |

(015 [5]os5]o5] ==

() f@xlﬁxz(t)
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Results for Mef2 using the Cascade

Driving Input mMRNA Gene Rya-r44F mRNA

Inferred Mef2 Protein Gene ttk MRNA

0.4

01 4 6 8 10 12 13 4 6 8 10 12
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Discussion and Future Work
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Discussion and Future Work

@ Integration of probabilistic inference with mechanistic models.
@ These results are small simple systems.
@ Ongoing work:

» Scaling up to larger systems

» Applications to other types of system, e.g. non-steady-state
metabolomics, spatial systems etc.

» Improved approximations.

» Stochastic differential equations
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