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Dimensionality Reduction I

Linear relationship between the data, X ∈ <N×d , and a reduced
dimensional representation, F ∈ <N×q, where q � d .

X = FW + ε,

ε ∼ N (0,Σ)

Integrate out F, optimize with respect to W.

For temporal data and a particular Gaussian prior in the latent space:
Kalman filter/smoother.

More generally consider a Gaussian process (GP) prior,

p (F|t) =

q∏
i=1

N
(
f:,i |0,Kf:,i ,f:,i

)
.
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Dimensionality Reduction II

Given the covariance functions for {fi (t)} the implied covariance
functions for {xi (t)} — semi-parametric latent factor model (Teh
et al., 2005).

Kalman filter/smoother approach has been preferred

I linear computational complexity in N.
I Advances in sparse approximations have made the general GP

framework practical. (Snelson and Ghahramani, 2006; Quiñonero Candela

and Rasmussen, 2005, also imminent work by Titsias).
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Gaussian Distribution

Zero mean Gaussian distribution

A multi-variate Gaussian distribution is defined by a mean and a
covariance matrix.

N (f|µ,K) =
1

(2π)
N
2 |K|

1
2

exp

(
−(f − µ)T K−1 (f − µ)

2

)
.

We will consider the special case where the mean is zero,

N (f|0,K) =
1

(2π)
N
2 |K|

1
2

exp

(
− fTK−1f

2

)
.

Neil D. Lawrence (Manchester) Latent Force Models 13th July 2009 7 / 64



Sampling a Function

Multi-variate Gaussians

We will consider a Gaussian with a particular structure of covariance
matrix.

Generate a single sample from this 25 dimensional Gaussian
distribution, f = [f1, f2 . . . f25].

We will plot these points against their index.
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Gaussian Distribution Sample

demGPSample
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Figure: (a) 25 instantiations of a function, fn, (b) colormap of covariance matrix.
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Covariance Function

The covariance matrix

Covariance matrix shows correlation between points fm and fn if n is
near to m.

Less correlation if n is distant from m.

Our ordering of points means that the function appears smooth.

Let’s focus on the joint distribution of two points form the 25.
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Prediction of f2 from f1

demGpCov2D([1 2])
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Prediction of f5 from f1

demGpCov2D([1 5])
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Covariance Functions
Where did this covariance matrix come from?

RBF Kernel Function

k
(
t, t ′
)

= α exp

(
−||t − t ′||2

2l2

)

Covariance matrix is built
using the inputs to the
function t.

For the example above it
was based on Euclidean
distance.

The covariance function is
also know as a kernel.
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with l = 10−
1
2 , α = 1
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Covariance Samples
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Figure: RBF kernel with l = 1, α = 1
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with l = 0.3, α = 4
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Gaussian Process Regression

demRegression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Learning Kernel Parameters
Can we determine length scales and noise levels from the data?

demOptimiseGp
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Mechanical Analogy

Back to Latent Force Models!

These models rely on the latent variables to provide the dynamic
information.

We now introduce a further dynamical system with a mechanistic
inspiration.

Physical Interpretation:

I the latent functions, fi (t) are q forces.
I We observe the displacement of d springs to the forces.,
I Interpret system as the force balance equation, XD = FS + ε.
I Forces act, e.g. through levers — a matrix of sensitivities, S ∈ <q×d .
I Diagonal matrix of spring constants, D ∈ <d×d .
I Original System: W = SD−1.
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Extend Model

Add a damper and give the system mass.

FS = ẌM + ẊC + XD + ε.

Now have a second order mechanical system.

It will exhibit inertia and resonance.

There are many systems that can also be represented by differential
equations.

I When being forced by latent function(s), {fi (t)}q
i=1, we call this a

latent force model.

Neil D. Lawrence (Manchester) Latent Force Models 13th July 2009 18 / 64



Gaussian Process priors and Latent Force Models
Driven Harmonic Oscillator

For Gaussian process we can compute the covariance matrices for the
output displacements.

For one displace the model is

mk ẍk(t) + ck ẋk(t) + dkxk(t) = bk +
M∑

i=0

sik fi (t), (1)

where, mk is the kth diagonal element from M and similarly for ck

and dk . sik is the i , kth element of S.

Model the latent forces as q independent, GPs with RBF covariances

kfi fl
(t, t ′) = exp

(
−(t − t ′)2

σ2
i

)
δil .
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Covariance for ODE Model

RBF Kernel function for f (t)

xj (t) =
1

mjωj

q∑
i=1

Sji exp(−αj t)

∫ t

0
fi (u) exp(αju) sin(ωj (t − u))du

Joint distribution
for x1 (t), x2 (t),
x3 (t) and f (t).
Damping ratios:
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Joint Sampling of x (t) and f (t)

demLfmSample
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Figure: Joint samples from the ODE covariance, cyan: f (t), red:
x1 (t)(underdamped) and green: x2 (t) (overdamped) and blue: x3 (t)
(critically damped).
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Covariance for ODE

RBF Kernel function for f (t)
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Motion capture data: used for animating human motion.

Multivariate time series of angles representing joint positions.

Objective: generalize from training data to realistic motions.

Use 2nd Order Latent Force Model with mass/spring/damper (resistor
inductor capacitor) at each joint.
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Motion Capture Example

demAistats
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Example: Transcriptional Regulation

First Order Differential Equation

dxj (t)

dt
= Bj + Sj f (t)− Djxj (t)

Can be used as a model of gene transcription: Barenco et al., 2006;
Gao et al., 2008.

xj (t) – concentration of gene j ’s mRNA

f (t) – concentration of active transcription factor

Model parameters: baseline Bj , sensitivity Sj and decay Dj

Application: identifying co-regulated genes (targets)

Problem: how do we fit the model when f (t) is not observed?
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[labels=skipGPProperties]Covariance for Transcription
Model
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Artificial Example: Inferring f (t)
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p53 “Guardian of the Cell”

Responsible for Repairing DNA damage

Activates DNA Repair proteins

Pauses the Cell Cycle (prevents replication of damage DNA)

Initiates apoptosis (cell death) in the case where damage can’t be
repaired.

Large scale feeback loop with NF-κB.

Neil D. Lawrence (Manchester) Latent Force Models 13th July 2009 28 / 64



p53 DNA Damage Repair

Figure: p53. Left unbound, Right bound to DNA. Images by David S. Goodsell
from http://www.rcsb.org/ (see the “Molecule of the Month” feature).
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p53

Figure: Repair of DNA damage by p53. Image fromGoodsell (1999).
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Modelling Assumption

Assume p53 affects targets as a single input module network motif
(SIM).

p53

p21

DDB2

PA26

BIK

TNFRSF10b

Figure: p53 SIM network motif as modelled by Barenco et al. 2006.
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p53 (RBF covariance)

Pei Gao
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Ranking with ERK Signalling

Target Ranking for Elk-1.

Elk-1 is phosphorylated by ERK from the EGF signalling pathway.

Predict concentration of Elk-1 from known targets.

Rank other targets of Elk-1.
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Elk-1 (MLP covariance)

Jennifer Withers
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Elk-1 target selection

Fitted model used to rank potential targets of Elk-1
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Outline

1 Introduction

2 Gaussian Process Review

3 Covariance Functions

4 Discussion and Future Work
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Discussion and Future Work

Integration of probabilistic inference with mechanistic models.

These results are small simple systems.

Ongoing work:

I Scaling up to larger systems
I Applications to other types of system, e.g. non-steady-state

metabolomics, spatial systems etc.
I Improved approximations.
I Stochastic differential equations
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Convolutions and Computational Complexity

Mauricio Alvarez

Solutions to these differential equations is normally as a convolution.

xi (t) =

∫
f (u) ki (u − t) du + hi (t)

xi (t) =

∫ t

0
f (u) gi (u) du + hi (t)

Convolution Processes (Higdon, 2002; Boyle and Frean, 2005).

Convolutions lead to N × d size covariance matrices O
(
N3d3

)
complexity, O

(
N2d2

)
storage.

Model is conditionally independent over {xi (t)}d
i=1 given f (t).
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Independence Assumption

Mauricio Alvarez

Can assume conditional independence given given {f (ti )}k
i=1. (Álvarez

and Lawrence, 2009)

I Result is very similar to PITC approximation (Quiñonero Candela and
Rasmussen, 2005).

I Reduces to O
(
N3dk2

)
complexity, O

(
N2dk

)
storage.

I Can also do a FITC style approximation (Snelson and Ghahramani, 2006).
I Reduces to O

(
Ndk2

)
complexity, O (Ndk) storage.
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Tide Sensor Network

Mauricio Alvarez

Network of tide height sensors in the solent — tide heights are
correlated.

Data kindly provided by Alex Rogers (see Osborne et al., 2008).

d = 3 and N = 1000 of the 4320 for the training set.

Simulate sensor failure by knocking out onse sensor for a given time.

For the other two sensors we used all 1000 training observations.

Take k = 100.
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Tide Height Results

Mauricio Alvarez

(a) Bramblemet Indepen-
dent

(b) Bramblemet PITC

(c) Cambermet Indepen-
dent

(d) Cambermet PITC

Figure: Predictive Mean and variance using independent GPs and the PITC
approximation for the tide height signal in the sensor dataset.
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Cokriging Jura

Mauricio Alvarez

Jura dataset — concentrations of several heavy metals.

Prediction 259 data, validation 100 data points.

Predict primary variables (cadmium and copper) at prediction
locations in conjunction with some secondary variables (nickel and
zinc for cadmium; lead, nickel and zinc for copper) (Goovaerts, 1997,
p. 248,249).
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Swiss Jura Results

Mauricio Alvarez
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Figure: Mean absolute error. IGP stands for independent GP, P(M) stands for
PITC with M inducing values, FGP stands for full GP and CK stands for ordinary
co-kriging.
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Models of non-linear regulation

Non-linear Activation: Michaelis-Menten Kinetics

dxi (t)

dt
= Bi +

Si f (t)

γi + f (t)
− Dixi (t)

used by Rogers and Girolami (2006)

Non-linear Repression

dxi (t)

dt
= Bi +

Si

γi + f (t)
− Dixi (t)

used by Khanin et al., 2006, PNAS 103
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MAP Laplace Approximation

Consider the following modification to the model,

dxj (t)

dt
= Bj + Sjg (f (t))− Djxj (t) ,

where g (·) is a non-linear function. The differential equation can still be
solved,

xj (t) =
Bj

Dj
+ Sj

∫ t

0
e−Dj (t−u)gj (f (u)) du

Use Laplace’s method (Laplace, 1774),

p (f | x) = N
(
f̂,A−1

)
∝ exp

(
−1

2

(
f − f̂

)T
A
(
f − f̂

))
where f̂ = argmaxp(f | x) and A = −∇∇ log p (f | y) |f=f̂ is the Hessian
of the negative posterior at that point.
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p53 and Michaelis-Menten Kinetics

Pei Gao

The Michaelis-Menten activation model uses the following
non-linearity

gj (f (t)) =
ef (t)

γj + ef (t)
,

where we are using a GP f (t) to model the log of the TF activity.
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Valdiation of Laplace Approximation

Michalis Titsias
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Figure: Laplace approximation error bars along with samples from the true
posterior distribution.
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Use Samples to Represent Posterior

Michalis Titsias

Sample in Gaussian processes

p (f|x) ∝ p (x|f) p (f)

Likelihood relates GP to data through

xj (t) = αje
−Dj t +

Bj

Dj
+ Sj

∫ t

0
e−Dj (t−u)gj (f (u))du

We use control points for fast sampling. (Titsias et al., 2009)
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Sampling using control points

Separate the points in f into two groups:

I few control points fc

I and the large majority of the remaining points fρ = f \ fc

Sample the control points fc using a proposal q
(
f

(t+1)
c |f(t)

c

)
Sample the remaining points fρ using the conditional GP prior

p
(
f

(t+1)
ρ |f(t+1)

c

)
The whole proposal is

Q
(
f(t+1)|f(t)

)
= p

(
f(t+1)
ρ |f(t+1)

c

)
q
(
f

(t+1)
c |f(t)

c

)
Its like sampling from the prior p(f) but imposing random walk
behaviour through the control points.
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p53 System Again

One transcription factor (p53) that acts as an activator. We consider
the Michaelis-Menten kinetic equation

dxj (t)

dt
= Bj + Sj

exp(f (t))

exp(f (t)) + γj
− Djxj (t)

MCMC details:

I 7 control points are used (placed in a equally spaced grid)
I Running time 4/5 hours for 2 million sampling iterations plus burn in
I Acceptance rate for f after burn in was between 15%− 25%
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Data used by Barenco et al. (2006): Predicted gene
expressions for the 1st replica
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Data used by Barenco et al. (2006): Protein concentrations
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Linear model (Barenco et al. predictions are shown as crosses)
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Nonlinear (Michaelis-Menten kinetic equation)
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p53 Data Kinetic parameters
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Our results (grey) compared with Barenco et al. (2006) (black). Note that
Barenco et al. use a linear model
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5 Convolutions and Computational Complexity

6 Non-linear Response Models

7 Cascaded Differential Equations
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Cascaded Differential Equations

Antti Honkela

Transcription factor protein also has governing mRNA.

This mRNA can be measured.

In signalling systems this measurement can be misleading because it is
activated (phosphorylated) transcription factor that counts.

In development phosphorylation plays less of a role.
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Drosophila Mesoderm Development

Data from Furlong Lab in EMBL Heidelberg.

Describe mesoderm development.
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Cascaded Differential Equations

Antti Honkela

We take the production rate of active transcription factor to be given by

df (t)

dt
= σy (t)− δf (t)

dxj (t)

dt
= Bj + Sj f (t)− Djxj (t)

The solution for f (t), setting transient terms to zero, is

f (t) = σ exp (−δt)

∫ t

0
y(u) exp (δu) du .
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Covariance for Translation/Transcription Model

RBF covariance function for y (t)

f (t) = σ exp (−δt)

Z t

0

y(u) exp (δu) du

xi (t) =
Bi

Di
+ Si exp (−Di t)

Z t

0

f (u) exp (Diu) du.

Joint distribution
for x1 (t), x2 (t),
f (t) and y (t).

Here:
δ D1 S1 D2 S2

0.1 5 5 0.5 0.5
y(t) f(t) x1(t) x2(t)

y(t)

f(t)

x1(t)

x2(t)
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Results for Mef2 using the Cascade model
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