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Styles of Machine Learning
Background: interpolation is easy, extrapolation is hard

I Urs Hölzle keynote talk at NIPS 2005.
I Emphasis on massive data sets.
I Let the data do the work—more data, less extrapolation.

I Alternative paradigm:
I Very scarce data: computational biology, human motion.
I How to generalize from scarce data?
I Need to include more assumptions about the data (e.g.

invariances).
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Weakly Mechanistic vs Strongly Mechanistic

I Underlying data modeling techniques there are weakly
mechanistic principles (e.g. smoothness).

I In physics the models are typically strongly mechanistic.

I In principle we expect a range of models which vary in the
strength of their mechanistic assumptions.

I This work is one part of that spectrum: add further
mechanistic ideas to weakly mechanistic models.



Dimensionality Reduction

I Linear relationship between the data, X ∈ <n×p, and a
reduced dimensional representation, F ∈ <n×q, where q � p.

X = FW + ε,

ε ∼ N (0,Σ)

I Integrate out F, optimize with respect to W.
I For Gaussian prior, F ∼ N (0, I)

I and Σ = σ2I we have probabilistic PCA (Tipping and Bishop,

1999; Roweis, 1998).
I and Σ constrained to be diagonal, we have factor analysis.



Dimensionality Reduction: Temporal Data

I Deal with temporal data with a temporal latent prior.

I Independent Gauss-Markov priors over each fi (t) leads to :
Rauch-Tung-Striebel (RTS) smoother (Kalman filter).

I More generally consider a Gaussian process (GP) prior,

p (F|t) =

q∏
i=1

N
(
f:,i |0,Kf:,i ,f:,i

)
.

I Given the covariance functions for {fi (t)} we have an implied
covariance function across all {xi (t)}—(ML: semi-parametric
latent factor model (Teh et al., 2005), Geostatistics: linear
model of coregionalization).

I Rauch-Tung-Striebel smoother has been preferred
I linear computational complexity in n.
I Advances in sparse approximations have made the general GP

framework practical. (Titsias, 2009; Snelson and Ghahramani,

2006; Quiñonero Candela and Rasmussen, 2005).



Gaussian Distribution

Zero mean Gaussian distribution

I A multi-variate Gaussian distribution is defined by a mean and
a covariance matrix.

N (f|µ,K) =
1

(2π)
n
2 |K|

1
2

exp

(
−(f − µ)>K−1 (f − µ)

2

)
.

I We will consider the special case where the mean is zero,

N (f|0,K) =
1

(2π)
n
2 |K|

1
2

exp

(
− f>K−1f

2

)
.



Sampling a Function

Multi-variate Gaussians

I We will consider a Gaussian with a particular structure of
covariance matrix.

I Generate a single sample from this 25 dimensional Gaussian
distribution, f = [f1, f2 . . . f25].

I We will plot these points against their index.
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Figure: A sample from a 25 dimensional Gaussian distribution.



Covariance Function

The covariance matrix

I Covariance matrix shows correlation between points fi and fj if
i is near to j .

I Less correlation if i is distant from j .

I Our ordering of points means that the function appears
smooth.

I Let’s focus on the joint distribution of two points from the 25.
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Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k
(
t, t ′
)

= α exp

(
−||t − t ′||2

2`2

)

I Covariance matrix is built
using the inputs to the
function t.

I For the example above it
was based on Euclidean
distance.

I The covariance function is
also know as a kernel.
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Covariance Samples
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Figure: Exponentiated quadratic kernel with ` = 0.3, α = 1
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Mechanical Analogy

Back to Mechanistic Models!

I These models rely on the latent variables to provide the
dynamic information.

I We now introduce a further dynamical system with a
mechanistic inspiration.

I Physical Interpretation:

I the latent functions, fi (t) are q forces.
I We observe the displacement of p springs to the forces.,
I Interpret system as the force balance equation, XD = FS + ε.
I Forces act, e.g. through levers — a matrix of sensitivities,

S ∈ <q×p.
I Diagonal matrix of spring constants, D ∈ <p×p.
I Original System: W = SD−1.



Extend Model

I Add a damper and give the system mass.

FS = ẌM + ẊC + XD + ε.

I Now have a second order mechanical system.

I It will exhibit inertia and resonance.

I There are many systems that can also be represented by
differential equations.

I When being forced by latent function(s), {fi (t)}q
i=1, we call

this a latent force model.



Physical Analogy



Gaussian Process priors and Latent Force Models
Driven Harmonic Oscillator

I For Gaussian process we can compute the covariance matrices
for the output displacements.

I For one displacement the model is

mk ẍk(t) + ck ẋk(t) + dkxk(t) = bk +

q∑
i=0

sik fi (t), (1)

where, mk is the kth diagonal element from M and similarly
for ck and dk . sik is the i , kth element of S.

I Model the latent forces as q independent, GPs with
exponentiated quadratic covariances

kfi fl
(t, t ′) = exp

(
−(t − t ′)2

2`2
i

)
δil .



Covariance for ODE Model

I Exponentiated Quadratic Covariance function for f (t)

xj (t) =
1

mjωj

q∑
i=1

sji exp(−αj t)

∫ t

0
fi (τ) exp(αjτ) sin(ωj (t − τ))dτ

I Joint distribution
for x1 (t), x2 (t),
x3 (t) and f (t).
Damping ratios:
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Covariance for ODE Model

I Analogy
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Joint Sampling of x (t) and f (t)

I lfmSample
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Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 (t) (underdamped), green: x2 (t) (overdamped), and blue: x3 (t)
(critically damped).
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Covariance for ODE
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Example: Motion Capture

Mauricio Alvarez and David Luengo (Álvarez et al., 2009)

I Motion capture data: used for animating human motion.

I Multivariate time series of angles representing joint positions.

I Objective: generalize from training data to realistic motions.

I Use 2nd Order Latent Force Model with mass/spring/damper
(resistor inductor capacitor) at each joint.
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Prediction of Test Motion

I Model left arm only.

I 3 balancing motions (18, 19, 20) from subject 49.

I 18 and 19 are similar, 20 contains more dramatic movements.

I Train on 18 and 19 and testing on 20

I Data was down-sampled by 32 (from 120 fps).

I Reconstruct motion of left arm for 20 given other movements.

I Compare with GP that predicts left arm angles given other
body angles.



Mocap Results

Table: Root mean squared (RMS) angle error for prediction of the left
arm’s configuration in the motion capture data. Prediction with the
latent force model outperforms the prediction with regression for all apart
from the radius’s angle.

Latent Force Regression
Angle Error Error
Radius 4.11 4.02
Wrist 6.55 6.65

Hand X rotation 1.82 3.21
Hand Z rotation 2.76 6.14

Thumb X rotation 1.77 3.10
Thumb Z rotation 2.73 6.09



Mocap Results II
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Figure: Predictions from LFM (solid line, grey error bars) and direct
regression (crosses with stick error bars).



Example: Transcriptional Regulation

I First Order Differential Equation

dxj (t)

dt
= bj + sj f (t)− djxj (t)

I Can be used as a model of gene transcription: Barenco et al.,
2006; Gao et al., 2008.

I xj (t) – concentration of gene j ’s mRNA

I f (t) – concentration of active transcription factor

I Model parameters: baseline bj , sensitivity sj and decay dj

I Application: identifying co-regulated genes (targets)

I Problem: how do we fit the model when f (t) is not observed?
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Covariance for Transcription Model

RBF covariance function for f (t)
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Joint Sampling of f (t) and x (t)

I simSample
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Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 (t) (high decay/sensitivity), green: x2 (t) (medium
decay/sensitivity) and blue: x3 (t) (low decay/sensitivity).
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Radiation Damage in the Cell

I Radiation can damages molecules including DNA.

I Most DNA damage is quickly repaired—single strand breaks,
backbone break.

I Double strand breaks are more serious—a complete disconnect
along the chromosome.

I Cell cycle stages:

I G1: Cell is not dividing.
I G2: Cell is preparing for meitosis, chromosomes have divided.
I S: Cell is undergoing meitosis (DNA synthesis).

I Main problem is in G1. In G2 there are two copies of the
chromosome. In G1 only one copy.



p53 “Guardian of the Cell”

I Responsible for Repairing DNA damage

I Activates DNA Repair proteins

I Pauses the Cell Cycle (prevents replication of damage DNA)

I Initiates apoptosis (cell death) in the case where damage can’t
be repaired.

I Large scale feeback loop with NF-κB.



p53 DNA Damage Repair

Figure: p53. Left unbound, Right bound to DNA. Images by David S.
Goodsell from http://www.rcsb.org/ (see the“Molecule of the Month”
feature).

http://www.rcsb.org/


p53

Figure: Repair of DNA damage by p53. Image from Goodsell (1999).



Some p53 Targets

DDB2 DNA Damage Specific DNA Binding Protein 2. (also
governed by C/ EBP-beta, E2F1, E2F3,...).

p21 Cycline-dependent kinase inhibitor 1A (CDKN1A). A
regulator of cell cycle progression. (also governed by
SREBP-1a, Sp1, Sp3,... ).

hPA26/SESN1 sestrin 1 Cell Cycle arrest.

BIK BCL2-interacting killer. Induces cell death
(apoptosis)

TNFRSF10b tumor necrosis factor receptor superfamily, member
10b. A transducer of apoptosis signals.



Modelling Assumption

I Assume p53 affects targets as a single input module network
motif (SIM).

p53

p21

DDB2

PA26

BIK

TNFRSF10b

Figure: p53 SIM network motif as modelled by Barenco et al. 2006.



Ordinary Differential Equation Model

I First Order Differential Equation

dxj (t)

dt
= bj + sj f (t)− djxj (t)

I Proposed by Barenco et al. (2006).

I xj (t) – concentration of gene j ’s mRNA

I f (t) – concentration of active transcription factor

I Model parameters: baseline bj , sensitivity sj and decay dj

I Application: identifying co-regulated genes (targets)

I Problem: how do we fit the model when f (t) is not observed?
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I Application: identifying co-regulated genes (targets)

I Problem: how do we fit the model when f (t) is not observed?
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Gaussian process modelling of latent chemical species:
applications to inferring transcription factor activities
Pei Gao1, Antti Honkela2, Magnus Rattray1 and Neil D. Lawrence1,∗
1School of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manchester, M13 9PL and
2Adaptive Informatics Research Centre, Helsinki University of Technology, PO Box 5400, FI-02015 TKK, Finland

ABSTRACT

Motivation: Inference of latent chemical species in biochemical
interaction networks is a key problem in estimation of the structure
and parameters of the genetic, metabolic and protein interaction
networks that underpin all biological processes. We present a
framework for Bayesian marginalization of these latent chemical
species through Gaussian process priors.
Results: We demonstrate our general approach on three different
biological examples of single input motifs, including both activation
and repression of transcription. We focus in particular on the problem
of inferring transcription factor activity when the concentration
of active protein cannot easily be measured. We show how the
uncertainty in the inferred transcription factor activity can be
integrated out in order to derive a likelihood function that can
be used for the estimation of regulatory model parameters. An
advantage of our approach is that we avoid the use of a coarse-
grained discretization of continuous time functions, which would lead
to a large number of additional parameters to be estimated. We
develop exact (for linear regulation) and approximate (for non-linear
regulation) inference schemes, which are much more efficient than
competing sampling-based schemes and therefore provide us with
a practical toolkit for model-based inference.
Availability: The software and data for recreating all the experiments
in this paper is available in MATLAB from http://www.cs.man.
ac.uk/∼neill/gpsim.
Contact: neill@cs.man.ac.uk

1 INTRODUCTION
Ordinary differential equations (ODEs) are the most common
framework in use for modelling biological sub-systems (Alon,
2006). Well established methodologies have been developed for
estimating the parameters of these equations in the context of a
particular experiment or set of experiments, using e.g. least squares
and maximum likelihood combined with an appropriate optimization
algorithm (Mendes and Kell, 1998). More recently, significant
progress has been made on Bayesian parameter estimation in the
context of ODEs (Coleman and Block, 2006). Through the use
of advanced Monte Carlo techniques it is even possible to, given
a specific data set, rank model structures through the use of
Bayes factors (Vyshemirsky and Girolami, 2008). This shows the
potential for ODE models to be closely integrated with biological
investigations, informing the process of biological experimental
design.

∗
To whom correspondence should be addressed.

A challenging problem for parameter estimation in ODE models
occurs where one or more chemical species influencing the dynamics
are controlled outside of the sub-system being modelled. For
example, a signalling pathway can be triggered by a signal external
to the pathway itself. In a regulatory sub-system, one or more
transcription factors (TFs) may influence the expression of a
set of target genes, but these TFs may not be regulated at the
transcriptional level, instead being activated by another sub-system
such as a signalling pathway. Similarly, in a metabolic pathway
external metabolites and enzymes will influence the dynamics of
the pathway. If these external chemical species have a constant
influence, e.g. as in the case of steady state behaviour of a
metabolic pathway, then they can simply be treated as additional
parameters of the model and their effect can be estimated along
with the other model parameters. However, more often these
external factors are time-varying quantities. In this case, they are
functional parameters and cannot be estimated by the standard
methods discussed above. One approach for dealing with this is to
discretize in time, treating the time-varying function as a sequence of
discrete parameters. However, this leaves the problem of choosing
the correct granularity for the discretization and either ignoring
temporal continuity, or assuming a simple Markovian relationship
and thereby introducing further parameters and assumptions. Here,
we propose an alternative approach. We deal with these parameters
as continuous functions of time, avoiding the need for arbitrary
discretization.

To further compound the problem of dealing with the time-varying
effects of these chemical species, their concentration is often not
directly observable and their dynamics must therefore be inferred
indirectly according to their influence on measured elements of the
system. This is a common problem and it is a natural consequence
of the fact that some quantities are relatively easy to measure
in a high throughput manner (e.g. mRNA concentrations with a
microarray), whereas others are much more difficult to measure
(e.g. the concentration of TFs located in the nucleus). In this article,
we advocate the use of Gaussian processes (GPs) to define prior
distributions over these latent chemical species. This allows us to
marginalize their contributions in the interaction network of interest.
We present a basic toolkit of algorithms based on GPs which allow
us to consider different response models (Michaelis Menten kinetics,
repression responses) and cascades of interactions in which chemical
species of interest are missing. The application domain we consider
is inference of TF activity in both developmental and signalling
networks.

Inference of TF activity in a given network is a well studied
problem with both genome wide approaches (Liao et al., 2003;
Sanguinetti et al., 2006a,b) and algorithms designed for a subset
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Cascaded Differential Equations

Model-based method for transcription factor
target identification with limited data
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We present a computational method for identifying potential tar-
gets of a transcription factor (TF) using wild-type gene expression
time series data. For each putative target gene we fit a simple dif-
ferential equation model of transcriptional regulation, and the
model likelihood serves as a score to rank targets. The expression
profile of the TF is modeled as a sample from a Gaussian process
prior distribution that is integrated out using a nonparametric
Bayesian procedure. This results in a parsimonious model with re-
latively few parameters that can be applied to short time series da-
tasets without noticeable overfitting. We assess our method using
genome-wide chromatin immunoprecipitation (ChIP-chip) and loss-
of-function mutant expression data for two TFs, Twist, and Mef2,
controlling mesoderm development in Drosophila. Lists of top-
ranked genes identified by our method are significantly enriched
for genes close to bound regions identified in the ChIP-chip data
and for genes that are differentially expressed in loss-of-function
mutants. Targets of Twist display diverse expression profiles, and in
this case a model-based approach performs significantly better
than scoring based on correlation with TF expression. Our ap-
proach is found to be comparable or superior to ranking based on
mutant differential expression scores. Also, we show how integrat-
ing complementary wild-type spatial expression data can further
improve target ranking performance.

Bayesian inference ∣ Gaussian process inference ∣ gene regulation ∣
gene regulatory network ∣ systems biology

Transcription factors are key nodes in the gene regulatory net-
works that determine the function and fate of cells. An impor-

tant first step in uncovering a gene regulatory network is the
identification of target genes regulated by a specific transcription
factor (TF). A common approach to this problem is to experi-
mentally locate physical binding of TF proteins to the DNA
sequence in vivo using a genome-wide chromatin immunopreci-
pitation (ChIP) experiment (1, 2). However, recent studies sug-
gest that many observed binding events are neutral and do not
regulate transcription, while regulatory binding events often oc-
cur at enhancers that are not proximal to the target gene that they
control (3, 4). Therefore, the task of identifying transcriptional
targets requires the integration of ChIP binding predictions with
evidence from expression data to help associate binding events
with target gene regulation. If there is access to expression data
from a mutant in which the TF has been knocked out or overex-
pressed, then differential expression of genes between wild type
and mutant is indicative of a potential regulatory interaction (5,
6). Available spatial expression data for the TF and the putative
target can also provide support for a hypothesized regulatory link.

A problem with the above approach is that the creation of mu-
tant strains is challenging or impossible for many TFs of interest.
Even when available, mutants may provide very limited informa-
tion because of redundancy or due to the confounding of signal
from indirect regulatory feedback (7). For these reasons it is use-
ful to seek other sources of evidence to complement ChIP bind-
ing predictions. In this contribution we demonstrate how a
dynamical model of wild-type transcriptional regulation can be

used for genome-wide scoring of putative target genes. All that
is required to apply our method is wild-type time series data col-
lected over a period where TF activity is changing. Our approach
allows for complementary evidence from expression data to be
integrated with ChIP binding data for a specific TF without carry-
ing out TF perturbations.

To score putative targets we use the data likelihood under a
simple cascaded differential equation model of transcriptional
regulation. The regulation model we apply is “open” in the sense
that we do not explicitly model regulation of the TF itself. To deal
with this technical issue we use a recently developed nonpara-
metric probabilistic inference methodology to effectively deal
with open differential equation systems (8). We model the TF
concentration as a function drawn from a Gaussian process prior
distribution (9, 10). This functional prior can either be placed on
the TF mRNA, for TFs primarily under transcriptional regula-
tion, or the TF protein, for TFs activated posttranslationally.
In the application considered here the TFs are transcriptionally
regulated, and we take the former approach. We use Bayesian
marginalization (also known as Bayesian model averaging) to
integrate out these functional degrees of freedom. This greatly
reduces the number of parameters required to model the data,
making a likelihood-based approach feasible even for short
time series.

There are many existing approaches to inferring gene regula-
tory networks from time series expression data, including dy-
namic Bayesian networks, information theoretic approaches,
and differential equation approaches (reviewed in ref. 11). These
methods typically require many more data from a greater diver-
sity of experimental conditions than are available from the short
unperturbed wild-type time series that we consider. Indeed, most
real gene expression time course data are short relative to the
simulated data used to assess computational methods for network
inference (12). However, our goal is more limited in scope since
we are primarily interested in providing additional support for
hypothesized targets of a specific TF. Again, most approaches
to this problem are designed for data containing large numbers
of diverse conditions, as exemplified by the DREAM 2 (Dialogue
for Reverse Engineering Assessments and Methods 2) target
identification challenge 1 (13). Others have addressed this target
identification problem using time series data with a regulation
model (14, 15). However, these approaches either require a
known target set for training (14) or they require measured TF
protein data (15). In addition to these differences in the assumed
prior knowledge and available data, it is also difficult to validate
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Cascaded Differential Equations

(Honkela et al., 2010)

I Transcription factor protein also has governing mRNA.

I This mRNA can be measured.

I In signalling systems this measurement can be misleading
because it is activated (phosphorylated) transcription factor
that counts.

I In development phosphorylation plays less of a role.



Drosophila Mesoderm Development

Collaboration with Furlong Lab in EMBL Heidelberg.

I Mesoderm development in Drosophila melanogaster (fruit fly).

I Mesoderm forms in triplobastic animals (along with ectoderm
and endoderm). Mesoderm develops into muscles, and
circulatory system.

I The transcription factor Twist initiates Drosophila mesoderm
development, resulting in the formation of heart, somatic
muscle, and other cell types.

I Wildtype microarray experiments publicly available.

I Can we use the cascade model to predict viable targets of
Twist?



Cascaded Differential Equations

(Honkela et al., 2010)

We take the production rate of active transcription factor to be
given by

df (t)

dt
= σy (t)− δf (t)

dxj (t)

dt
= bj + sj f (t)− djxj (t)

The solution for f (t), setting transient terms to zero, is

f (t) = σ exp (−δt)

∫ t

0
y(u) exp (δu) du .



Covariance for Translation/Transcription Model

RBF covariance function for y (t)

f (t) = σ exp (−δt)

∫ t

0

y(u) exp (δu) du

xi (t) =
bi

di
+ si exp (−di t)

∫ t

0

f (u) exp (diu) du.

I Joint distribution
for x1 (t), x2 (t),
f (t) and y (t).

I Here:
δ d1 s1 d2 s2

1 5 5 0.5 0.5

y(t) f (t) x1(t) x2(t)

y(t)

f (t)

x1(t)

x2(t)



Joint Sampling of y (t), f (t), and x (t)

I disimSample
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Figure: Joint samples from the ODE covariance, blue: y (t) (mRNA
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target) and green: x2 (t) (low decay target)
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Twist Results

I Use mRNA of Twist as driving input.

I For each gene build a cascade model that forces Twist to be
the only TF.

I Compare fit of this model to a baseline (e.g. similar model
but sensitivity zero).

I Rank according to the likelihood above the baseline.

I Compare with correlation, knockouts and time series network
identification (TSNI) (Della Gatta et al., 2008).



Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Evaluation methods

I Evaluate the ranking methods by taking a number of
top-ranked targets and record the number of
“positives” (Zinzen et al., 2009):

I targets with ChIP-chip binding sites within 2 kb of gene
I (targets differentially expressed in TF knock-outs)

I Compare against
I Ranking by correlation of expression profiles
I Ranking by q-value of differential expression in knock-outs

I Optionally focus on genes with annotated expression in tissues
of interest



Results
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Summary

I Cascade models allow genomewide analysis of potential
targets given only expression data.

I Once a set of potential candidate targets have been identified,
they can be modelled in a more complex manner.

I We don’t have ground truth, but evidence indicates that the
approach can perform as well as knockouts.
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Discussion and Future Work

I Integration of probabilistic inference with mechanistic models.

I Ongoing/other work:

I Non linear response and non linear differential equations.
I Scaling up to larger systems Álvarez et al. (2010); Álvarez and

Lawrence (2009).
I Discontinuities through Switched Gaussian Processes Álvarez

et al. (2011)
I Robotics applications.
I Applications to other types of system, e.g. spatial systems.
I Stochastic differential equations Álvarez et al. (2010).
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Partial Differential Equations and Latent Forces

Mauricio Alvarez

I Can extend the concept to latent functions in PDEs.

I Jura data: concentrations of heavy metal pollutants from the
Swiss Jura.

I Consider a latent function that represents how the pollutants
were originally laid down (initial condition).

I Assume pollutants diffuse at different rates resulting in the
concentrations observed in the data set.

∂xq(x, t)

∂t
=

d∑
j=1

κq
∂2xq(x, t)

∂x2
j

,

I Latent function fr (x) represents the concentration of
pollutants at time zero (i.e. the system’s initial condition).



Solution to the PDE

Mauricio Alvarez

I The solution to the system (Polyanin, 2002) is then given by

xq(x, t) =
R∑

r=1

Srq

∫
Rd

fr (x′)Gq(x, x′, t)dx′

where Gq(x, x′, t) is the Green’s function given as

Gq(x, x′, t) =
1

2dπd/2T
d/2
q

exp

− d∑
j=1

(xj − x ′j )2

4Tq

 ,

with Tq = κqt.



Covariance Function

Mauricio Alvarez

I For latent function given by a GP with the RBF covariance
function this is tractable.

kxpxq (x, x′, t) =
R∑

r=1

SrpSrq|Lr |1/2

|Lrp + Lrq + Lr |1/2

× exp

[
−1

2

(
x− x′

)>
(Lrp + Lrq + Lr )−1 (x− x′

)]
,

where Lrp,Lrq and Lr are diagonal isotropic matrices with
entries 2κpt, 2κqt and 1/`2

r respectively. The covariance
function between the output and latent functions is given by

kxqfr (x, x′, t) =
Srq|Lr |1/2

|Lrq + Lr |1/2

× exp

[
−1

2

(
x− x′

)>
(Lrq + Lr )−1 (x− x′

)]
.



Prediction of Metal Concentrations

Mauricio Alvarez

I Replicate experiments in (Goovaerts, 1997, pp. 248,249):
I Primary variable (Cd, Cu, Pb, Co) predicted in conjunction

with secondary variables (Ni and Zn for Cd; Pb, Ni, and Zn for
Cu; Cu, Ni, and Zn for Pb; Ni and Zn for Co).1

I Condition on the secondary variables to improve prediction for
primary variables.

I Compare results for the diffusion kernel with independent GPs
and “ordinary co-kriging” (Goovaerts, 1997, pp. 248,249).

1Data available at http://www.ai-geostats.org/.

http://www.ai-geostats.org/


Jura Results

Mauricio Alvarez

Table: Mean absolute error and standard deviation for ten repetitions of
the experiment for the Jura dataset. IGPs stands for independent GPs,
GPDK stands for GP diffusion kernel, OCK for ordinary co-kriging. For
the Gaussian process with diffusion kernel, we learn the diffusion
coefficients and the length-scale of the covariance of the latent function.

Metals IGPs GPDK OCK
Cd 0.5823±0.0133 0.4505±0.0126 0.5
Cu 15.9357±0.0907 7.1677±0.2266 7.8
Pb 22.9141±0.6076 10.1097±0.2842 10.7
Co 2.0735±0.1070 1.7546±0.0895 1.5
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Convolutions and Computational Complexity

Mauricio Alvarez

I Solutions to these differential equations is normally as a
convolution.

xi (t) =

∫
f (u) ki (u − t)du + hi (t)

xi (t) =

∫ t

0
f (u) gi (u) du + hi (t)

I Convolution Processes (Higdon, 2002; Boyle and Frean, 2005).

I Convolutions lead to N × d size covariance matrices
O
(
N3d3

)
complexity, O

(
N2d2

)
storage.

I Model is conditionally independent over {xi (t)}d
i=1 given

f (t).



Independence Assumption

Mauricio Alvarez

I Can assume conditional independence given given {f (ti )}k
i=1.

(Álvarez and Lawrence, 2009)

I Result is very similar to PITC approximation (Quiñonero
Candela and Rasmussen, 2005).

I Reduces to O
(
N3dk2

)
complexity, O

(
N2dk

)
storage.

I Can also do a FITC style approximation (Snelson and
Ghahramani, 2006).

I Reduces to O
(
Ndk2

)
complexity, O (Ndk) storage.



Tide Sensor Network

Mauricio Alvarez

I Network of tide height sensors in the solent — tide heights are
correlated.

I Data kindly provided by Alex Rogers (see Osborne et al.,
2008).

I d = 3 and N = 1000 of the 4320 for the training set.

I Simulate sensor failure by knocking out onse sensor for a given
time.

I For the other two sensors we used all 1000 training
observations.

I Take k = 100.



Tide Height Results

Mauricio Alvarez

(a) Bramblemet Inde-
pendent

(b) Bramblemet PITC

(c) Cambermet Indepen-
dent

(d) Cambermet PITC

Figure: Predictive Mean and variance using independent GPs and the
PITC approximation for the tide height signal in the sensor dataset.



Cokriging Jura

Mauricio Alvarez

I Jura dataset — concentrations of several heavy metals.

I Prediction 259 data, validation 100 data points.

I Predict primary variables (cadmium and copper) at prediction
locations in conjunction with some secondary variables (nickel
and zinc for cadmium; lead, nickel and zinc for copper)
(Goovaerts, 1997, p. 248,249).



Swiss Jura Results

Mauricio Alvarez
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Figure: Mean absolute error. IGP stands for independent GP, P(M)
stands for PITC with M inducing values, FGP stands for full GP and CK
stands for ordinary co-kriging.
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