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Dimensionality Reduction I

I Linear relationship between the data, X ∈ <N×d , and a
reduced dimensional representation, F ∈ <N×q, where q � d .

X = FW + ε,

ε ∼ N (0,Σ)

I Integrate out F, optimize with respect to W.

I For temporal data and a particular Gaussian prior in the latent
space: Kalman filter/smoother.

I More generally consider a Gaussian process (GP) prior,

p (F|t) =

q∏
i=1

N
(
f:,i |0,Kf:,i ,f:,i

)
.



Dimensionality Reduction II

I Given the covariance functions for {fi (t)} the implied
covariance functions for {xi (t)} — semi-parametric latent
factor model (Teh et al., 2005).

I Kalman filter/smoother approach has been preferred

I linear computational complexity in N.
I Advances in sparse approximations have made the general GP

framework practical. (Titsias, 2009; Snelson and Ghahramani,

2006; Quiñonero Candela and Rasmussen, 2005).
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Gaussian Distribution

Zero mean Gaussian distribution

I A multi-variate Gaussian distribution is defined by a mean and
a covariance matrix.

N (f|µ,K) =
1

(2π)
N
2 |K|

1
2

exp

(
−(f − µ)T K−1 (f − µ)

2

)
.

I We will consider the special case where the mean is zero,

N (f|0,K) =
1

(2π)
N
2 |K|

1
2

exp

(
− fTK−1f

2

)
.



Sampling a Function

Multi-variate Gaussians

I We will consider a Gaussian with a particular structure of
covariance matrix.

I Generate a single sample from this 25 dimensional Gaussian
distribution, f = [f1, f2 . . . f25].

I We will plot these points against their index.
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Figure: (a) 25 instantiations of a function, fn, (b) colormap of covariance
matrix.



Covariance Function

The covariance matrix

I Covariance matrix shows correlation between points fm and fn
if n is near to m.

I Less correlation if n is distant from m.

I Our ordering of points means that the function appears
smooth.

I Let’s focus on the joint distribution of two points form the 25.
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Prediction of f2 from f1

demGpCov2D([1 2])
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Covariance Functions
Where did this covariance matrix come from?

RBF Kernel Function

k
(
t, t ′
)

= α exp

(
−||t − t ′||2

2l2

)

I Covariance matrix is built
using the inputs to the
function t.

I For the example above it
was based on Euclidean
distance.

I The covariance function is
also know as a kernel.
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Covariance Samples

demCovFuncSample

−1 −0.5 0 0.5 1
−6

−4

−2

0

2

4

6

Figure: RBF kernel with l = 10−
1
2 , α = 1



Covariance Samples
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Covariance Samples
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Gaussian Process Regression
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Learning Kernel Parameters
Can we determine length scales and noise levels from the data?
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Mechanical Analogy

Back to Latent Force Models!

I These models rely on the latent variables to provide the
dynamic information.

I We now introduce a further dynamical system with a
mechanistic inspiration.

I Physical Interpretation:

I the latent functions, fi (t) are q forces.
I We observe the displacement of d springs to the forces.,
I Interpret system as the force balance equation, XD = FS + ε.
I Forces act, e.g. through levers — a matrix of sensitivities,

S ∈ <q×d .
I Diagonal matrix of spring constants, D ∈ <d×d .
I Original System: W = SD−1.



Extend Model

I Add a damper and give the system mass.

FS = ẌM + ẊC + XD + ε.

I Now have a second order mechanical system.

I It will exhibit inertia and resonance.

I There are many systems that can also be represented by
differential equations.

I When being forced by latent function(s), {fi (t)}q
i=1, we call

this a latent force model.
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Gaussian Process priors and Latent Force Models
Driven Harmonic Oscillator

I For Gaussian process we can compute the covariance matrices
for the output displacements.

I For one displace the model is

mk ẍk(t) + ck ẋk(t) + dkxk(t) = bk +
M∑

i=0

sik fi (t), (1)

where, mk is the kth diagonal element from M and similarly
for ck and dk . sik is the i , kth element of S.

I Model the latent forces as q independent, GPs with RBF
covariances

kfi fl
(t, t ′) = exp

(
−(t − t ′)2

σ2
i

)
δil .



Covariance for ODE Model

I RBF Kernel function for f (t)

xj (t) =
1

mjωj

q∑
i=1

Sji exp(−αj t)

∫ t

0
fi (u) exp(αju) sin(ωj (t−u))du

I Joint distribution
for x1 (t), x2 (t),
x3 (t) and f (t).
Damping ratios:

ζ1 ζ2 ζ3
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Joint Sampling of x (t) and f (t)

I demLfmSample
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Figure: Joint samples from the ODE covariance, cyan: f (t), red:
x1 (t)(underdamped) and green: x2 (t) (overdamped) and blue:
x3 (t) (critically damped).
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Covariance for ODE
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Example: Motion Capture

Mauricio Alvarez and David Luengo (Álvarez et al., 2009)

I Motion capture data: used for animating human motion.

I Multivariate time series of angles representing joint positions.

I Objective: generalize from training data to realistic motions.

I Use 2nd Order Latent Force Model with mass/spring/damper
(resistor inductor capacitor) at each joint.
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Prediction of Test Motion

I Model left arm only.

I 3 balancing motions (18, 19, 20) from subject 49.

I 18 and 19 are similar, 20 contains more dramatic movements.

I Train on 18 and 19 and testing on 20

I Data was down-sampled by 32 (from 120 fps).

I Reconstruct motion of left arm for 20 given other movements.

I Compare with GP that predicts left arm angles given other
body angles.



Mocap Results

Table: Root mean squared (RMS) angle error for prediction of the left
arm’s configuration in the motion capture data. Prediction with the
latent force model outperforms the prediction with regression for all apart
from the radius’s angle.

Latent Force Regression
Angle Error Error
Radius 4.11 4.02
Wrist 6.55 6.65

Hand X rotation 1.82 3.21
Hand Z rotation 2.76 6.14

Thumb X rotation 1.77 3.10
Thumb Z rotation 2.73 6.09



Mocap Results II
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Figure: Predictions from LFM (solid line, grey error bars) and direct
regression (crosses with stick error bars).
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Partial Differential Equations and Latent Forces

I Can extend the concept to latent functions in PDEs.

I Jura data: concentrations of heavy metal pollutants from the
Swiss Jura.

I Consider a latent function that represents how the pollutants
were originally laid down (initial condition).

I Assume pollutants diffuse at different rates resulting in the
concentrations observed in the data set.

∂xq(x, t)

∂t
=

d∑
j=1

κq
∂2xq(x, t)

∂x2
j

,

I Latent function fr (x) represents the concentration of
pollutants at time zero (i.e. the system’s initial condition).



Solution to the PDE

I The solution to the system (Polyanin, 2002) is then given by

xq(x, t) =
R∑

r=1

Srq

∫
Rd

fr (x′)Gq(x, x′, t)dx′

where Gq(x, x′, t) is the Green’s function given as

Gq(x, x′, t) =
1

2dπd/2T
d/2
q

exp

− d∑
j=1

(xj − x ′j )2

4Tq

 ,

with Tq = κqt.



Covariance Function

I For latent function given by a GP with the RBF covariance
function this is tractable.

kxpxq (x, x′, t) =
R∑

r=1

SrpSrq|Lr |1/2

|Lrp + Lrq + Lr |1/2

× exp

[
−1

2

(
x− x′

)>
(Lrp + Lrq + Lr )−1 (x− x′

)]
,

where Lrp,Lrq and Lr are diagonal isotropic matrices with
entries 2κpt, 2κqt and 1/`2

r respectively. The covariance
function between the output and latent functions is given by

kxqfr (x, x′, t) =
Srq|Lr |1/2

|Lrq + Lr |1/2

× exp

[
−1

2

(
x− x′

)>
(Lrq + Lr )−1 (x− x′

)]
.



Prediction of Metal Concentrations

I Replicate experiments in (Goovaerts, 1997, pp. 248,249):
I Primary variable (Cd, Cu, Pb, Co) predicted in conjunction

with secondary variables (Ni and Zn for Cd; Pb, Ni, and Zn for
Cu; Cu, Ni, and Zn for Pb; Ni and Zn for Co).1

I Condition on the secondary variables to improve prediction for
primary variables.

I Compare results for the diffusion kernel with independent GPs
and “ordinary co-kriging” (Goovaerts, 1997, pp. 248,249).

1Data available at http://www.ai-geostats.org/.

http://www.ai-geostats.org/


Jura Results

Table: Mean absolute error and standard deviation for ten repetitions of
the experiment for the Jura dataset. IGPs stands for independent GPs,
GPDK stands for GP diffusion kernel, OCK for ordinary co-kriging. For
the Gaussian process with diffusion kernel, we learn the diffusion
coefficients and the length-scale of the covariance of the latent function.

Metals IGPs GPDK OCK
Cd 0.5823±0.0133 0.4505±0.0126 0.5
Cu 15.9357±0.0907 7.1677±0.2266 7.8
Pb 22.9141±0.6076 10.1097±0.2842 10.7
Co 2.0735±0.1070 1.7546±0.0895 1.5
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Discussion and Future Work

I Integration of probabilistic inference with mechanistic models.

I Ongoing/other work:

I Biological systems.
I Non linear response and non linear differential equations.
I Scaling up to larger systems
I Applications to other types of system, e.g. computational

biology, spatial systems.
I Stochastic differential equations
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M. Álvarez, D. Luengo, and N. D. Lawrence. Latent force models. In van Dyk and Welling (2009), pages 9–16.
[PDF].

M. Barenco, D. Tomescu, D. Brewer, R. Callard, J. Stark, and M. Hubank. Ranked prediction of p53 targets using
hidden variable dynamic modeling. Genome Biology, 7(3):R25, 2006.

P. Boyle and M. Frean. Dependent Gaussian processes. In L. Saul, Y. Weiss, and L. Bouttou, editors, Advances in
Neural Information Processing Systems, volume 17, pages 217–224, Cambridge, MA, 2005. MIT Press.

P. Gao, A. Honkela, M. Rattray, and N. D. Lawrence. Gaussian process modelling of latent chemical species:
Applications to inferring transcription factor activities. Bioinformatics, 24:i70–i75, 2008. [PDF]. [DOI].

D. S. Goodsell. The molecular perspective: p53 tumor suppressor. The Oncologist, Vol. 4, No. 2, 138-139, April
1999, 4(2):138–139, 1999.

P. Goovaerts. Geostatistics For Natural Resources Evaluation. Oxford University Press, 1997. [Google Books] .

D. M. Higdon. Space and space-time modelling using process convolutions. In C. Anderson, V. Barnett,
P. Chatwin, and A. El-Shaarawi, editors, Quantitative methods for current environmental issues, pages 37–56.
Springer-Verlag, 2002.

R. Khanin, V. Viciotti, and E. Wit. Reconstructing repressor protein levels from expression of gene targets in E.
Coli. Proc. Natl. Acad. Sci. USA, 103(49):18592–18596, 2006. [DOI].

D. Koller, Y. Bengio, D. Schuurmans, and L. Bottou, editors. Advances in Neural Information Processing Systems,
volume 21, Cambridge, MA, 2009. MIT Press. To appear.
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Example: Transcriptional Regulation

I First Order Differential Equation

dxj (t)

dt
= Bj + Sj f (t)− Djxj (t)

I Can be used as a model of gene transcription: Barenco et al.,
2006; Gao et al., 2008.

I xj (t) – concentration of gene j ’s mRNA

I f (t) – concentration of active transcription factor

I Model parameters: baseline Bj , sensitivity Sj and decay Dj

I Application: identifying co-regulated genes (targets)

I Problem: how do we fit the model when f (t) is not observed?
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2006; Gao et al., 2008.
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I f (t) – concentration of active transcription factor
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[labels=skipGPProperties]Covariance for Transcription
Model

RBF covariance function for f (t)

xi (t) =
Bi

Di
+ Si exp (−Di t)

∫ t

0
f (u) exp (Diu) du.

I Joint distribution
for x1 (t), x2 (t)
and f (t).
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p53 “Guardian of the Cell”

I Responsible for Repairing DNA damage

I Activates DNA Repair proteins

I Pauses the Cell Cycle (prevents replication of damage DNA)

I Initiates apoptosis (cell death) in the case where damage can’t
be repaired.

I Large scale feeback loop with NF-κB.



p53 DNA Damage Repair

Figure: p53. Left unbound, Right bound to DNA. Images by David S.
Goodsell from http://www.rcsb.org/ (see the “Molecule of the Month”
feature).

http://www.rcsb.org/


p53

Figure: Repair of DNA damage by p53. Image fromGoodsell (1999).



Modelling Assumption

I Assume p53 affects targets as a single input module network
motif (SIM).

p53

p21

DDB2

PA26

BIK

TNFRSF10b

Figure: p53 SIM network motif as modelled by Barenco et al. 2006.



p53 (RBF covariance)

Pei Gao
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Ranking with ERK Signalling

I Target Ranking for Elk-1.

I Elk-1 is phosphorylated by ERK from the EGF signalling
pathway.

I Predict concentration of Elk-1 from known targets.

I Rank other targets of Elk-1.



Elk-1 (MLP covariance)

Jennifer Withers
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Elk-1 target selection

Fitted model used to rank potential targets of Elk-1
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Convolutions and Computational Complexity

Mauricio Alvarez

I Solutions to these differential equations is normally as a
convolution.

xi (t) =

∫
f (u) ki (u − t) du + hi (t)

xi (t) =

∫ t

0
f (u) gi (u) du + hi (t)

I Convolution Processes (Higdon, 2002; Boyle and Frean, 2005).

I Convolutions lead to N × d size covariance matrices
O
(
N3d3

)
complexity, O

(
N2d2

)
storage.

I Model is conditionally independent over {xi (t)}d
i=1 given

f (t).



Independence Assumption

Mauricio Alvarez

I Can assume conditional independence given given {f (ti )}k
i=1.

(Álvarez and Lawrence, 2009)

I Result is very similar to PITC approximation (Quiñonero
Candela and Rasmussen, 2005).

I Reduces to O
(
N3dk2

)
complexity, O

(
N2dk

)
storage.

I Can also do a FITC style approximation (Snelson and
Ghahramani, 2006).

I Reduces to O
(
Ndk2

)
complexity, O (Ndk) storage.



Tide Sensor Network

Mauricio Alvarez

I Network of tide height sensors in the solent — tide heights are
correlated.

I Data kindly provided by Alex Rogers (see Osborne et al.,
2008).

I d = 3 and N = 1000 of the 4320 for the training set.

I Simulate sensor failure by knocking out onse sensor for a given
time.

I For the other two sensors we used all 1000 training
observations.

I Take k = 100.



Tide Height Results

Mauricio Alvarez

(a) Bramblemet Inde-
pendent

(b) Bramblemet PITC

(c) Cambermet Indepen-
dent

(d) Cambermet PITC

Figure: Predictive Mean and variance using independent GPs and the
PITC approximation for the tide height signal in the sensor dataset.



Cokriging Jura

Mauricio Alvarez

I Jura dataset — concentrations of several heavy metals.

I Prediction 259 data, validation 100 data points.

I Predict primary variables (cadmium and copper) at prediction
locations in conjunction with some secondary variables (nickel
and zinc for cadmium; lead, nickel and zinc for copper)
(Goovaerts, 1997, p. 248,249).



Swiss Jura Results

Mauricio Alvarez
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Figure: Mean absolute error. IGP stands for independent GP, P(M)
stands for PITC with M inducing values, FGP stands for full GP and CK
stands for ordinary co-kriging.
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Models of non-linear regulation

I Non-linear Activation: Michaelis-Menten Kinetics

dxi (t)

dt
= Bi +

Si f (t)

γi + f (t)
− Dixi (t)

used by Rogers and Girolami (2006)

I Non-linear Repression

dxi (t)

dt
= Bi +

Si

γi + f (t)
− Dixi (t)

used by Khanin et al., 2006, PNAS 103
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MAP Laplace Approximation

Consider the following modification to the model,

dxj (t)

dt
= Bj + Sjg (f (t))− Djxj (t) ,

where g (·) is a non-linear function. The differential equation can
still be solved,

xj (t) =
Bj

Dj
+ Sj

∫ t

0
e−Dj (t−u)gj (f (u)) du

Use Laplace’s method (Laplace, 1774),

p (f | x) = N
(

f̂,A−1
)
∝ exp

(
−1

2

(
f − f̂

)T
A
(

f − f̂
))

where f̂ = argmaxp(f | x) and A = −∇∇ log p (f | y) |f=f̂ is the
Hessian of the negative posterior at that point.



p53 and Michaelis-Menten Kinetics

Pei Gao

I The Michaelis-Menten activation model uses the following
non-linearity

gj (f (t)) =
ef (t)

γj + ef (t)
,

where we are using a GP f (t) to model the log of the TF
activity.
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Valdiation of Laplace Approximation

Michalis Titsias
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Figure: Laplace approximation error bars along with samples from the
true posterior distribution.



Use Samples to Represent Posterior

Michalis Titsias

I Sample in Gaussian processes

p (f|x) ∝ p (x|f) p (f)

I Likelihood relates GP to data through

xj (t) = αje
−Dj t +

Bj

Dj
+ Sj

∫ t

0
e−Dj (t−u)gj (f (u))du

I We use control points for fast sampling. (Titsias et al., 2009)



Sampling using control points

I Separate the points in f into two groups:

I few control points fc

I and the large majority of the remaining points fρ = f \ fc

I Sample the control points fc using a proposal q
(

f
(t+1)
c |f(t)

c

)
I Sample the remaining points fρ using the conditional GP prior

p
(

f
(t+1)
ρ |f(t+1)

c

)
I The whole proposal is

Q
(

f(t+1)|f(t)
)

= p
(

f(t+1)
ρ |f(t+1)

c

)
q
(

f
(t+1)
c |f(t)

c

)
I Its like sampling from the prior p(f) but imposing random

walk behaviour through the control points.



p53 System Again

I One transcription factor (p53) that acts as an activator. We
consider the Michaelis-Menten kinetic equation

dxj (t)

dt
= Bj + Sj

exp(f (t))

exp(f (t)) + γj
− Djxj (t)

I MCMC details:

I 7 control points are used (placed in a equally spaced grid)
I Running time 4/5 hours for 2 million sampling iterations plus

burn in
I Acceptance rate for f after burn in was between 15%− 25%



Data used by Barenco et al. (2006): Predicted gene
expressions for the 1st replica
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Data used by Barenco et al. (2006): Protein concentrations
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Linear model (Barenco et al. predictions are shown as crosses)
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p53 Data Kinetic parameters
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Note that Barenco et al. use a linear model



Outline

ODE Model of Transcriptional Regulation

Efficient Approximations

Non-linear Response

Cascade Differential Equations



Cascaded Differential Equations

Antti Honkela

I Transcription factor protein also has governing mRNA.

I This mRNA can be measured.

I In signalling systems this measurement can be misleading
because it is activated (phosphorylated) transcription factor
that counts.

I In development phosphorylation plays less of a role.



Drosophila Mesoderm Development

Data from Furlong Lab in EMBL Heidelberg.

I Describe mesoderm development.



Cascaded Differential Equations

Antti Honkela

We take the production rate of active transcription factor to be
given by

df (t)

dt
= σy (t)− δf (t)

dxj (t)

dt
= Bj + Sj f (t)− Djxj (t)

The solution for f (t), setting transient terms to zero, is

f (t) = σ exp (−δt)

∫ t

0
y(u) exp (δu) du .



Covariance for Translation/Transcription Model

RBF covariance function for y (t)

f (t) = σ exp (−δt)
Z t

0

y(u) exp (δu) du

xi (t) =
Bi

Di
+ Si exp (−Di t)

Z t

0

f (u) exp (Diu) du.

I Joint distribution
for x1 (t), x2 (t),
f (t) and y (t).

I Here:
δ D1 S1 D2 S2

0.1 5 5 0.5 0.5
y(t) f(t) x1(t) x2(t)

y(t)

f(t)

x1(t)

x2(t)
−1
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Results for Mef2 using the Cascade model
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