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Machine Learning



What is Machine Learning?

data

» data: observations, could be actively or passively acquired
(meta-data).
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What is Machine Learning?

data + model

» model: assumptions, based on previous experience (other
data! transfer learning etc), or beliefs about the regularities of
the universe. Inductive bias.
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What is Machine Learning?

data 4+ model = prediction

» prediction: an action to be taken or a categorization or a
quality score.



Historical Perspective

v

A data driven approach to Artificial Intelligence.

v

Inspired by attempts to model the brain (the connectionists).

» A community that transcended traditional boundaries
(psychology, statistical physics, signal processing)

v

Led to an approach that dominates in the modern data-rich
world.
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Two Dominant Approaches

» Machine Learning as Optimization:

» Formulate your learning Problem as an optimization problem.
» Typically intractable, so minimize a relaxed version of the cost
function.
> Prove characteristics of the resulting solution.
» Machine Learning as Probabilistic Modelling:
Formulate your learning problem as a probabilistic model.
Relate variables through probability distributions.
If Bayesian, treat parameters with probability distributions.

Required integrals often intractable: use approximations
(MCMC, variational etc).

v

v vy
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Modelling Assumptions

> Modelling assumptions are either included as:
> a regularizer (optimization) or
> in the probability distribution (probabilistic approach).

» Typical assumptions: sparsity, smoothness.



Styles of Machine Learning

Background: interpolation is easy, extrapolation is hard

» Urs Holzle keynote talk at NIPS 2005.
» Emphasis on massive data sets.
> Let the data do the work—more data, less extrapolation.
> Alternative paradigm:
» Very scarce data: computational biology, human motion.
» How to generalize from scarce data?

> Need to include more assumptions about the data (e.g.
invariances).
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General Approach

data mode/ing

let the datao‘%peak
da Qfgrlven

adgp ive models

$d?glt recognition

N

Broadly Speaking: Two approaches to modeling

mechanistic modeling
{’\([

impose phygé?%l laws
knowlegge driven
diffegghtial equations

RN
clémgte, weather models

N




Weakly Mechanistic vs Strongly Mechanistic

> Underlying data modeling techniques there are weakly
mechanistic principles (e.g. smoothness).

> In physics the models are typically strongly mechanistic.
> In principle we expect a range of models which vary in the
strength of their mechanistic assumptions.

» This work is one part of that spectrum: add further
mechanistic ideas to weakly mechanistic models.



Linear Dimensionality Reduction

> Find a lower dimensional plane embedded in a higher
dimensional space.
» The plane is described by the matrix W € RP*9.

f

f

Figure: Mapping a two dimensional plane to a higher dimensional space
in a linear way. Data are generated by corrupting points on the plane
with noise.



Dimensionality Reduction

> Linear relationship between the data, X, and a reduced
dimensional representation, F.

X =FW +e,

e~N(0,X%)

» Problem is we don’t know what F should bel



Marionette Analogy

observed



Marionette Analogy

F % unobserved
————

observed



F is a Latent Variable

v

Define a probability distribution for F.

v

Marginalize out F (integrate over).

v

Optimize with respect to W.
For Gaussian distribution, F ~ N (0, 1)
» and ¥ = ol we have probabilistic PCA (Tipping and Bishop,

1999; Roweis, 1998).
» and X constrained to be diagonal, we have factor analysis.

v



Dimensionality Reduction: Temporal Data

| |

f(t)

t

Figure: PCA: Pure sampling from a Gaussian does not retain temporal
effects.



Dimensionality Reduction: Temporal Data

f(t)

Figure: Kalman filter (Rauch-Tung-Striebel smoother) is
Markov-Gaussian (non smooth).



Dimensionality Reduction: Temporal Data

Figure: General Gaussian processes allow for priors over smooth functions.



Gaussian Processes



Sampling a Function

Multi-variate Gaussians

» We will consider a Gaussian with a particular structure of
covariance matrix.

» Generate a single sample from this 25 dimensional Gaussian
distribution, f = [f1, f> ... f5].

> We will plot these points against their index.



Gaussian Distribution Sample

5 10 15 20 25

-1

(a) A 25 dimensional correlated ran- (b) colormap showing correlations
dom variable (values ploted against between dimensions
index)

Figure: A sample from a 25 dimensional Gaussian distribution.
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Covariance Function

The covariance matrix

>

Covariance matrix shows correlation between points f; and f; if
i is near to j.
Less correlation if / is distant from j.

Our ordering of points means that the function appears
smooth.

Let's focus on the joint distribution of two points from the 25.
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Prediction of f5 from f;

demGpCov2D([1 5])

/

-1 f1 1

]

1 0.574
0.574 1

Figure: Covariance for [ ;1 ] is Kis = [
5



Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

2
N =
k(t,t)-aexp( Tz

» Covariance matrix is built
using the inputs to the
function t.

» For the example above it
was based on Euclidean
distance.

» The covariance function is
also know as a kernel.




Covariance Samples

demCovFuncSample

Figure: Exponentiated quadratic kernel with £ = 0.3, a =1



Covariance Samples
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Figure: Exponentiated quadratic kernel with / =1, a =1



Covariance Samples

demCovFuncSample

Figure:  Exponentiated quadratic kernel with £ =0.3, « = 4



Covariance Samples

demCovFuncSample

Figure:  Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance
function /=1, a =4



Mechanical Analogy

Back to Mechanistic Models!

> These models rely on the latent variables to provide the
dynamic information.

» We now introduce a further dynamical system with a
mechanistic inspiration.

» Physical Interpretation:

» the latent functions, f;(t) are g forces.

» We observe the displacement of p springs to the forces.,

» Interpret system as the force balance equation, XD = FS + €.
» Forces act, e.g. through levers — a matrix of sensitivities,

S € RI*P.

Diagonal matrix of spring constants, D € RP*P.

» Original System: W = SD!.

v



Extend Model

v

Add a damper and give the system mass.

FS = XM + XC + XD + .

v

Now have a second order mechanical system.

It will exhibit inertia and resonance.

v

v

There are many systems that can also be represented by
differential equations.

» When being forced by latent function(s), {fi(t)}7_,, we call
this a latent force model.



Mass Spring Damper Analogy

pulleys

/spring
‘/ mass

_damper

observations

latent input

Figure: Mass spring damper analogy, an unobserved force drives multiple
oscillators.
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Figure: Mass spring damper analogy, an unobserved force drives multiple
oscillators.



Gaussian Process priors and Latent Force Models

Driven Harmonic Oscillator

» For Gaussian process we can compute the covariance matrices
for the output displacements.

» For one displacement the model is

q

myXe(t) + cexi(t) + dixi(t) = br + Z sikfi(t), (1)
i=0

where, my is the kth diagonal element from M and similarly
for ¢, and dk. sj is the i, kth element of S.

» Model the latent forces as g independent, GPs with
exponentiated quadratic covariances

(t—t)?
keh(t,t) = exp (_2—&2 Oil-



Covariance for ODE Model

» Exponentiated Quadratic Covariance function for f (t)

- t .
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Covariance for ODE Model

> Analogy

X = Ze,—-rf,' f,' NN(O,Z,‘) S x~N <0,Ze,~TZ;e;>

\

» Joint distribution
for x1 (t), x2 (1),
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Joint Sampling of x (t) and f (t)

» 1lfmSample

Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 (t) (underdamped), green: x; (t) (overdamped), and blue: x3 (t)
(critically damped).
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Joint Sampling of x (t) and f (t)

» 1lfmSample
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Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 (t) (underdamped), green: x; (t) (overdamped), and blue: x3 (t)
(critically damped).



Covariance for ODE

» Exponentiated Quadratic Covariance function for f (t)
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Motion Capture Example
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» Motion capture data: used for animating human motion.
» Multivariate time series of angles representing joint positions.

» Objective: generalize from training data to realistic motions.



Example: Motion Capture

Mauricio Alvarez and David Luengo (Alvarez et al., 2009,
2011a)

v

Motion capture data: used for animating human motion.

v

Multivariate time series of angles representing joint positions.

v

Objective: generalize from training data to realistic motions.

v

Use 2nd Order Latent Force Model with mass/spring/damper
(resistor inductor capacitor) at each joint.



Prediction of Test Motion

> Model left arm only.

» 3 balancing motions (18, 19, 20) from subject 49.

> 18 and 19 are similar, 20 contains more dramatic movements.
> Train on 18 and 19 and testing on 20

» Data was down-sampled by 32 (from 120 fps).

» Reconstruct motion of left arm for 20 given other movements.

» Compare with GP that predicts left arm angles given other
body angles.



Mocap Results

Table: Root mean squared (RMS) angle error for prediction of the left
arm’s configuration in the motion capture data. Prediction with the
latent force model outperforms the prediction with regression for all apart
from the radius's angle.

Latent Force | Regression

Angle Error Error
Radius 4.11 4.02
Wrist 6.55 6.65

Hand X rotation 1.82 3.21
Hand Z rotation 2.76 6.14
Thumb X rotation 1.77 3.10
Thumb Z rotation 2.73 6.09




Mocap Results Il

1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9

(a) Inferred Latent Force (b) Wrist (c) Hand X Rotation

l

° 1 2 3 4 5 6 7 8 © 1 2 3 4 5 6 7 8 9 © 1 2 3 4 5 6 7 8 9

(d) Hand Z Rotation (e) Thumb X Rotation  (f) Thumb Z Rotation

Figure: Predictions from LFM (solid line, grey error bars) and direct
regression (crosses with stick error bars).



Motion Capture Experiments

» Data set is from the CMU motion capture data basel.
» Two different types of movements: golf-swing and walking.

» Train on a subset of motions for each movement and test on a
different subset.

» This assesses the model’s ability to extrapolate.

» For testing: condition on three angles associated to the root
nodes and first five and last five frames of the motion.

» Golf-swing use leave one out cross validation on four motions.

> For the walking train on 4 motions and validate on 8 motions.

!The CMU Graphics Lab Motion Capture Database was created with
funding from NSF EIA-0196217 and is available at http://mocap.cs.cmu.edu.


http://mocap.cs.cmu.edu

Table: RMSE and R? (explained variance) for golf swing and walking

Motion Capture Results

Movement | Method RMSE R? (%)
IND GP | 21.55+2.35 | 30.99 +9.67
Golf swing MTGP 21.19+2.18 | 45.594+7.86
SLFM 21.524+1.93 | 49.32+3.03
LFM 18.09 +1.30 | 72.25 +3.08
IND GP | 8.03+2.55 | 30.55410.64
Walking MTGP 7.75+2.05 37.77 = 4.53
SLFM 7.81+2.00 36.84 + 4.26
LFM 723 +218 | 48.15+5.66
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Example: Transcriptional Regulation

» First Order Differential Equation
dx; (t)
S = b5 ()= dg ()

» Can be used as a model of gene transcription: Barenco et al.,
2006; Gao et al., 2008.

» x;j(t) — concentration of gene j's mMRNA

» f(t) — concentration of active transcription factor

» Model parameters: baseline bj, sensitivity s; and decay d;

» Application: identifying co-regulated genes (targets)

» Problem: how do we fit the model when f(t) is not observed?



Covariance for Transcription Model

RBF covariance function for f (t)
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Covariance for Transcription Model
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time series data. For each putative target gene we fit a simple dif-  lected over a period where TF activity is changing. Ou
ferential equation model of transcriptional regulation, and the allows for complementary evidence from expression




Cascaded Differential Equations

(Honkela et al., 2010)

» Transcription factor protein also has governing mRNA.
> This mRNA can be measured.

> In signalling systems this measurement can be misleading
because it is activated (phosphorylated) transcription factor
that counts.

> In development phosphorylation plays less of a role.

» Build a simple cascaded differential equation to model this.



Covariance for Translation/Transcription Model

RBF covariance function for y (t)

f(t) = oexp(—dt) /Ot y(u)exp (du)du

. t
xi(t) =2 +s,-exp(—d,-t)/0 F (u) exp (djur) du.

» Joint distribution y(8) \ \ .

for x1 (t), x2 (),

f () and y (1) 0 Mg Ny N

» Here:

(5[ [s] b | = | Xl(t)\ \ \

1|5 5105 |05
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y(t) (1) x(t)  x(t)



Twist Results

> Use mRNA of Twist as driving input.

» For each gene build a cascade model that forces Twist to be
the only TF.

» Compare fit of this model to a baseline (e.g. similar model
but sensitivity zero).

» Rank according to the likelihood above the baseline.

» Compare with correlation, knockouts and time series network
identification (TSNI) (Della Gatta et al., 2008).



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0002526.



Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn0003486.



Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Evaluation methods

» Evaluate the ranking methods by taking a number of
top-ranked targets and record the number of
“positives” (Zinzen et al., 2009):

» targets with ChlIP-chip binding sites within 2 kb of gene
> (targets differentially expressed in TF knock-outs)
» Compare against
» Ranking by correlation of expression profiles
» Ranking by g-value of differential expression in knock-outs
» Optionally focus on genes with annotated expression in tissues
of interest



Relative enrichment (%)
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» Cascade models allow genomewide analysis of potential
targets given only expression data.

> Once a set of potential candidate targets have been identified,
they can be modelled in a more complex manner.

» We don't have ground truth, but evidence indicates that the
approach can perform as well as knockouts.



Discussion and Future Work



Discussion and Future Work

> Integration of probabilistic inference with mechanistic models.

» Ongoing/other work:

» Non linear response and non linear differential equations.

» Scaling up to larger systems Alvarez et al. (2010); Alvarez and
Lawrence (2009).

» Discontinuities through Switched Gaussian Processes Alvarez
et al. (2011b)

» Robotics applications.

» Applications to other types of system, e.g. spatial systems
Alvarez et al. (2011a).

> Stochastic differential equations Alvarez et al. (2010).
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