

Latent Force Models with Gaussian Processes

Neil D. Lawrence

work with Magnus Rattray, Mauricio Alvarez, Pei Gao, Antti Honkela, David Luengo, Guido Sanguinetti, Michalis Titsias,
Jennifer Withers

Seminar at Courant Institute, Computer Science

23rd October 2009

Outline

Motivation and Review

Second Order ODE

Motion Capture Example

ODE Model of Transcriptional Regulation

Cascade Differential Equations

Discussion and Future Work

Outline

Motivation and Review

Second Order ODE

Motion Capture Example

ODE Model of Transcriptional Regulation

Cascade Differential Equations

Discussion and Future Work

Styles of Machine Learning

Background: interpolation is easy, extrapolation is hard

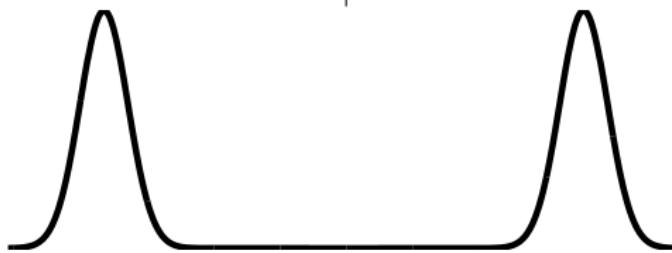
- ▶ Urs Hözle keynote talk at NIPS 2005.
 - ▶ Emphasis on massive data sets.
 - ▶ Let the data do the work—more data, less extrapolation.
- ▶ Alternative paradigm:
 - ▶ Very scarce data: computational biology, human motion.
 - ▶ How to generalize from scarce data?
 - ▶ Need to include more assumptions about the data (e.g. invariances).

General Approach

Broadly Speaking: Two approaches to modeling

data modeling

mechanistic modeling



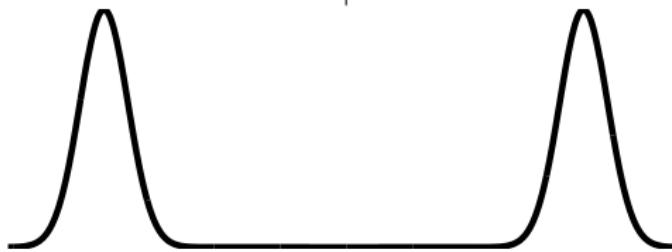
General Approach

Broadly Speaking: Two approaches to modeling

data modeling

let the data “speak”

mechanistic modeling



General Approach

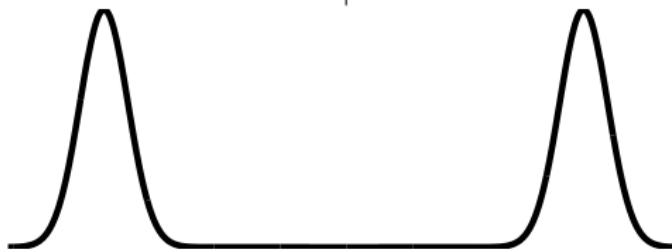
Broadly Speaking: Two approaches to modeling

data modeling

let the data “speak”

mechanistic modeling

impose physical laws



General Approach

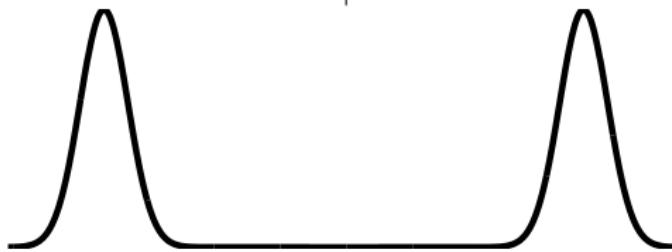
Broadly Speaking: Two approaches to modeling

data modeling

let the data “speak”
data driven

mechanistic modeling

impose physical laws



General Approach

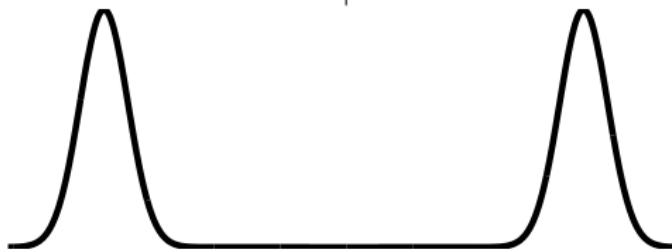
Broadly Speaking: Two approaches to modeling

data modeling

let the data “speak”
data driven

mechanistic modeling

impose physical laws
knowledge driven



General Approach

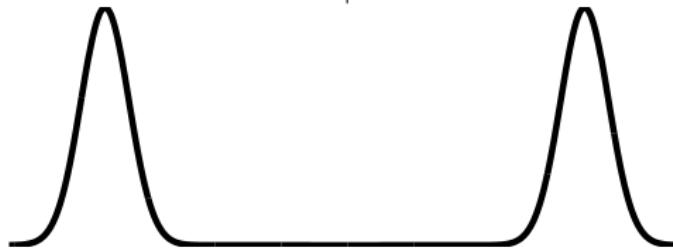
Broadly Speaking: Two approaches to modeling

data modeling

let the data “speak”
data driven
adaptive models

mechanistic modeling

impose physical laws
knowledge driven



General Approach

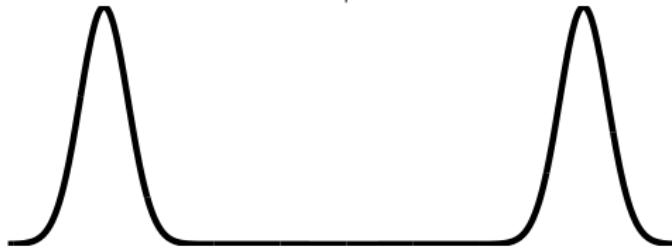
Broadly Speaking: Two approaches to modeling

data modeling

let the data “speak”
data driven
adaptive models

mechanistic modeling

impose physical laws
knowledge driven
differential equations



General Approach

Broadly Speaking: Two approaches to modeling

data modeling

let the data “speak”

data driven

adaptive models

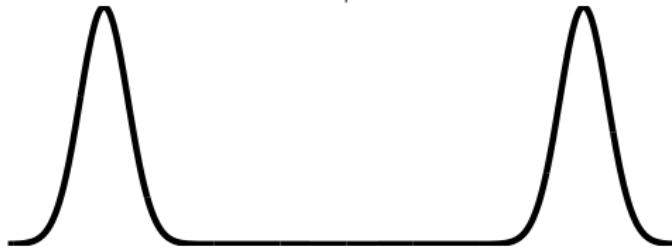
digit recognition

mechanistic modeling

impose physical laws

knowledge driven

differential equations



General Approach

Broadly Speaking: Two approaches to modeling

data modeling

let the data “speak”

data driven

adaptive models

digit recognition

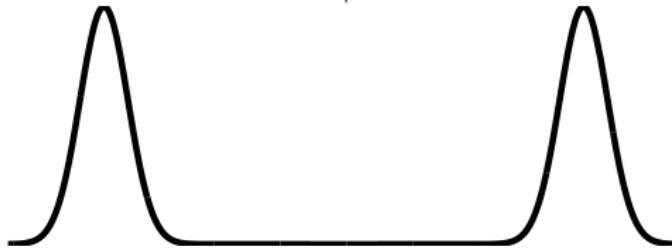
mechanistic modeling

impose physical laws

knowledge driven

differential equations

climate, weather models



Dimensionality Reduction

- ▶ Linear relationship between the data, $\mathbf{X} \in \mathbb{R}^{N \times d}$, and a reduced dimensional representation, $\mathbf{F} \in \mathbb{R}^{N \times q}$, where $q \ll d$.

$$\mathbf{X} = \mathbf{F}\mathbf{W} + \epsilon,$$

$$\epsilon \sim \mathcal{N}(\mathbf{0}, \Sigma)$$

- ▶ Integrate out \mathbf{F} , optimize with respect to \mathbf{W} .
- ▶ For Gaussian prior, $\mathbf{F} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 - ▶ and $\Sigma = \sigma^2 \mathbf{I}$ we have probabilistic PCA (Tipping and Bishop, 1999).
 - ▶ and Σ constrained to be diagonal, we have factor analysis.

Dimensionality Reduction: Temporal Data

- ▶ Deal with temporal data with a temporal latent prior.
- ▶ Independent Gauss-Markov priors over each $f_i(t)$ leads to : Rauch-Tung-Striebel (RTS) smoother (Kalman filter).
- ▶ More generally consider a Gaussian process (GP) prior,

$$p(\mathbf{f}|\mathbf{t}) = \prod_{i=1}^q \mathcal{N}(\mathbf{f}_{:,i} | \mathbf{0}, \mathbf{K}_{f_{:,i}, f_{:,i}}).$$

- ▶ Given the covariance functions for $\{f_i(t)\}$ we have an implied covariance function across all $\{x_i(t)\}$ —(ML: semi-parametric latent factor model (Teh et al., 2005), Geostatistics: linear model of coregionalization).
- ▶ Rauch-Tung-Striebel smoother has been preferred
 - ▶ linear computational complexity in N .
 - ▶ Advances in sparse approximations have made the general GP framework practical. (Titsias, 2009; Snelson and Ghahramani, 2006; Quiñonero Candela and Rasmussen, 2005).

Gaussian Distribution

Zero mean Gaussian distribution

- ▶ A multi-variate Gaussian distribution is defined by a mean and a covariance matrix.

$$N(\mathbf{f}|\mu, \mathbf{K}) = \frac{1}{(2\pi)^{\frac{N}{2}} |\mathbf{K}|^{\frac{1}{2}}} \exp\left(-\frac{(\mathbf{f} - \mu)^T \mathbf{K}^{-1} (\mathbf{f} - \mu)}{2}\right).$$

- ▶ We will consider the special case where the mean is zero,

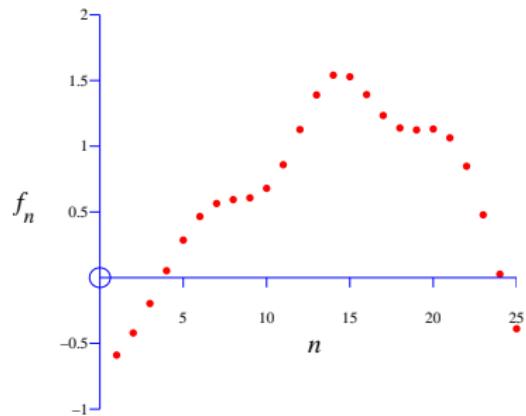
$$N(\mathbf{f}|\mathbf{0}, \mathbf{K}) = \frac{1}{(2\pi)^{\frac{N}{2}} |\mathbf{K}|^{\frac{1}{2}}} \exp\left(-\frac{\mathbf{f}^T \mathbf{K}^{-1} \mathbf{f}}{2}\right).$$

Sampling a Function

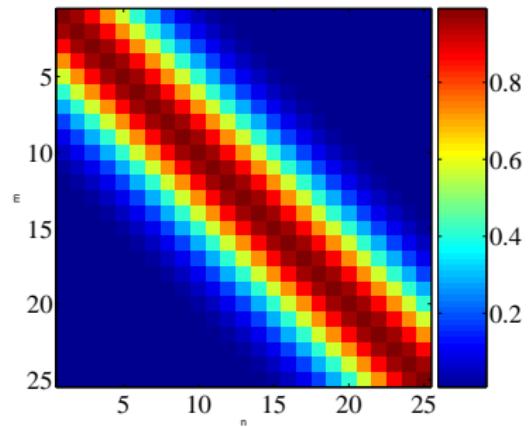
Multi-variate Gaussians

- ▶ We will consider a Gaussian with a particular structure of covariance matrix.
- ▶ Generate a single sample from this 25 dimensional Gaussian distribution, $\mathbf{f} = [f_1, f_2 \dots f_{25}]$.
- ▶ We will plot these points against their index.

Gaussian Distribution Sample



(a) A 25 dimensional correlated random variable (values plotted against index)



(b) colormap showing correlations between dimensions

Figure: A sample from a 25 dimensional Gaussian distribution.

Covariance Function

The covariance matrix

- ▶ Covariance matrix shows correlation between points f_m and f_n if n is near to m .
- ▶ Less correlation if n is distant from m .
- ▶ Our ordering of points means that the *function appears smooth*.
- ▶ Combine covariance function with training data by conditioning on one point given the other.
- ▶ Let's consider the marginal density for variables indexed by 1 and 2.

Covariance Function

The covariance matrix

- ▶ Covariance matrix shows correlation between points f_m and f_n if n is near to m .
- ▶ Less correlation if n is distant from m .
- ▶ Our ordering of points means that the *function appears smooth*.
- ▶ Combine covariance function with training data by conditioning on one point given the other.
- ▶ Let's consider the marginal density for variables indexed by 1 and 2.

Covariance Function

The covariance matrix

- ▶ Covariance matrix shows correlation between points f_m and f_n if n is near to m .
- ▶ Less correlation if n is distant from m .
- ▶ Our ordering of points means that the *function appears smooth*.
- ▶ Combine covariance function with training data by conditioning on one point given the other.
- ▶ Let's consider the marginal density for variables indexed by 1 and 2.

Covariance Function

The covariance matrix

- ▶ Covariance matrix shows correlation between points f_m and f_n if n is near to m .
- ▶ Less correlation if n is distant from m .
- ▶ Our ordering of points means that the *function appears smooth*.
- ▶ Combine covariance function with training data by conditioning on one point given the other.
- ▶ Let's consider the marginal density for variables indexed by 1 and 2.

Covariance Function

The covariance matrix

- ▶ Covariance matrix shows correlation between points f_m and f_n if n is near to m .
- ▶ Less correlation if n is distant from m .
- ▶ Our ordering of points means that the *function appears smooth*.
- ▶ Combine covariance function with training data by conditioning on one point given the other.
- ▶ Let's consider the marginal density for variables indexed by 1 and 2.

Prediction of f_2 from f_1

demGpCov2D([1 2])

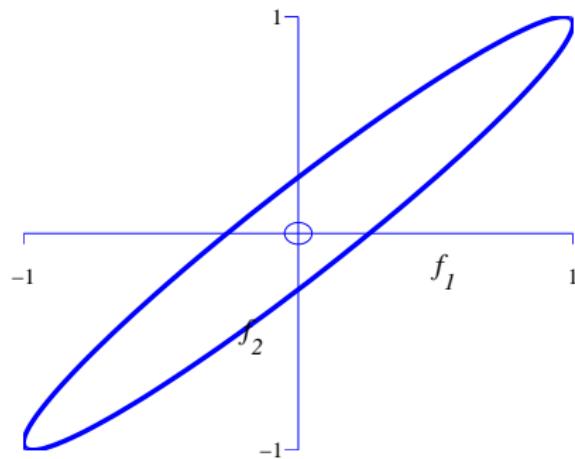


Figure: Covariance for $\begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$ is $\mathbf{K}_{12} = \begin{bmatrix} 1 & 0.966 \\ 0.966 & 1 \end{bmatrix}$.

Prediction of f_2 from f_1

demGpCov2D([1 2])

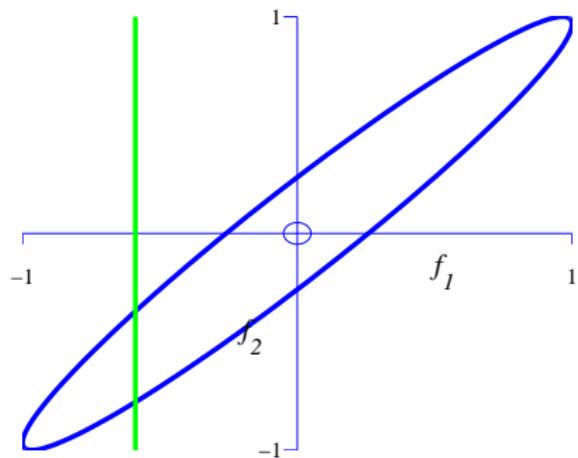


Figure: Covariance for $\begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$ is $\mathbf{K}_{12} = \begin{bmatrix} 1 & 0.966 \\ 0.966 & 1 \end{bmatrix}$.

Prediction of f_2 from f_1

demGpCov2D([1 2])

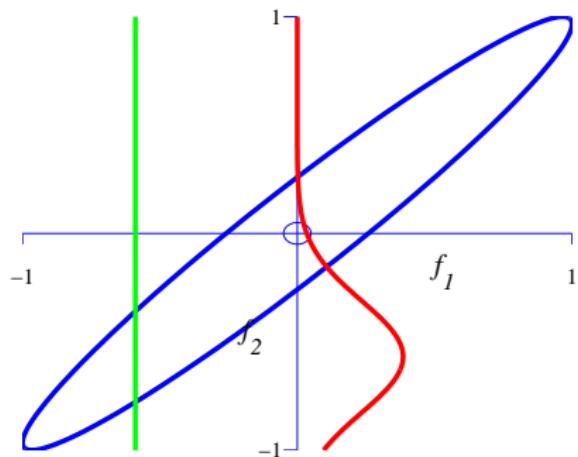


Figure: Covariance for $\begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$ is $\mathbf{K}_{12} = \begin{bmatrix} 1 & 0.966 \\ 0.966 & 1 \end{bmatrix}$.

Prediction of f_5 from f_1

demGpCov2D([1 5])

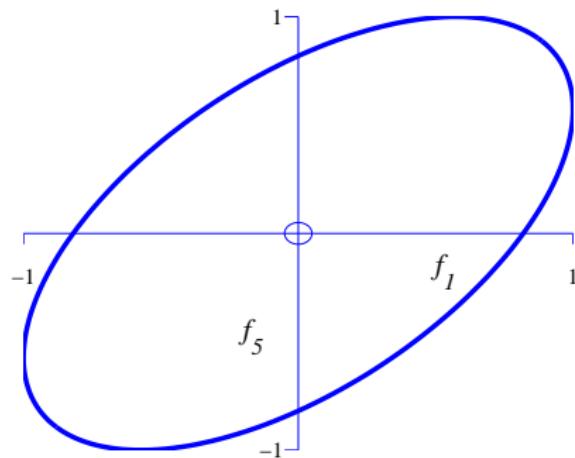


Figure: Covariance for $\begin{bmatrix} f_1 \\ f_5 \end{bmatrix}$ is $\mathbf{K}_{15} = \begin{bmatrix} 1 & 0.574 \\ 0.574 & 1 \end{bmatrix}$.

Prediction of f_5 from f_1

demGpCov2D([1 5])

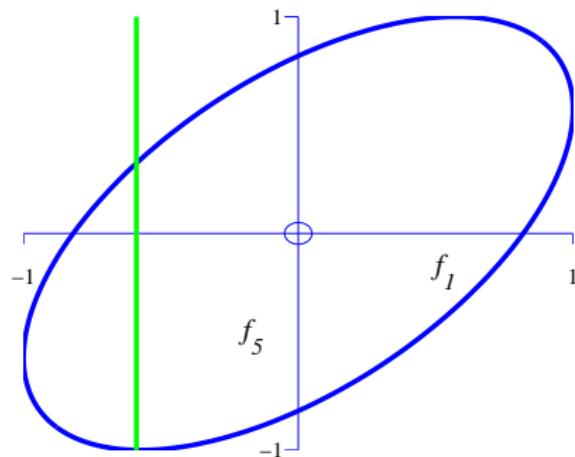


Figure: Covariance for $\begin{bmatrix} f_1 \\ f_5 \end{bmatrix}$ is $\mathbf{K}_{15} = \begin{bmatrix} 1 & 0.574 \\ 0.574 & 1 \end{bmatrix}$.

Prediction of f_5 from f_1

demGpCov2D([1 5])

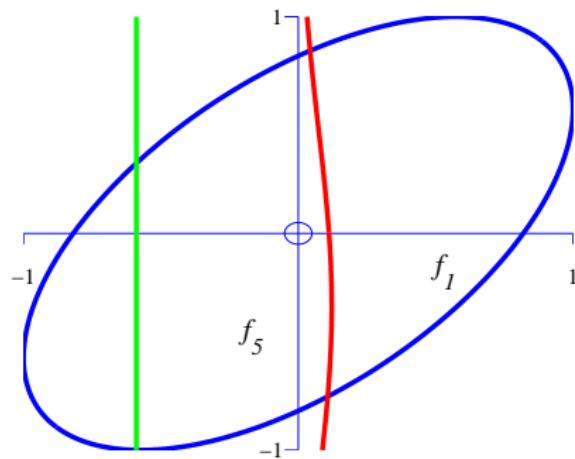


Figure: Covariance for $\begin{bmatrix} f_1 \\ f_5 \end{bmatrix}$ is $\mathbf{K}_{15} = \begin{bmatrix} 1 & 0.574 \\ 0.574 & 1 \end{bmatrix}$.

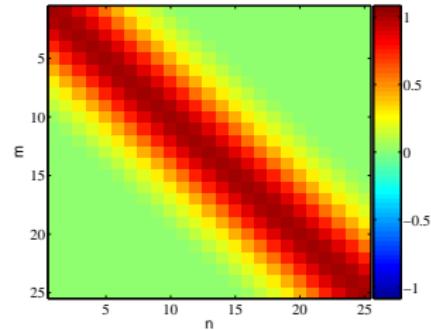
Covariance Functions

Where did this covariance matrix come from?

RBF Kernel Function

$$k(t, t') = \alpha \exp \left(-\frac{\|t - t'\|^2}{2\ell^2} \right)$$

- ▶ Covariance matrix is built using the *inputs* to the function t .
- ▶ For the example above it was based on Euclidean distance.
- ▶ The covariance function is also known as a kernel.



Covariance Samples

demCovFuncSample



Figure: RBF kernel with $\ell = 10^{-\frac{1}{2}}$, $\alpha = 1$

Covariance Samples

demCovFuncSample

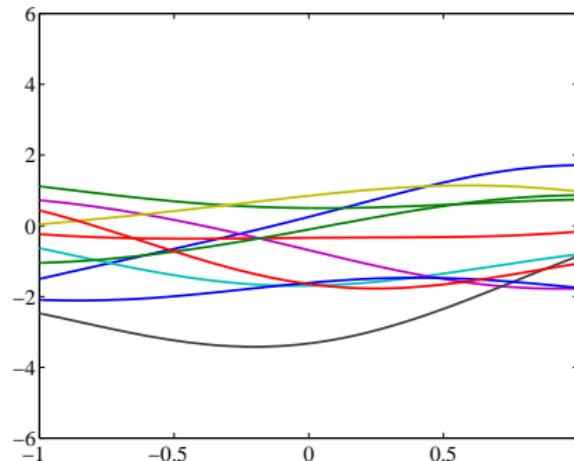


Figure: RBF kernel with $\ell = 1, \alpha = 1$

Covariance Samples

demCovFuncSample

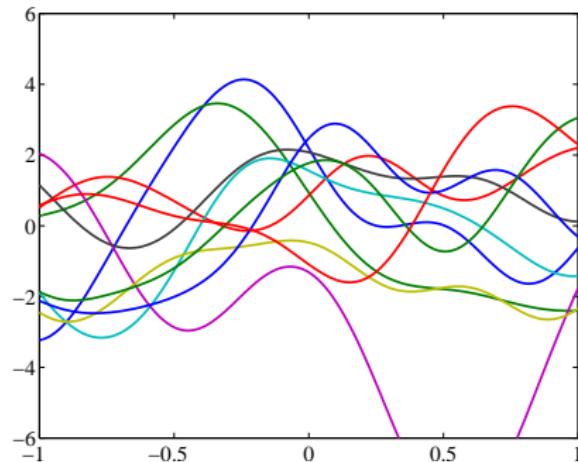


Figure: RBF kernel with $\ell = 0.3$, $\alpha = 4$

Covariance Samples

demCovFuncSample

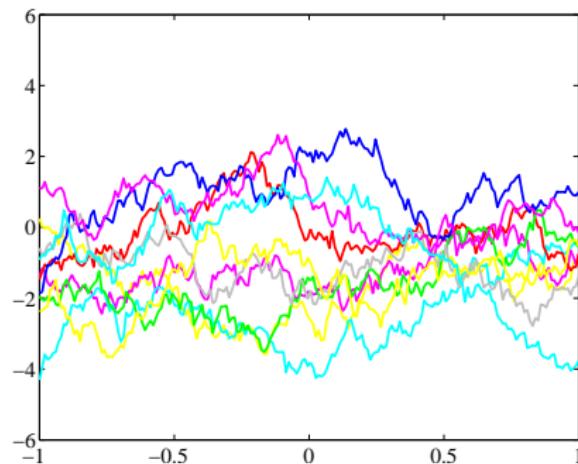


Figure: Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance function $\ell = 1$, $\alpha = 4$

Mechanical Analogy

Back to Latent Force Models!

- ▶ These models rely on the latent variables to provide the dynamic information.
- ▶ We now introduce a further dynamical system with a *mechanistic* inspiration.
- ▶ Physical Interpretation:
 - ▶ the latent functions, $f_i(t)$ are q forces.
 - ▶ We observe the displacement of d springs to the forces.,
 - ▶ Interpret system as the force balance equation, $\mathbf{X}\mathbf{D} = \mathbf{FS} + \boldsymbol{\epsilon}$.
 - ▶ Forces act, e.g. through levers — a matrix of sensitivities, $\mathbf{S} \in \mathbb{R}^{q \times d}$.
 - ▶ Diagonal matrix of spring constants, $\mathbf{D} \in \mathbb{R}^{d \times d}$.
 - ▶ Original System: $\mathbf{W} = \mathbf{SD}^{-1}$.

Extend Model

- ▶ Add a damper and give the system mass.

$$\mathbf{FS} = \ddot{\mathbf{X}}\mathbf{M} + \dot{\mathbf{X}}\mathbf{C} + \mathbf{X}\mathbf{D} + \boldsymbol{\epsilon}.$$

- ▶ Now have a second order mechanical system.
- ▶ It will exhibit inertia and resonance.
- ▶ There are many systems that can also be represented by differential equations.
 - ▶ When being forced by latent function(s), $\{f_i(t)\}_{i=1}^q$, we call this a *latent force model*.

Outline

Motivation and Review

Second Order ODE

Motion Capture Example

ODE Model of Transcriptional Regulation

Cascade Differential Equations

Discussion and Future Work

Gaussian Process priors and Latent Force Models

Driven Harmonic Oscillator

- ▶ For Gaussian process we can compute the covariance matrices for the output displacements.
- ▶ For one displace the model is

$$m_k \ddot{x}_k(t) + c_k \dot{x}_k(t) + d_k x_k(t) = b_k + \sum_{i=0}^M s_{ik} f_i(t), \quad (1)$$

where, m_k is the k th diagonal element from \mathbf{M} and similarly for c_k and d_k . s_{ik} is the i , k th element of \mathbf{S} .

- ▶ Model the latent forces as q independent, GPs with RBF covariances

$$k_{f_i f_l}(t, t') = \exp \left(-\frac{(t - t')^2}{\sigma_i^2} \right) \delta_{il}.$$

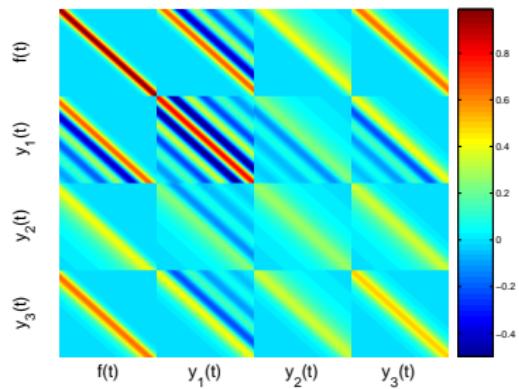
Covariance for ODE Model

- ▶ RBF Kernel function for $f(t)$

$$x_j(t) = \frac{1}{m_j \omega_j} \sum_{i=1}^q S_{ji} \exp(-\alpha_j t) \int_0^t f_i(u) \exp(\alpha_j u) \sin(\omega_j(t-u)) du$$

- ▶ Joint distribution for $x_1(t)$, $x_2(t)$, $x_3(t)$ and $f(t)$.
Damping ratios:

ζ_1	ζ_2	ζ_3
0.125	2	1



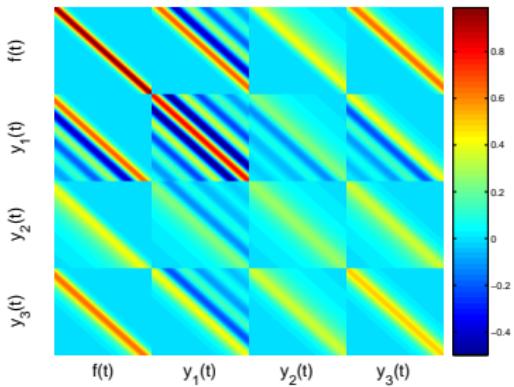
Covariance for ODE Model

- Analogy

$$x = \sum_i \mathbf{e}_i^\top \mathbf{f}_i \quad \mathbf{f}_i \sim \mathcal{N}(\mathbf{0}, \Sigma_i) \rightarrow x \sim \mathcal{N}\left(0, \sum_i \mathbf{e}_i^\top \Sigma_i \mathbf{e}_i\right)$$

- Joint distribution for $x_1(t)$, $x_2(t)$, $x_3(t)$ and $f(t)$.
Damping ratios:

ζ_1	ζ_2	ζ_3
0.125	2	1



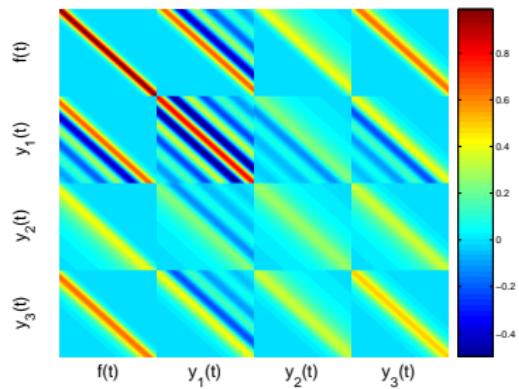
Covariance for ODE Model

- ▶ RBF Kernel function for $f(t)$

$$x_j(t) = \frac{1}{m_j \omega_j} \sum_{i=1}^q S_{ji} \exp(-\alpha_j t) \int_0^t f_i(u) \exp(\alpha_j u) \sin(\omega_j(t-u)) du$$

- ▶ Joint distribution for $x_1(t)$, $x_2(t)$, $x_3(t)$ and $f(t)$.
Damping ratios:

ζ_1	ζ_2	ζ_3
0.125	2	1



Joint Sampling of $x(t)$ and $f(t)$

► lfmSample

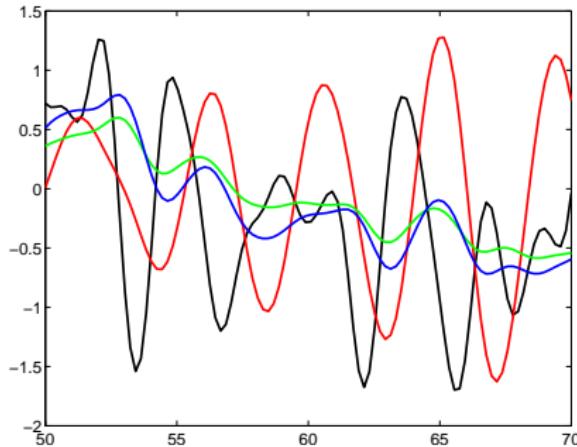


Figure: Joint samples from the ODE covariance, *black*: $f(t)$, *red*: $x_1(t)$ (underdamped), *green*: $x_2(t)$ (overdamped), and *blue*: $x_3(t)$ (critically damped).

Joint Sampling of $x(t)$ and $f(t)$

► lfmSample

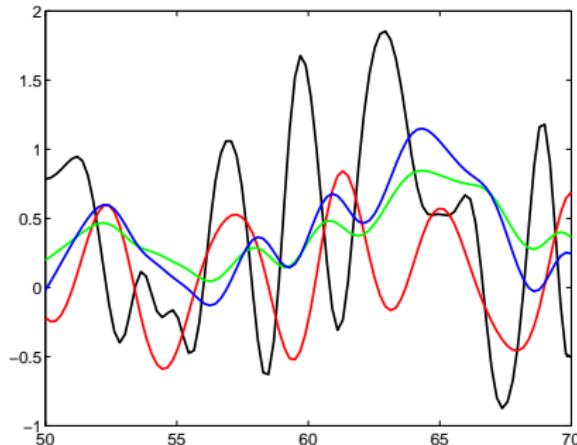


Figure: Joint samples from the ODE covariance, *black*: $f(t)$, *red*: $x_1(t)$ (underdamped), *green*: $x_2(t)$ (overdamped), and *blue*: $x_3(t)$ (critically damped).

Joint Sampling of $x(t)$ and $f(t)$

► lfmSample

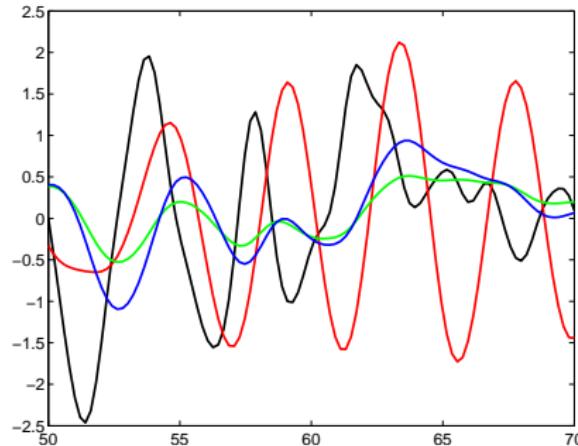


Figure: Joint samples from the ODE covariance, *black*: $f(t)$, *red*: $x_1(t)$ (underdamped), *green*: $x_2(t)$ (overdamped), and *blue*: $x_3(t)$ (critically damped).

Joint Sampling of $x(t)$ and $f(t)$

► lfmSample

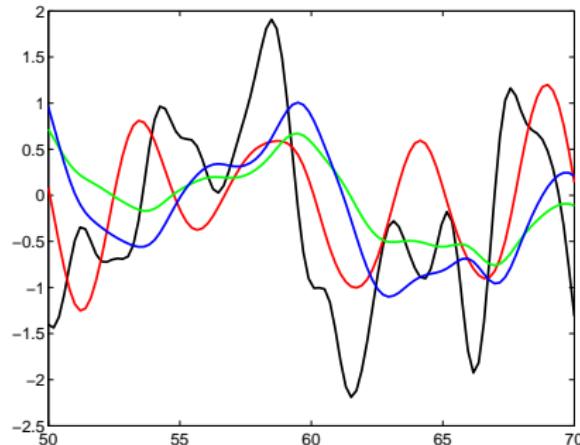


Figure: Joint samples from the ODE covariance, *black*: $f(t)$, *red*: $x_1(t)$ (underdamped), *green*: $x_2(t)$ (overdamped), and *blue*: $x_3(t)$ (critically damped).

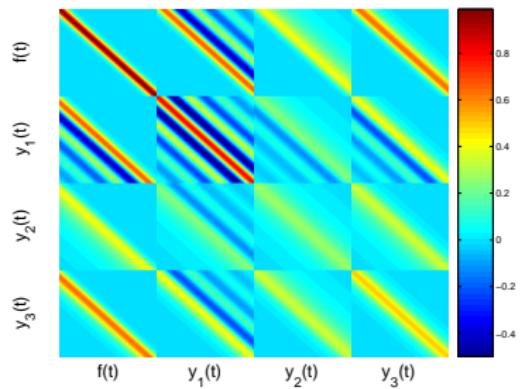
Covariance for ODE

- ▶ RBF Kernel function for $f(t)$

$$x_j(t) = \frac{1}{m_j \omega_j} \sum_{i=1}^q S_{ji} \exp(-\alpha_j t) \int_0^t f_i(u) \exp(\alpha_j u) \sin(\omega_j(t-u)) du$$

- ▶ Joint distribution for $x_1(t)$, $x_2(t)$, $x_3(t)$ and $f(t)$.
- ▶ Damping ratios:

ζ_1	ζ_2	ζ_3
0.125	2	1



Outline

Motivation and Review

Second Order ODE

Motion Capture Example

ODE Model of Transcriptional Regulation

Cascade Differential Equations

Discussion and Future Work

Example: Motion Capture

Mauricio Alvarez and David Luengo (Álvarez et al., 2009)

- ▶ Motion capture data: used for animating human motion.
- ▶ Multivariate time series of angles representing joint positions.
- ▶ Objective: generalize from training data to realistic motions.
- ▶ Use 2nd Order Latent Force Model with mass/spring/damper (resistor inductor capacitor) at each joint.

Example: Motion Capture

Mauricio Alvarez and David Luengo (Álvarez et al., 2009)

- ▶ Motion capture data: used for animating human motion.
- ▶ Multivariate time series of angles representing joint positions.
- ▶ Objective: generalize from training data to realistic motions.
- ▶ Use 2nd Order Latent Force Model with mass/spring/damper (resistor inductor capacitor) at each joint.

Example: Motion Capture

Mauricio Alvarez and David Luengo (Álvarez et al., 2009)

- ▶ Motion capture data: used for animating human motion.
- ▶ Multivariate time series of angles representing joint positions.
- ▶ Objective: generalize from training data to realistic motions.
- ▶ Use 2nd Order Latent Force Model with mass/spring/damper (resistor inductor capacitor) at each joint.

Example: Motion Capture

Mauricio Alvarez and David Luengo (Álvarez et al., 2009)

- ▶ Motion capture data: used for animating human motion.
- ▶ Multivariate time series of angles representing joint positions.
- ▶ Objective: generalize from training data to realistic motions.
- ▶ Use 2nd Order Latent Force Model with mass/spring/damper (resistor inductor capacitor) at each joint.

Prediction of Test Motion

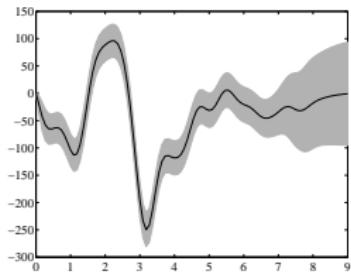
- ▶ Model left arm only.
- ▶ 3 balancing motions (18, 19, 20) from subject 49.
- ▶ 18 and 19 are similar, 20 contains more dramatic movements.
- ▶ Train on 18 and 19 and testing on 20
- ▶ Data was down-sampled by 32 (from 120 fps).
- ▶ Reconstruct motion of left arm for 20 given other movements.
- ▶ Compare with GP that predicts left arm angles given other body angles.

Mocap Results

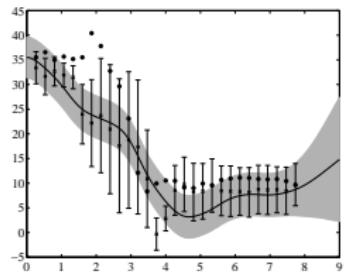
Table: Root mean squared (RMS) angle error for prediction of the left arm's configuration in the motion capture data. Prediction with the latent force model outperforms the prediction with regression for all apart from the radius's angle.

Angle	Latent Force Error	Regression Error
Radius	4.11	4.02
Wrist	6.55	6.65
Hand X rotation	1.82	3.21
Hand Z rotation	2.76	6.14
Thumb X rotation	1.77	3.10
Thumb Z rotation	2.73	6.09

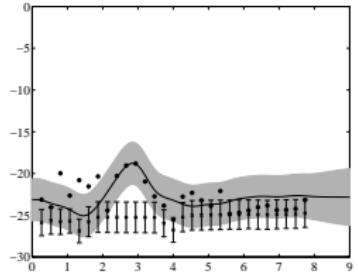
Mocap Results II



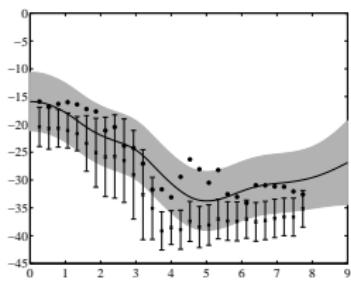
(a) Inferred Latent Force



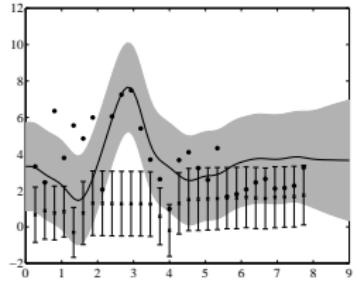
(b) Wrist



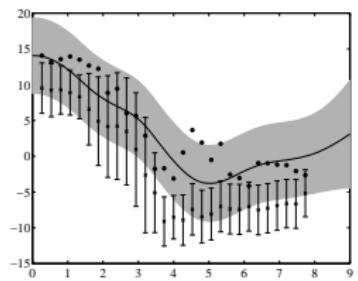
(c) Hand X Rotation



(d) Hand Z Rotation



(e) Thumb X Rotation



(f) Thumb Z Rotation

Figure: Predictions from LFM (solid line, grey error bars) and direct regression (crosses with stick error bars).

Outline

Motivation and Review

Second Order ODE

Motion Capture Example

ODE Model of Transcriptional Regulation

Cascade Differential Equations

Discussion and Future Work

Example: Transcriptional Regulation

- ▶ First Order Differential Equation

$$\frac{dx_j(t)}{dt} = B_j + S_j f(t) - D_j x_j(t)$$

- ▶ Can be used as a model of gene transcription: Barenco et al., 2006; Gao et al., 2008.
- ▶ $x_j(t)$ – concentration of gene j 's mRNA
- ▶ $f(t)$ – concentration of active transcription factor
- ▶ Model parameters: baseline B_j , sensitivity S_j and decay D_j
- ▶ Application: identifying co-regulated genes (targets)
- ▶ Problem: how do we fit the model when $f(t)$ is not observed?

Example: Transcriptional Regulation

- ▶ First Order Differential Equation

$$\frac{dx_j(t)}{dt} = B_j + S_j f(t) - D_j x_j(t)$$

- ▶ Can be used as a model of gene transcription: Barenco et al., 2006; Gao et al., 2008.
- ▶ $x_j(t)$ – concentration of gene j 's mRNA
- ▶ $f(t)$ – concentration of active transcription factor
- ▶ Model parameters: baseline B_j , sensitivity S_j and decay D_j
- ▶ Application: identifying co-regulated genes (targets)
- ▶ Problem: how do we fit the model when $f(t)$ is not observed?

Example: Transcriptional Regulation

- ▶ First Order Differential Equation

$$\frac{dx_j(t)}{dt} = B_j + S_j f(t) - D_j x_j(t)$$

- ▶ Can be used as a model of gene transcription: Barenco et al., 2006; Gao et al., 2008.
- ▶ $x_j(t)$ – concentration of gene j 's mRNA
- ▶ $f(t)$ – concentration of active transcription factor
- ▶ Model parameters: baseline B_j , sensitivity S_j and decay D_j
- ▶ Application: identifying co-regulated genes (targets)
- ▶ Problem: how do we fit the model when $f(t)$ is not observed?

Example: Transcriptional Regulation

- ▶ First Order Differential Equation

$$\frac{dx_j(t)}{dt} = B_j + S_j f(t) - D_j x_j(t)$$

- ▶ Can be used as a model of gene transcription: Barenco et al., 2006; Gao et al., 2008.
- ▶ $x_j(t)$ – concentration of gene j 's mRNA
- ▶ $f(t)$ – concentration of active transcription factor
- ▶ Model parameters: baseline B_j , sensitivity S_j and decay D_j
- ▶ Application: identifying co-regulated genes (targets)
- ▶ Problem: how do we fit the model when $f(t)$ is not observed?

Example: Transcriptional Regulation

- ▶ First Order Differential Equation

$$\frac{dx_j(t)}{dt} = B_j + S_j f(t) - D_j x_j(t)$$

- ▶ Can be used as a model of gene transcription: Barenco et al., 2006; Gao et al., 2008.
- ▶ $x_j(t)$ – concentration of gene j 's mRNA
- ▶ $f(t)$ – concentration of active transcription factor
- ▶ Model parameters: baseline B_j , sensitivity S_j and decay D_j
- ▶ Application: identifying co-regulated genes (targets)
- ▶ Problem: how do we fit the model when $f(t)$ is not observed?

Example: Transcriptional Regulation

- ▶ First Order Differential Equation

$$\frac{dx_j(t)}{dt} = B_j + S_j f(t) - D_j x_j(t)$$

- ▶ Can be used as a model of gene transcription: Barenco et al., 2006; Gao et al., 2008.
- ▶ $x_j(t)$ – concentration of gene j 's mRNA
- ▶ $f(t)$ – concentration of active transcription factor
- ▶ Model parameters: baseline B_j , sensitivity S_j and decay D_j
- ▶ Application: identifying co-regulated genes (targets)
- ▶ Problem: how do we fit the model when $f(t)$ is not observed?

Example: Transcriptional Regulation

- ▶ First Order Differential Equation

$$\frac{dx_j(t)}{dt} = B_j + S_j f(t) - D_j x_j(t)$$

- ▶ Can be used as a model of gene transcription: Barenco et al., 2006; Gao et al., 2008.
- ▶ $x_j(t)$ – concentration of gene j 's mRNA
- ▶ $f(t)$ – concentration of active transcription factor
- ▶ Model parameters: baseline B_j , sensitivity S_j and decay D_j
- ▶ Application: identifying co-regulated genes (targets)
- ▶ Problem: how do we fit the model when $f(t)$ is not observed?

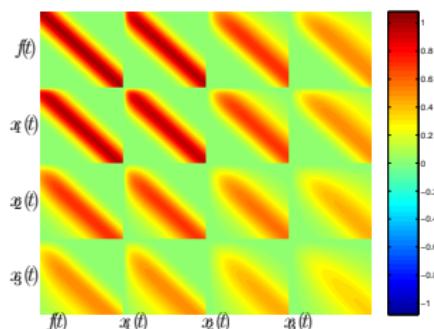
Covariance for Transcription Model

RBF covariance function for $f(t)$

$$x_i(t) = \frac{B_i}{D_i} + S_i \exp(-D_i t) \int_0^t f(u) \exp(D_i u) du.$$

- ▶ Joint distribution for $x_1(t)$, $x_2(t)$, $x_3(t)$, and $f(t)$.
- ▶ Here:

D_1	S_1	D_2	S_2	D_3	S_3
5	5	1	1	0.5	0.5



Joint Sampling of $f(t)$ and $x(t)$

► simSample

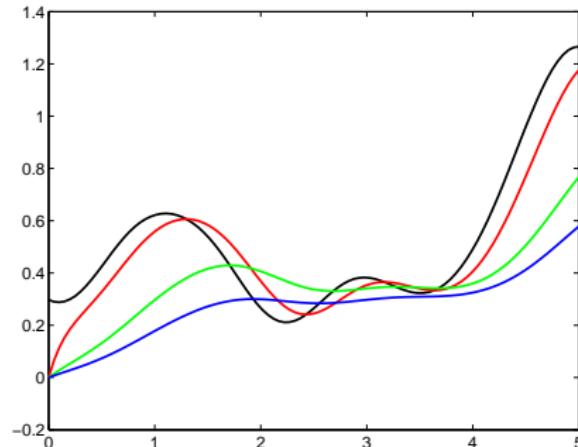


Figure: Joint samples from the ODE covariance, *black*: $f(t)$, *red*: $x_1(t)$ (high decay/sensitivity), *green*: $x_2(t)$ (medium decay/sensitivity) and *blue*: $x_3(t)$ (low decay/sensitivity).

Joint Sampling of $f(t)$ and $x(t)$

► simSample

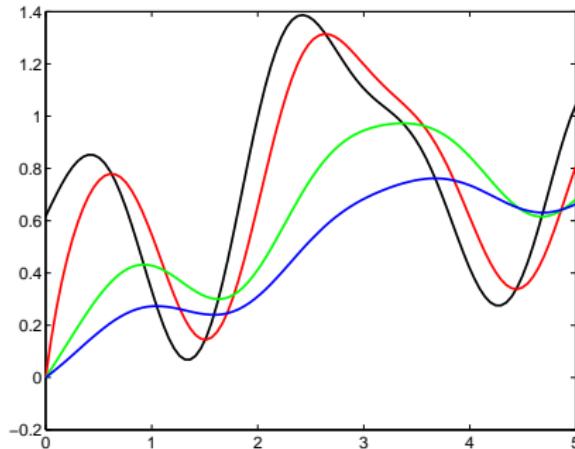


Figure: Joint samples from the ODE covariance, *black*: $f(t)$, *red*: $x_1(t)$ (high decay/sensitivity), *green*: $x_2(t)$ (medium decay/sensitivity) and *blue*: $x_3(t)$ (low decay/sensitivity).

Joint Sampling of $f(t)$ and $x(t)$

► simSample

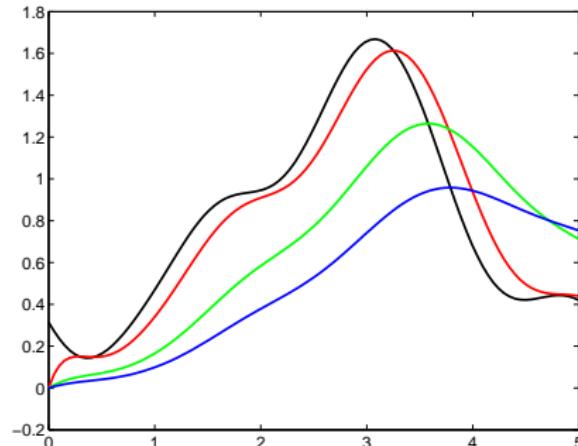


Figure: Joint samples from the ODE covariance, *black*: $f(t)$, *red*: $x_1(t)$ (high decay/sensitivity), *green*: $x_2(t)$ (medium decay/sensitivity) and *blue*: $x_3(t)$ (low decay/sensitivity).

Joint Sampling of $f(t)$ and $x(t)$

► simSample

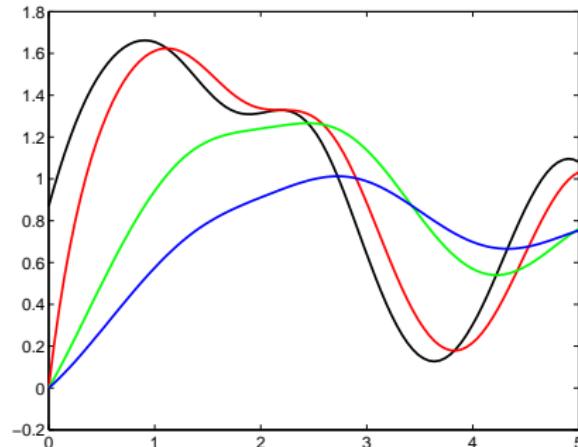
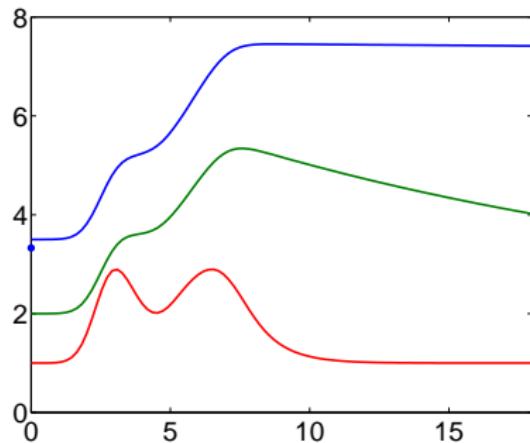


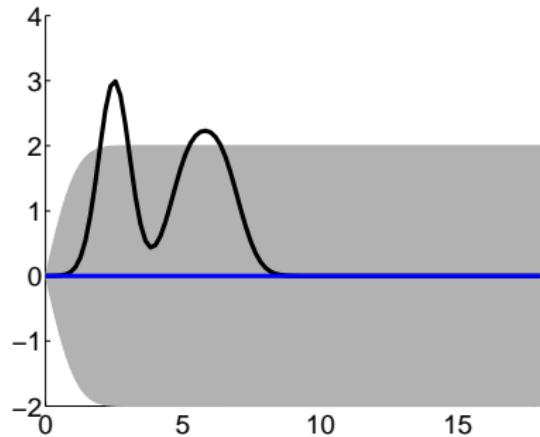
Figure: Joint samples from the ODE covariance, *black*: $f(t)$, *red*: $x_1(t)$ (high decay/sensitivity), *green*: $x_2(t)$ (medium decay/sensitivity) and *blue*: $x_3(t)$ (low decay/sensitivity).

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



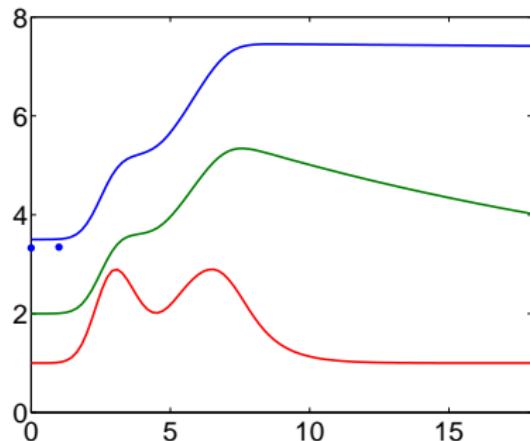
True “gene profiles” and noisy observations.



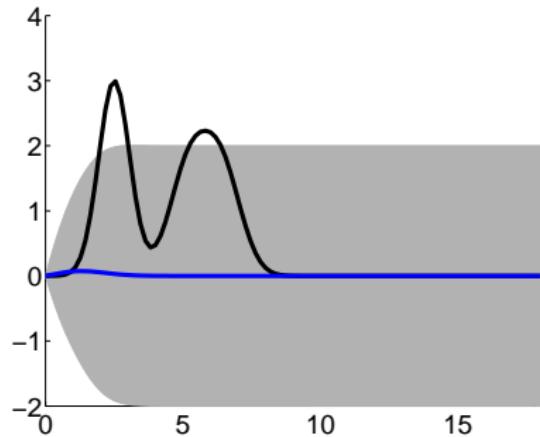
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



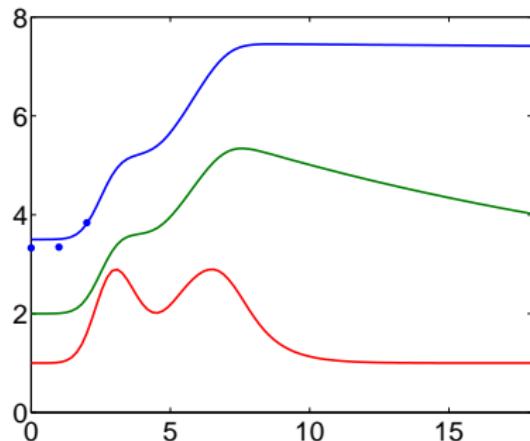
True “gene profiles” and noisy observations.



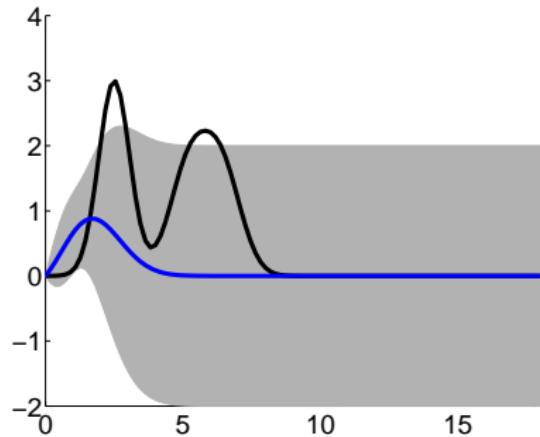
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



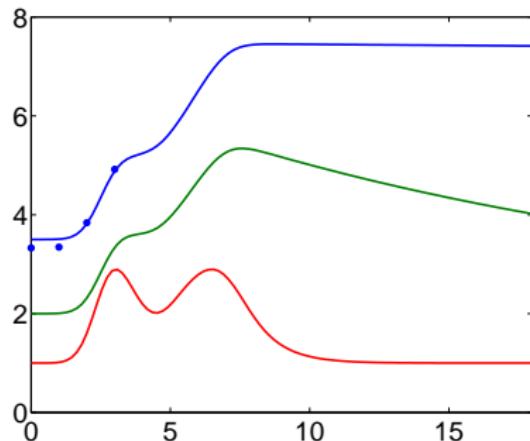
True “gene profiles” and noisy observations.



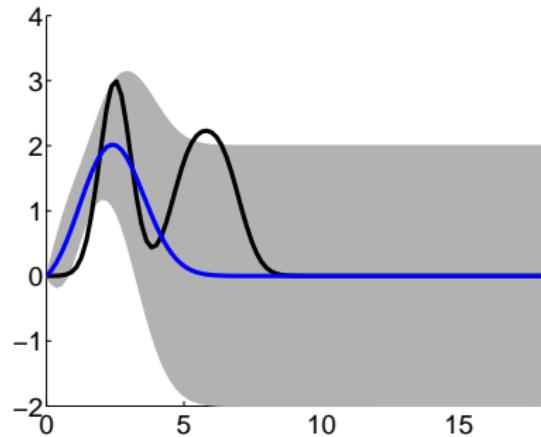
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



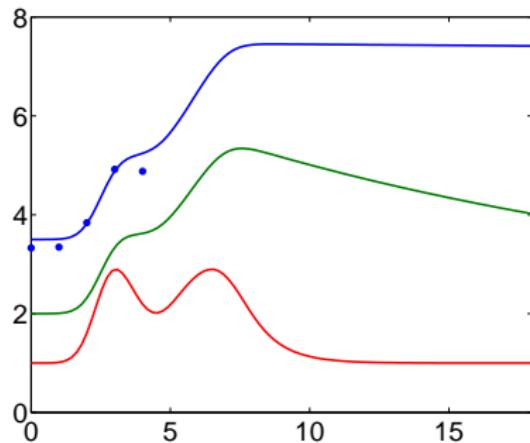
True “gene profiles” and noisy observations.



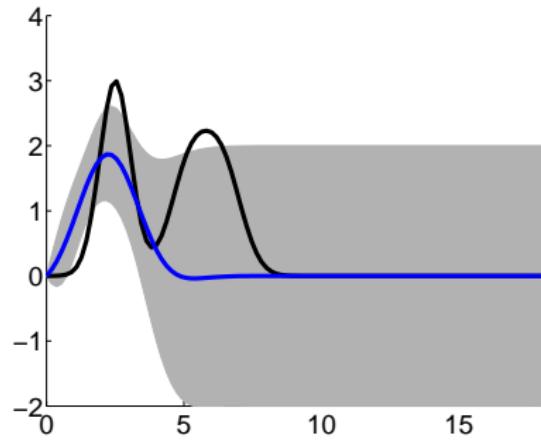
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



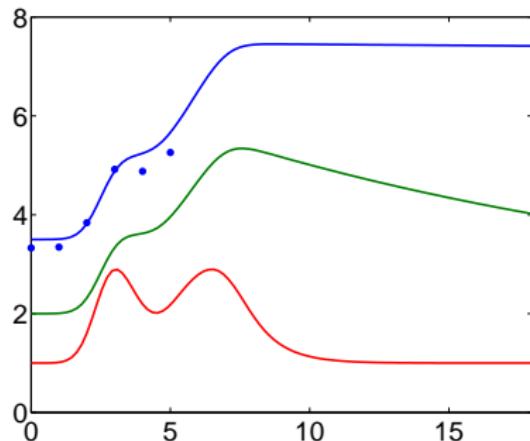
True “gene profiles” and noisy observations.



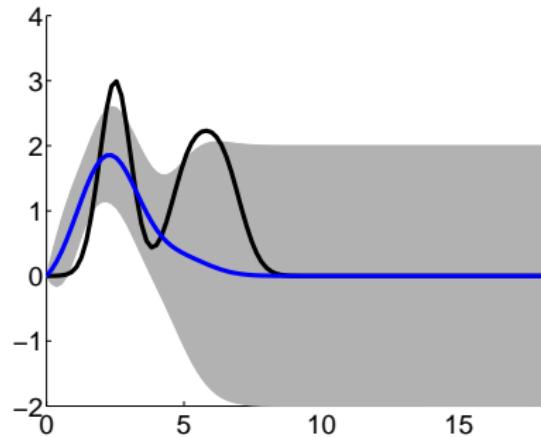
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



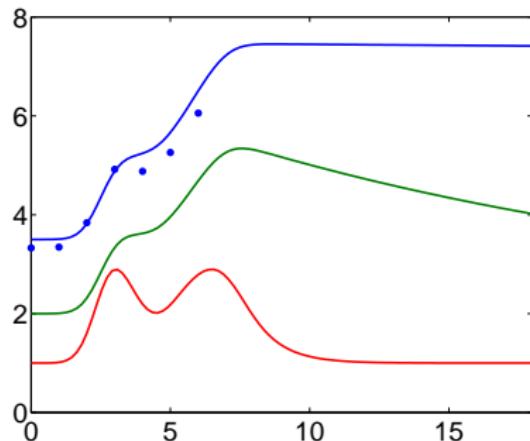
True “gene profiles” and noisy observations.



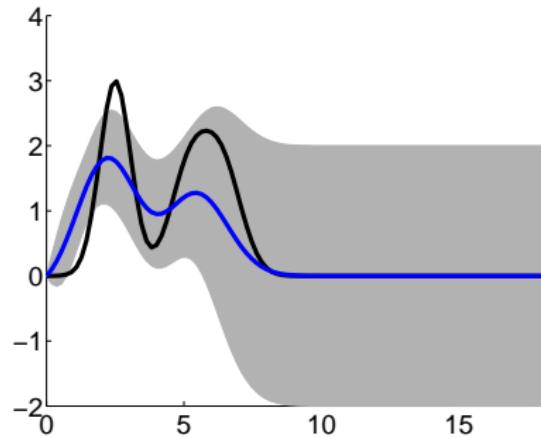
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



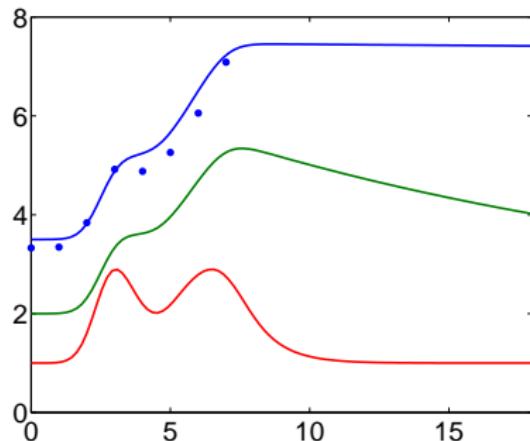
True “gene profiles” and noisy observations.



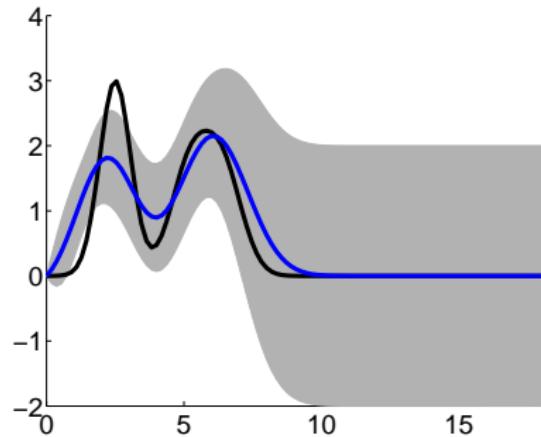
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



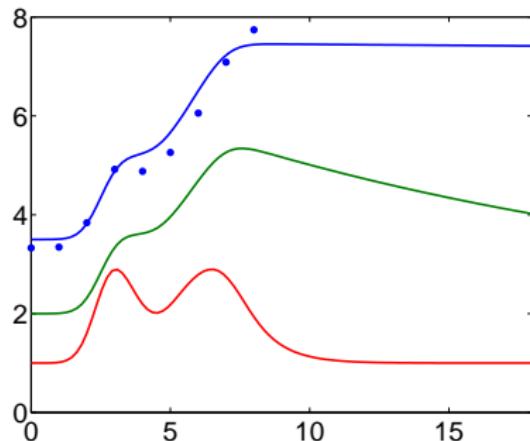
True “gene profiles” and noisy observations.



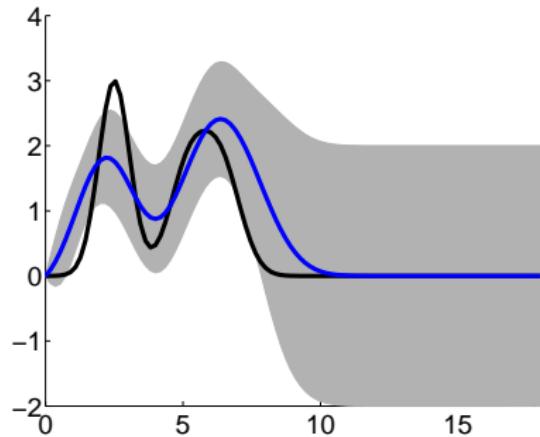
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



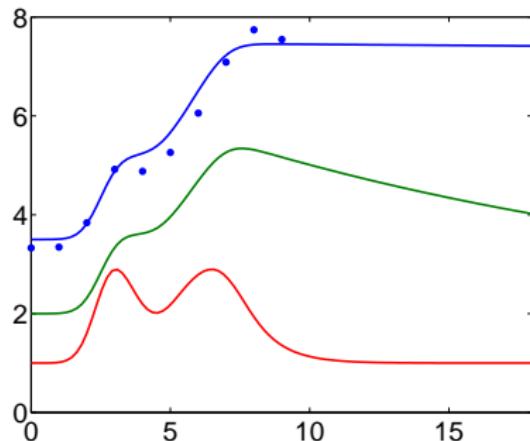
True “gene profiles” and noisy observations.



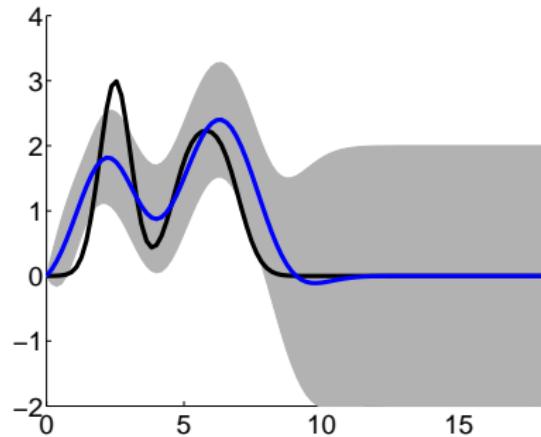
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



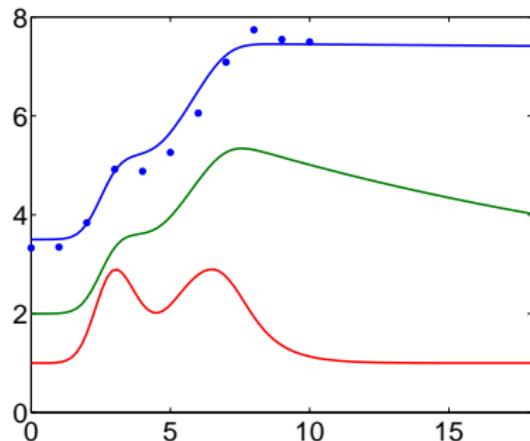
True “gene profiles” and noisy observations.



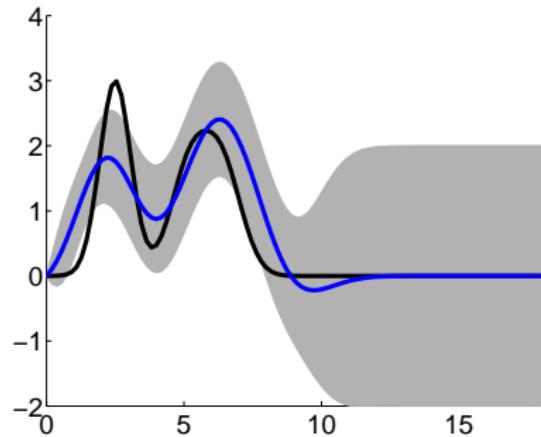
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



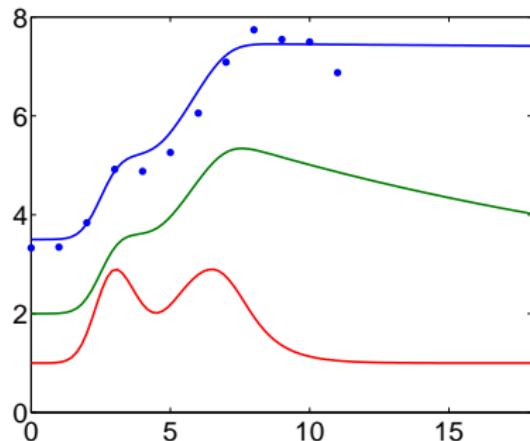
True “gene profiles” and noisy observations.



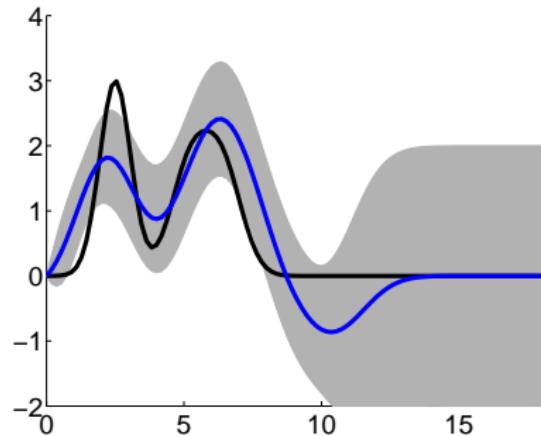
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



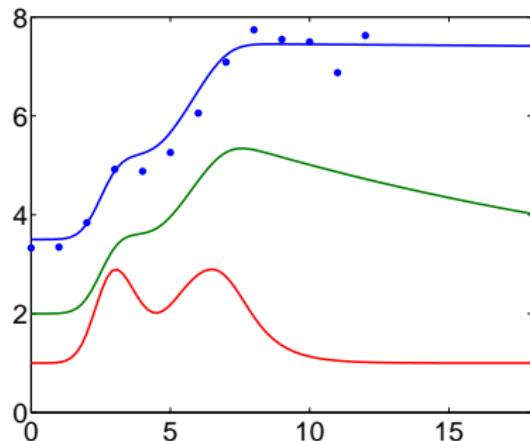
True “gene profiles” and noisy observations.



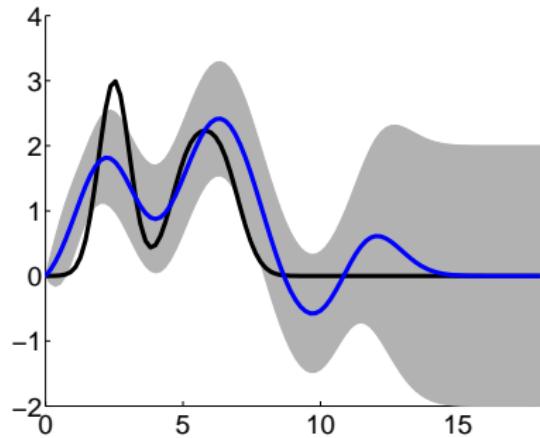
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



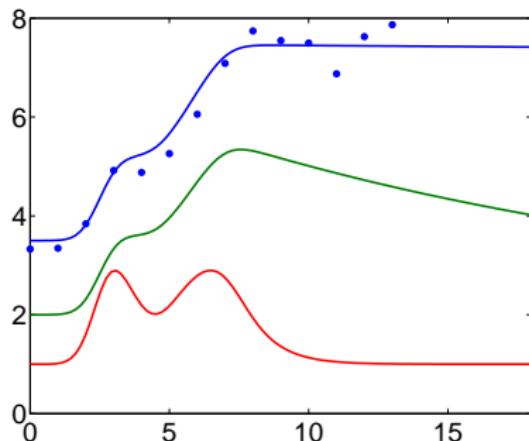
True “gene profiles” and noisy observations.



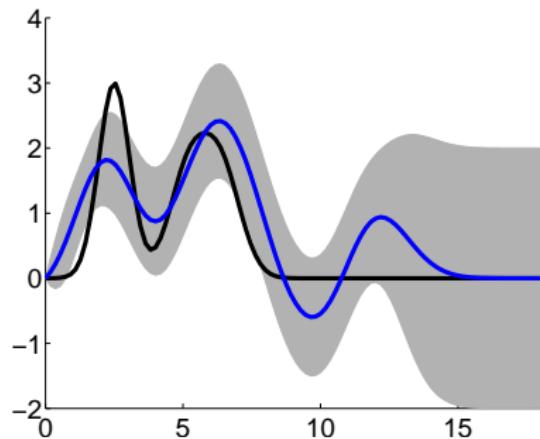
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



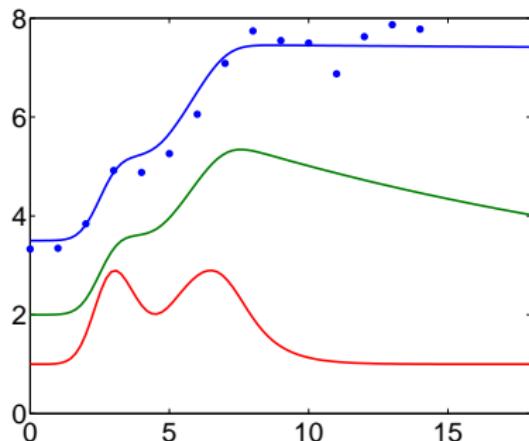
True “gene profiles” and noisy observations.



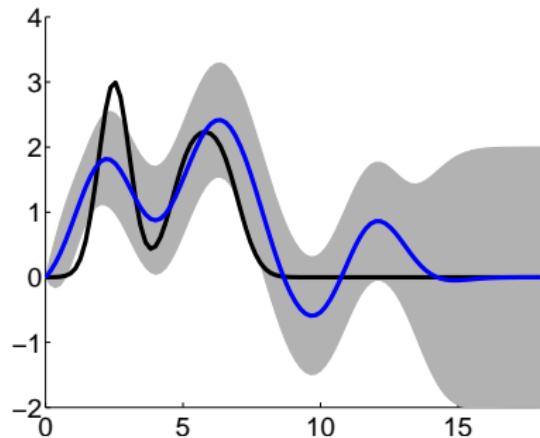
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



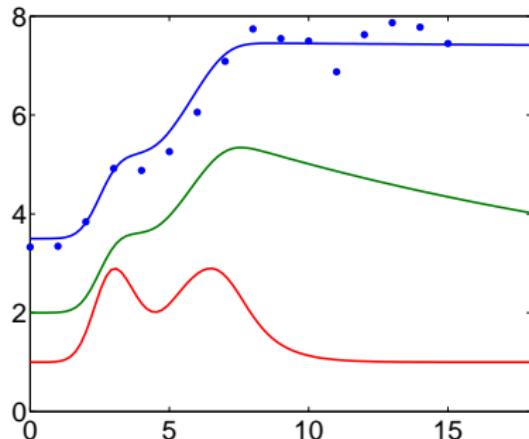
True “gene profiles” and noisy observations.



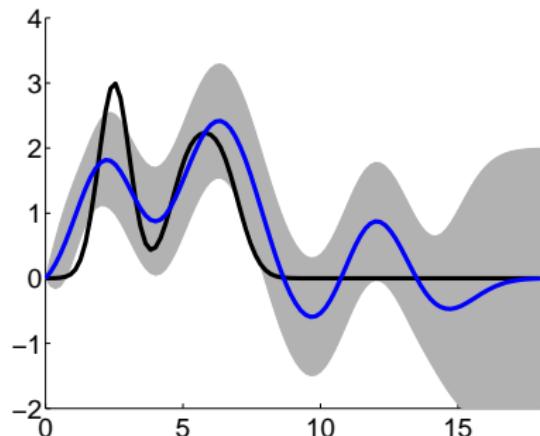
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



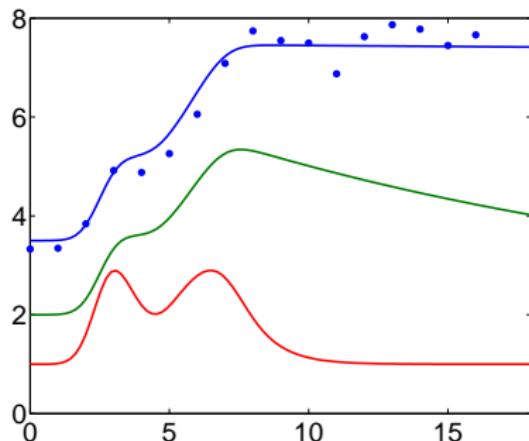
True “gene profiles” and noisy observations.



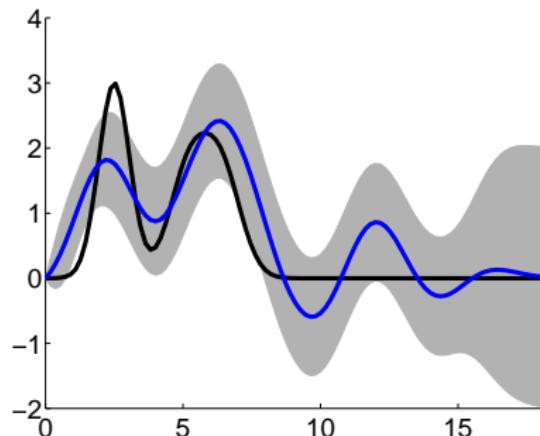
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



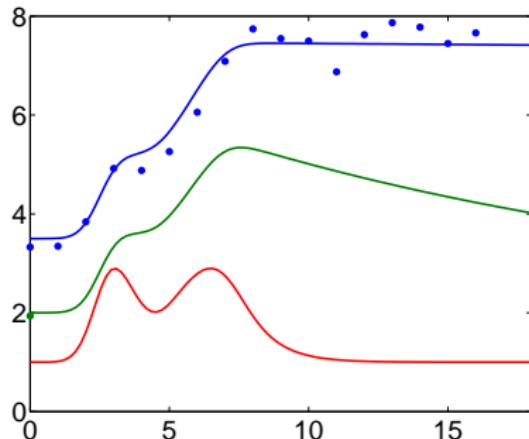
True “gene profiles” and noisy observations.



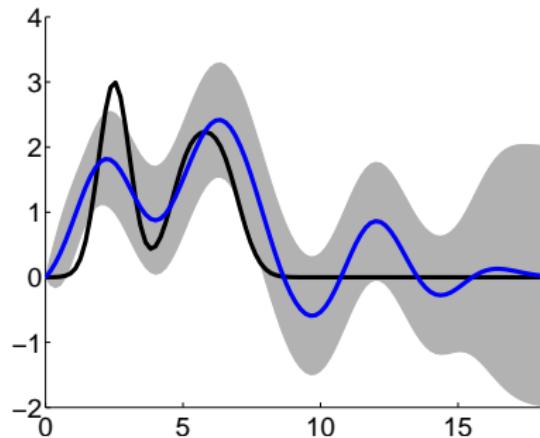
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



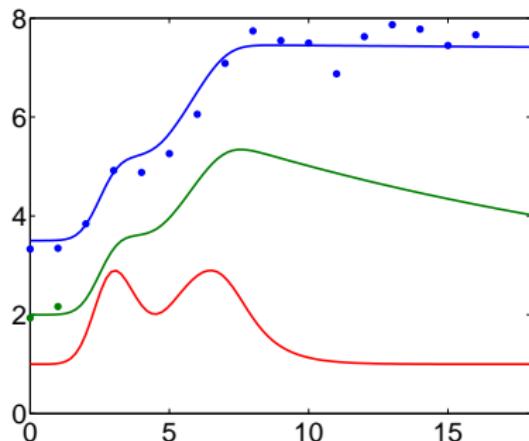
True “gene profiles” and noisy observations.



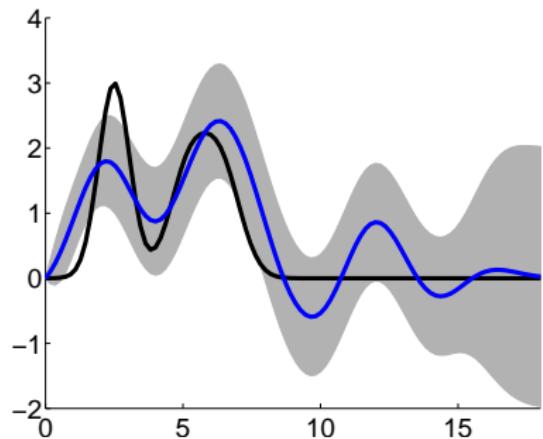
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



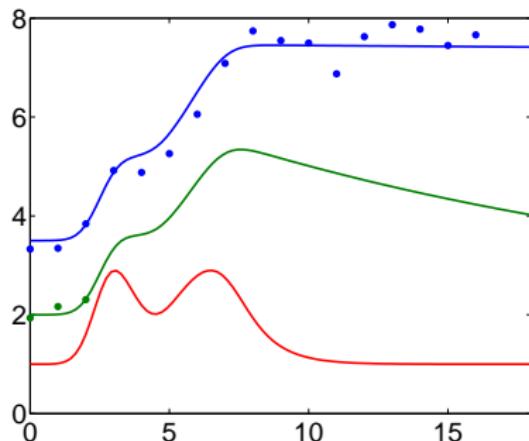
True “gene profiles” and noisy observations.



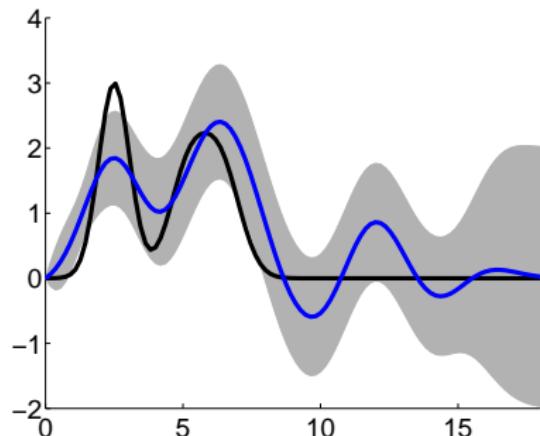
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



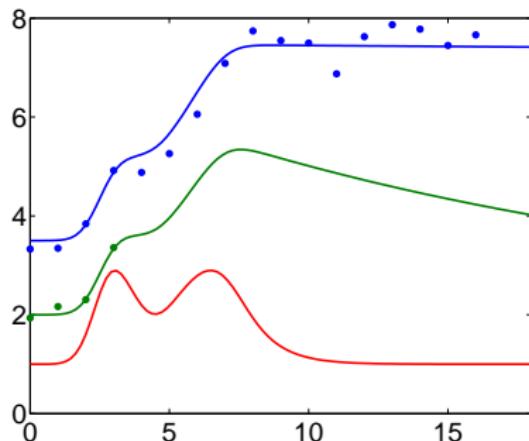
True “gene profiles” and noisy observations.



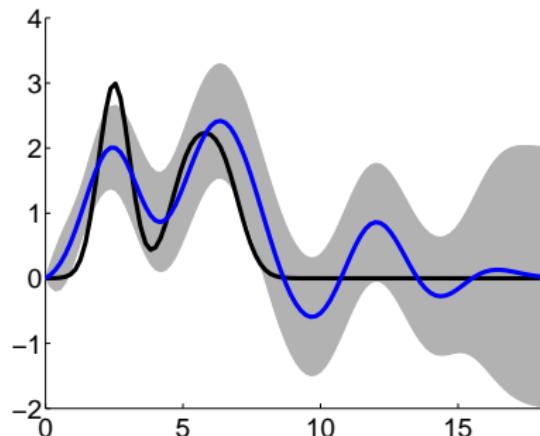
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



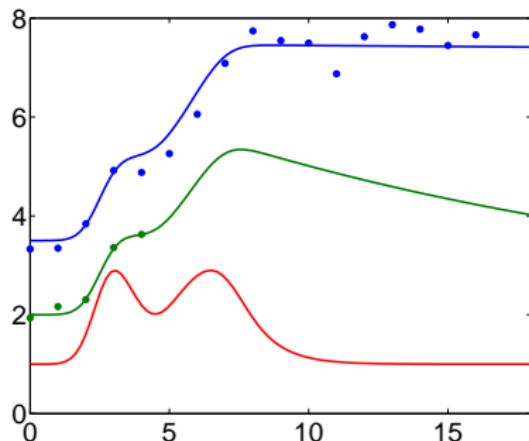
True “gene profiles” and noisy observations.



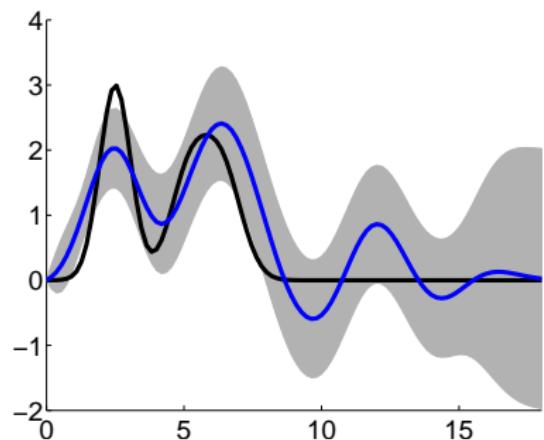
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



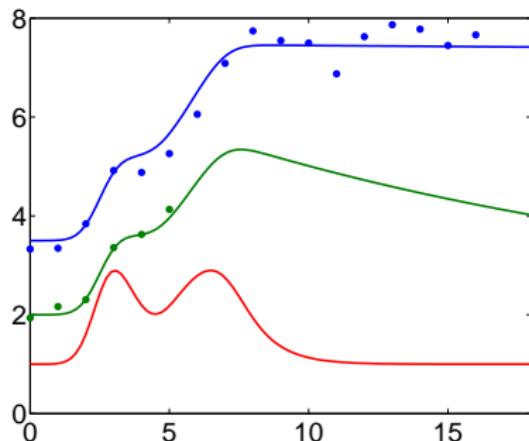
True “gene profiles” and noisy observations.



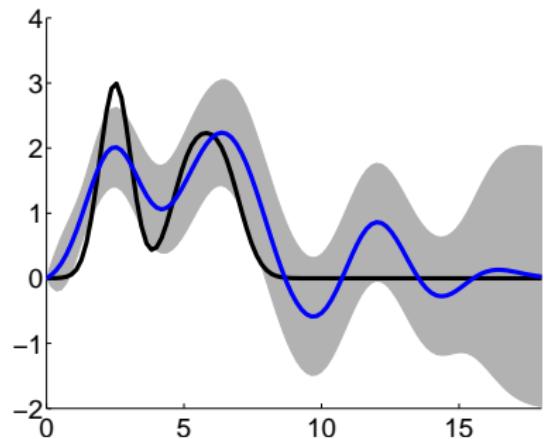
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



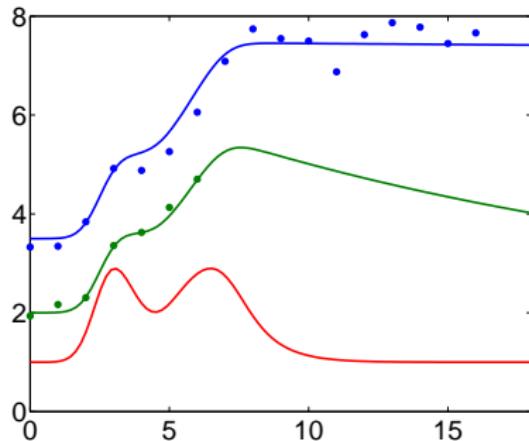
True “gene profiles” and noisy observations.



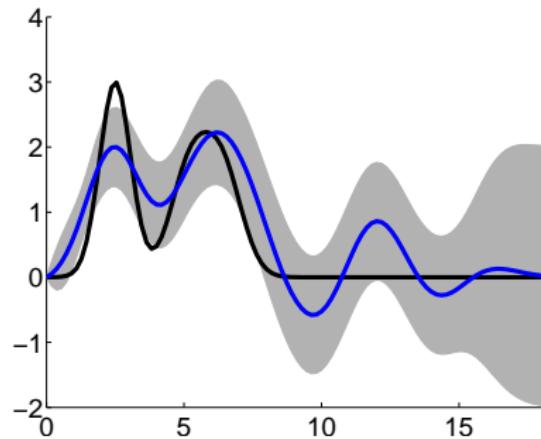
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



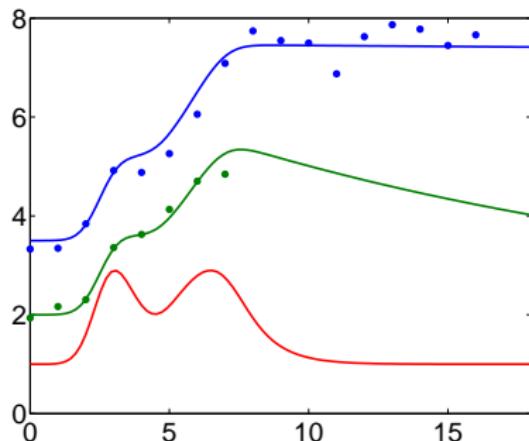
True “gene profiles” and noisy observations.



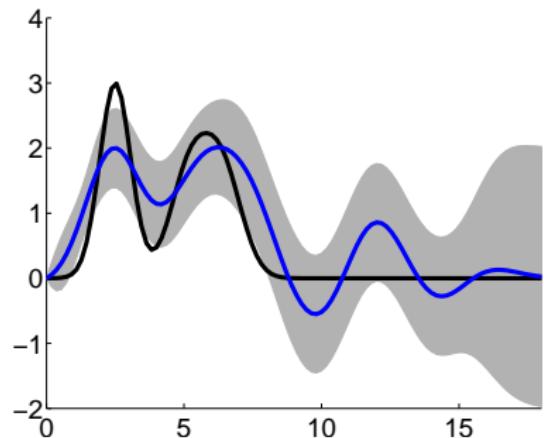
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



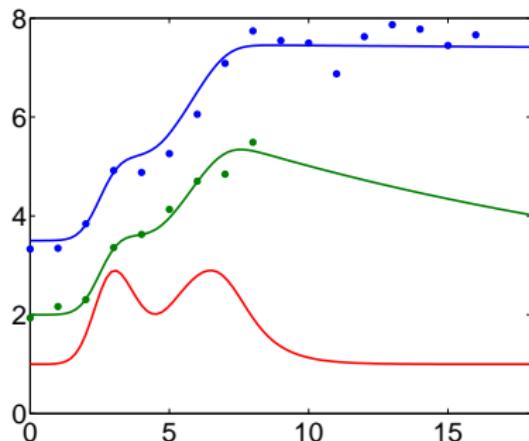
True “gene profiles” and noisy observations.



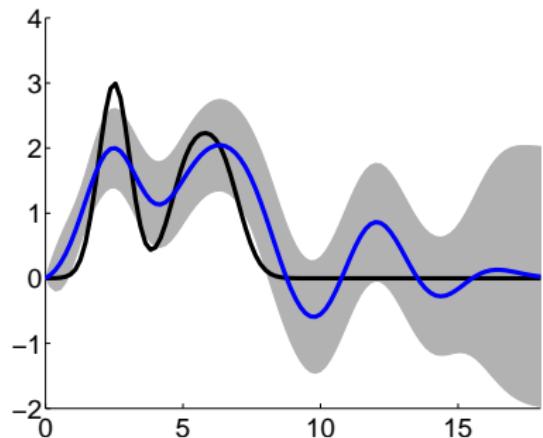
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



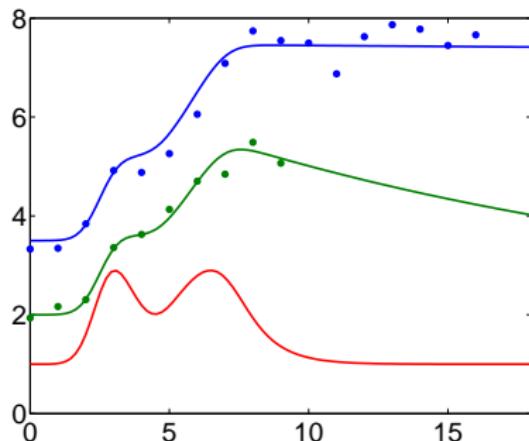
True “gene profiles” and noisy observations.



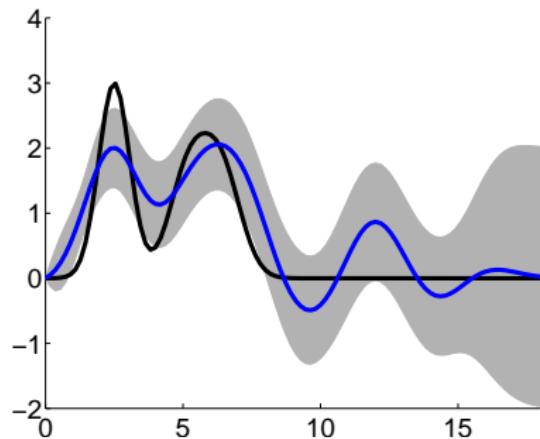
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



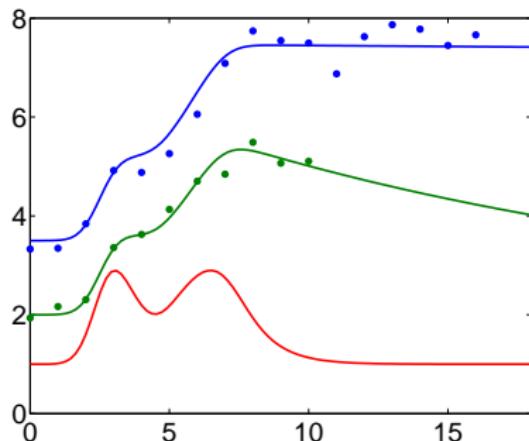
True “gene profiles” and noisy observations.



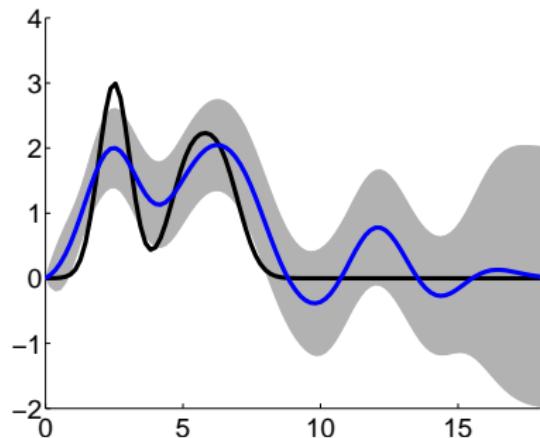
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



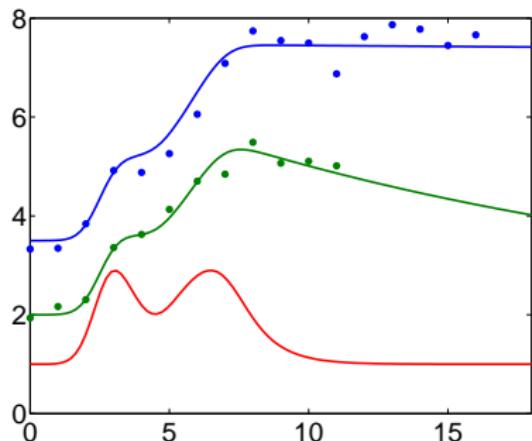
True “gene profiles” and noisy observations.



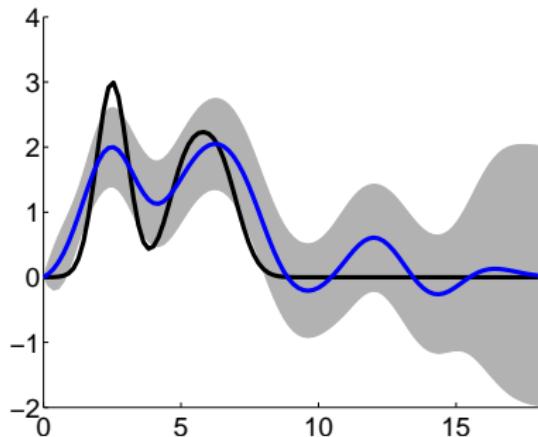
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



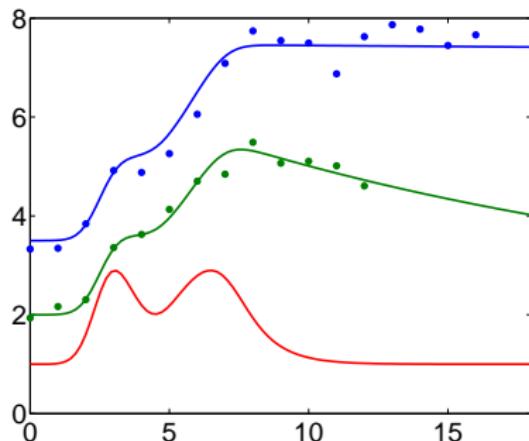
True “gene profiles” and noisy observations.



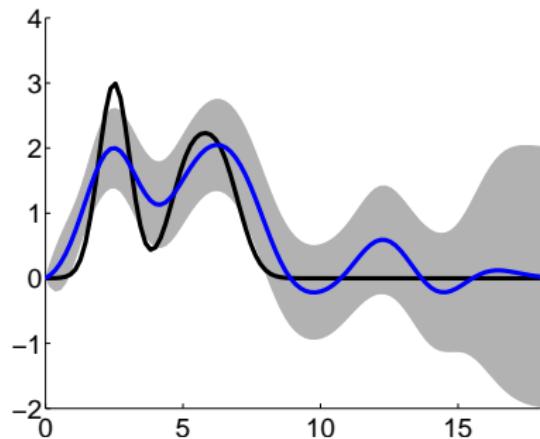
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



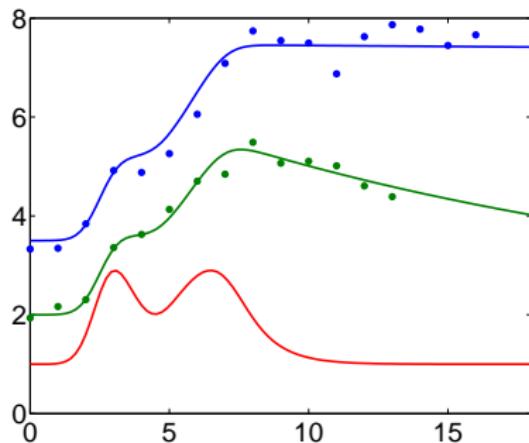
True “gene profiles” and noisy observations.



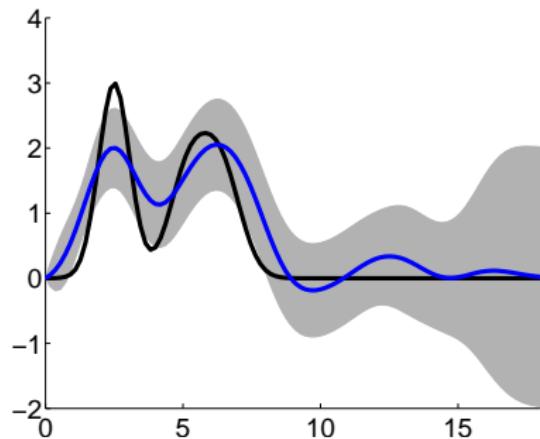
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



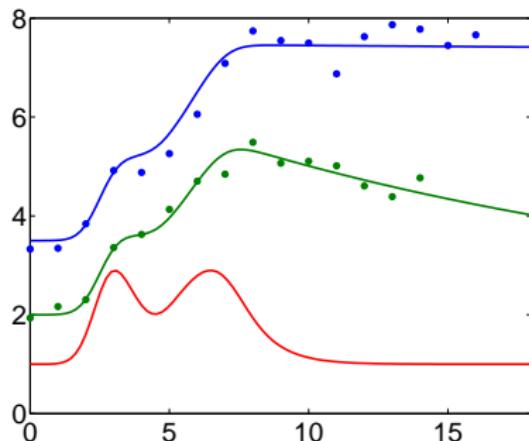
True “gene profiles” and noisy observations.



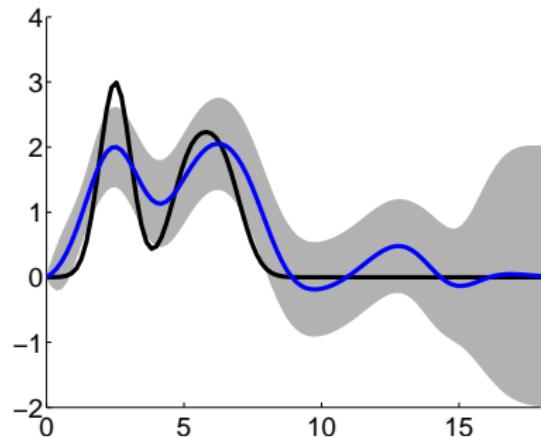
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



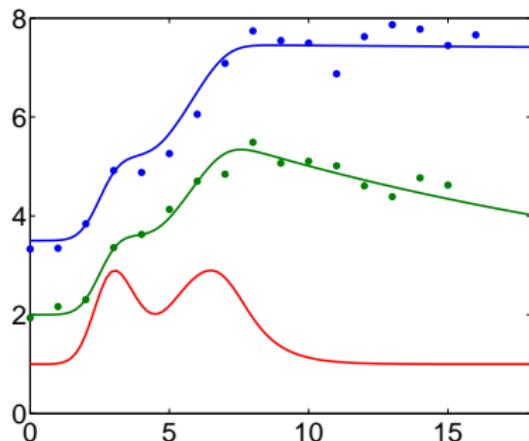
True “gene profiles” and noisy observations.



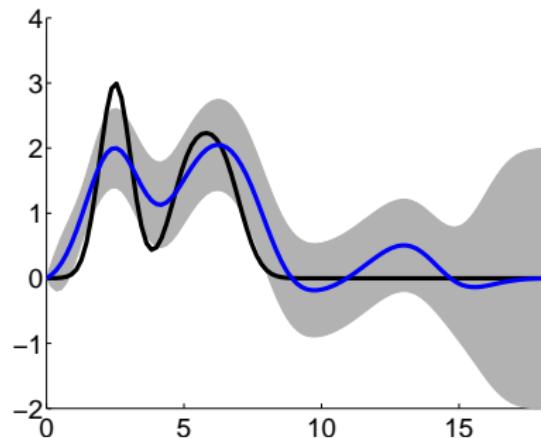
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



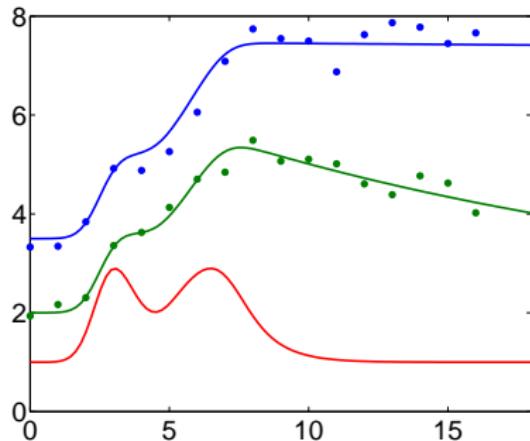
True “gene profiles” and noisy observations.



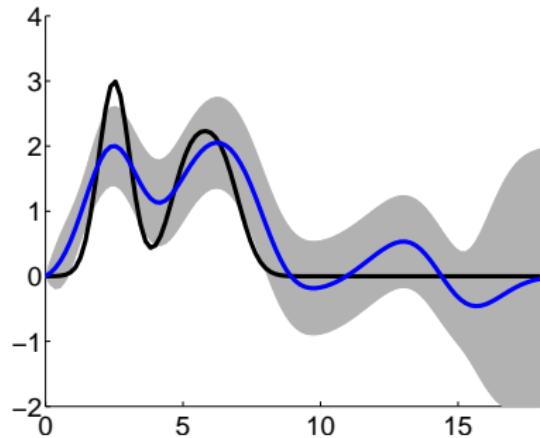
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



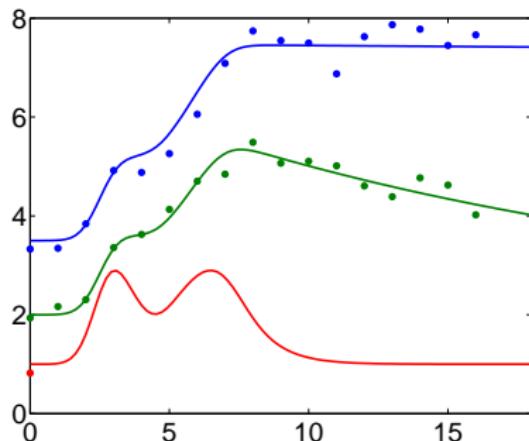
True “gene profiles” and noisy observations.



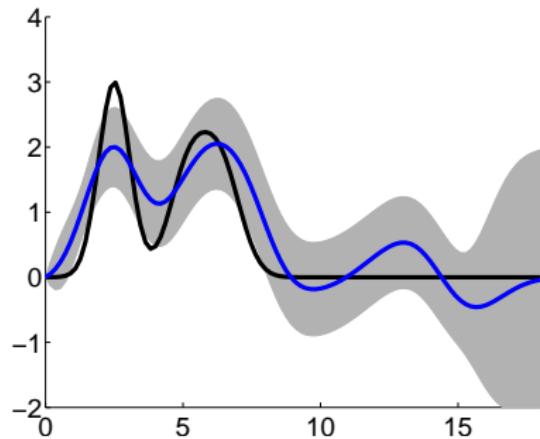
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



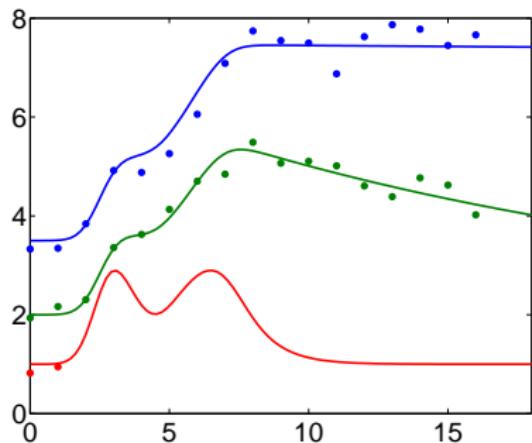
True “gene profiles” and noisy observations.



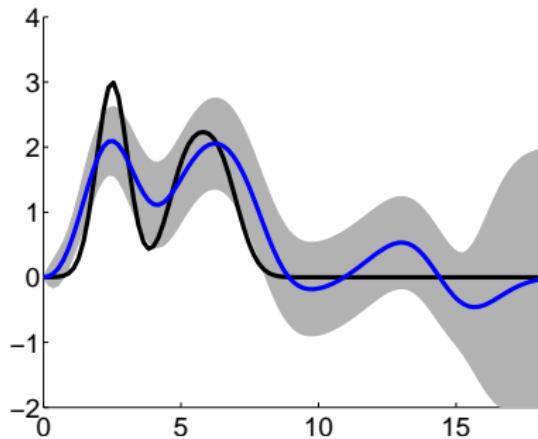
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



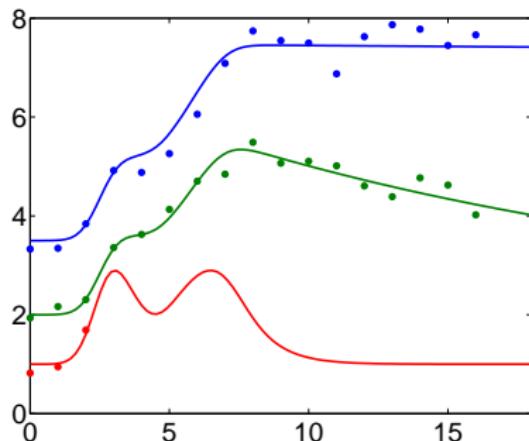
True “gene profiles” and noisy observations.



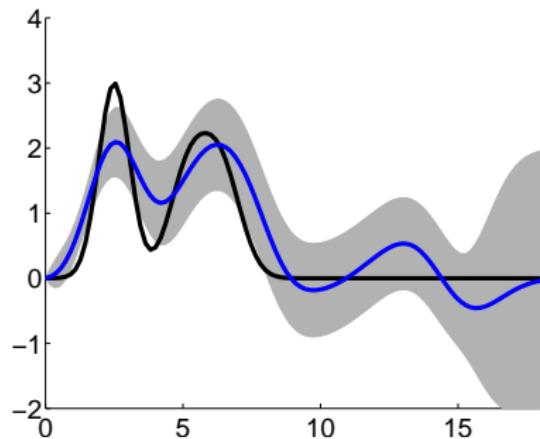
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



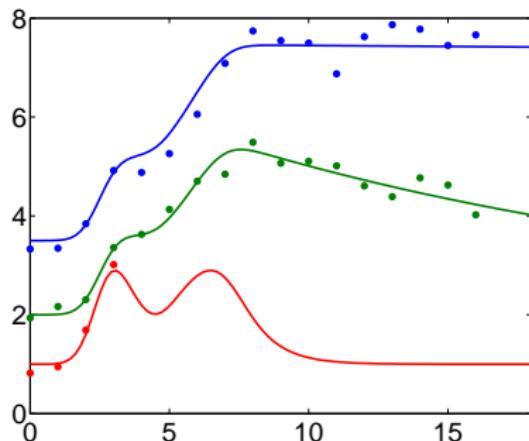
True “gene profiles” and noisy observations.



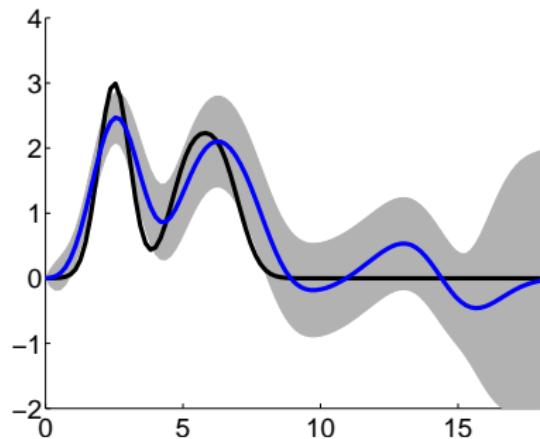
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



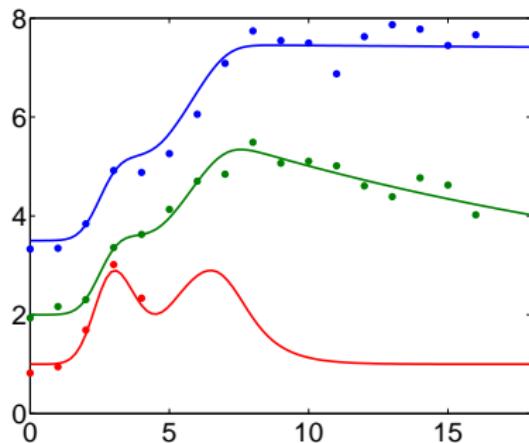
True “gene profiles” and noisy observations.



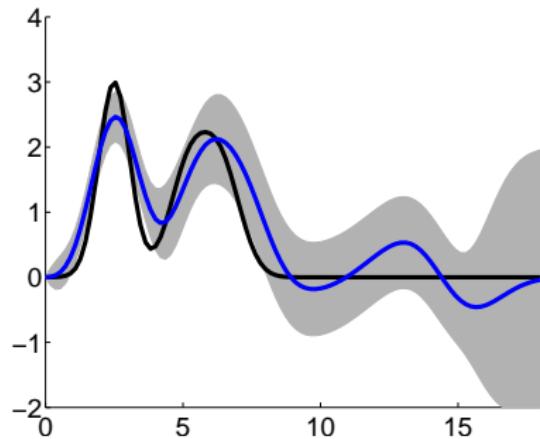
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



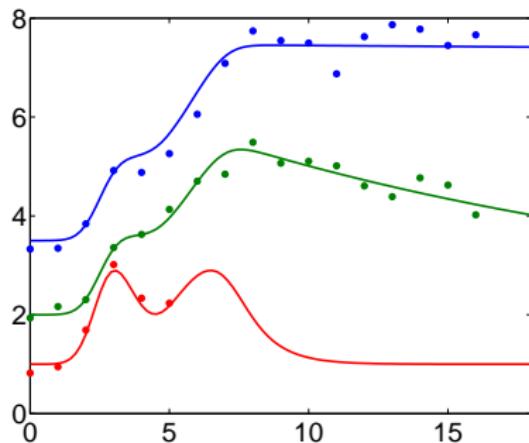
True “gene profiles” and noisy observations.



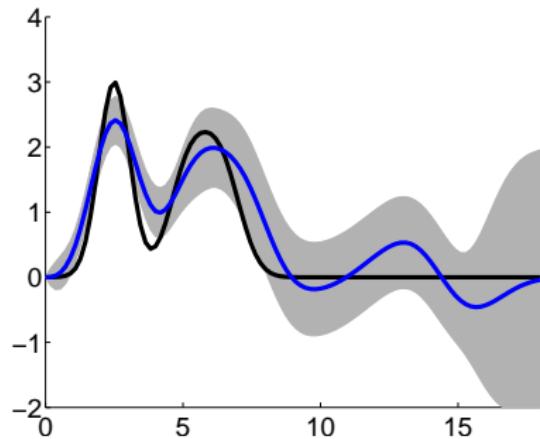
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



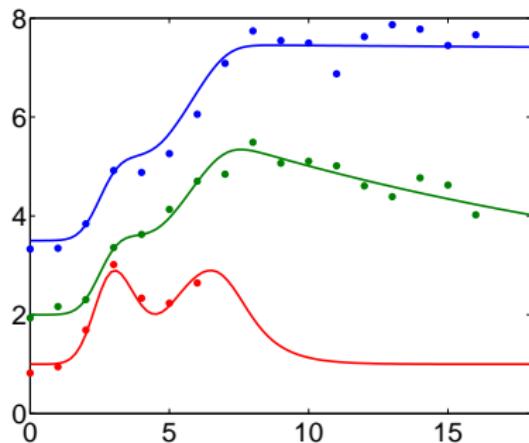
True “gene profiles” and noisy observations.



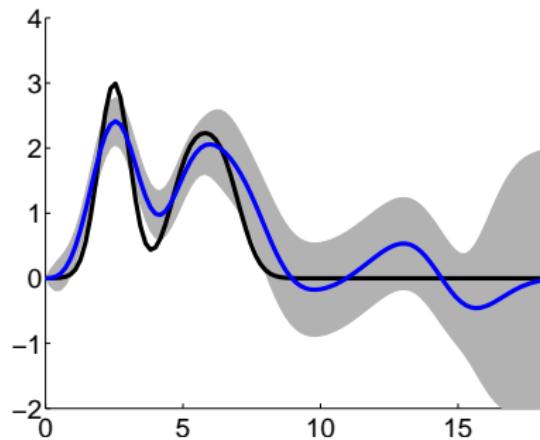
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



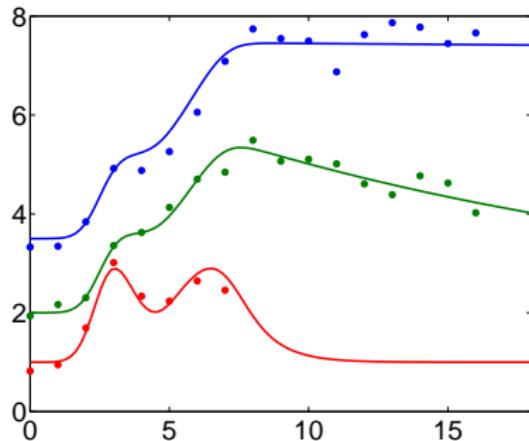
True “gene profiles” and noisy observations.



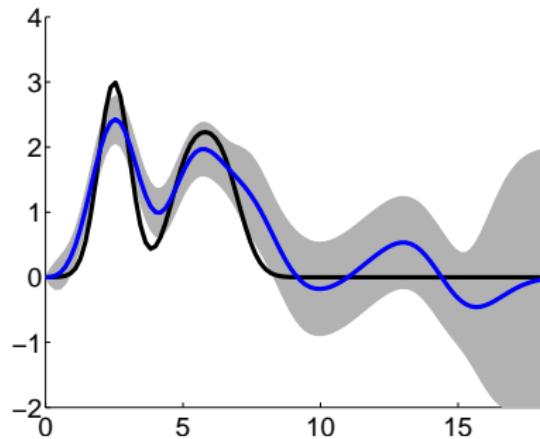
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



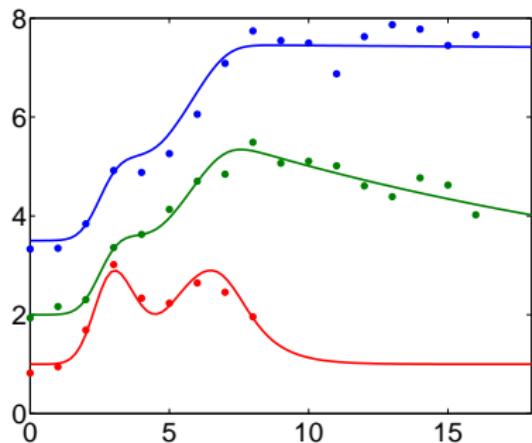
True “gene profiles” and noisy observations.



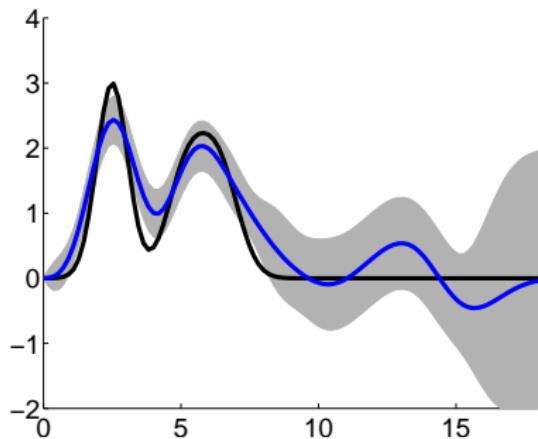
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



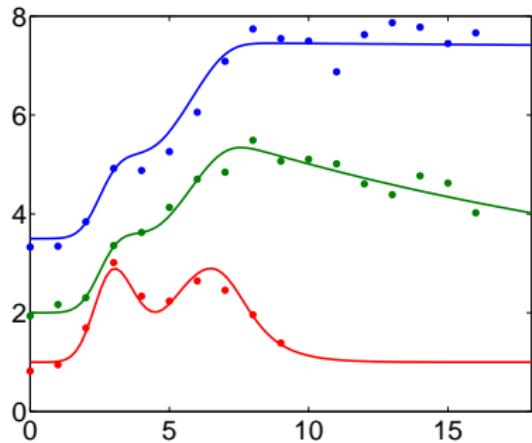
True “gene profiles” and noisy observations.



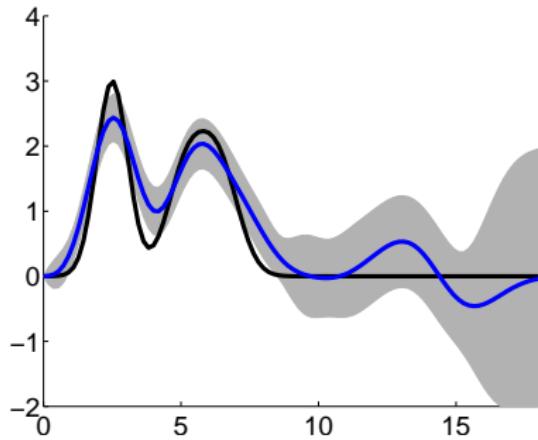
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



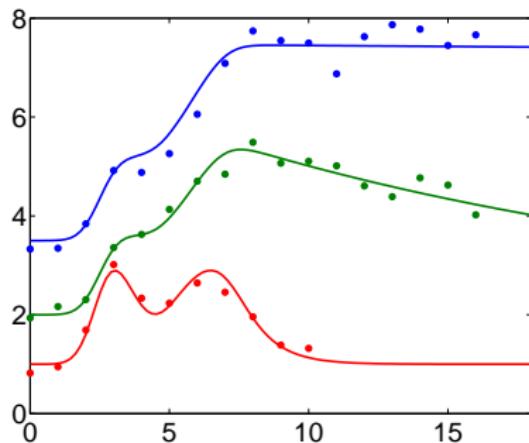
True “gene profiles” and noisy observations.



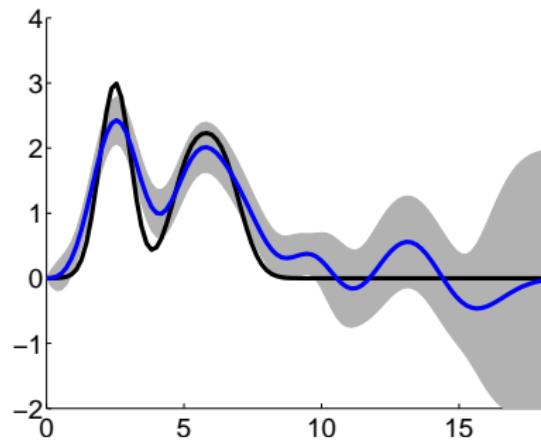
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



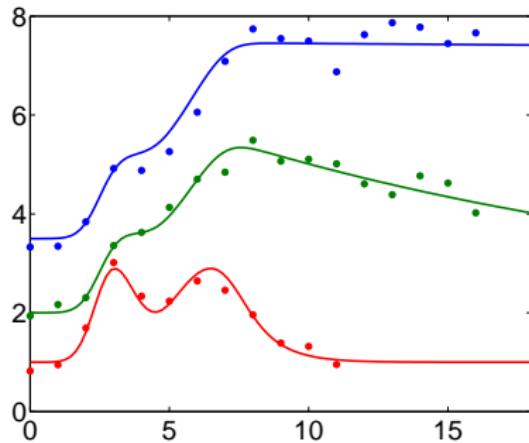
True “gene profiles” and noisy observations.



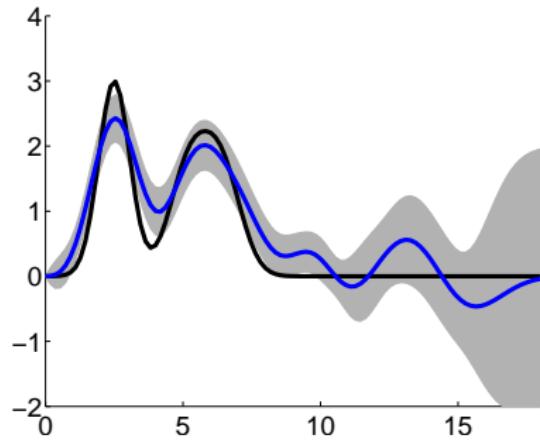
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



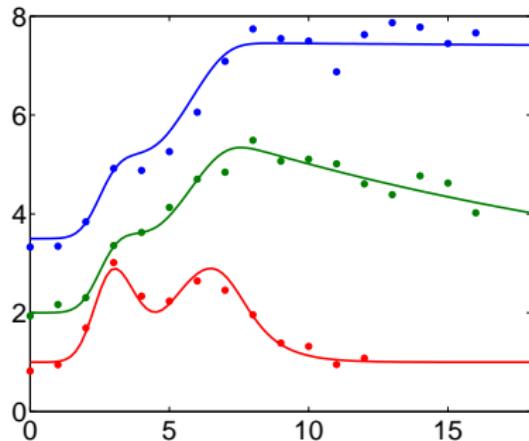
True “gene profiles” and noisy observations.



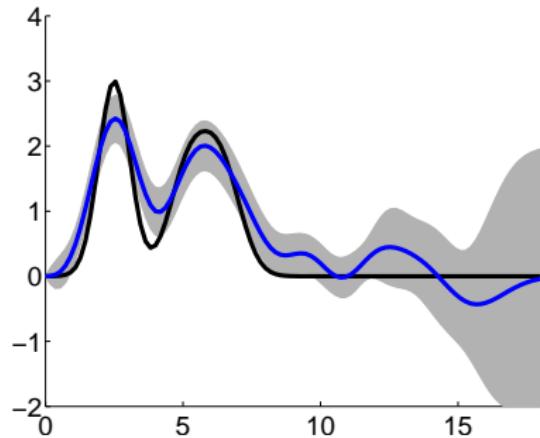
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



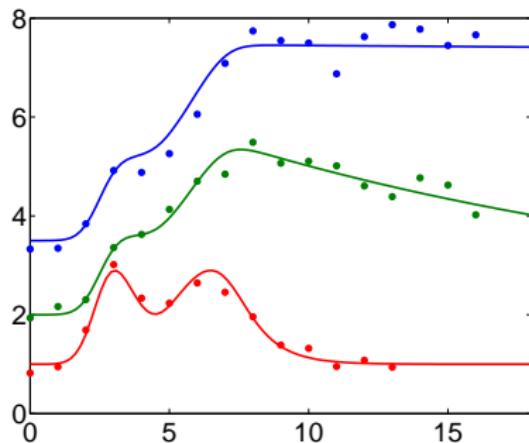
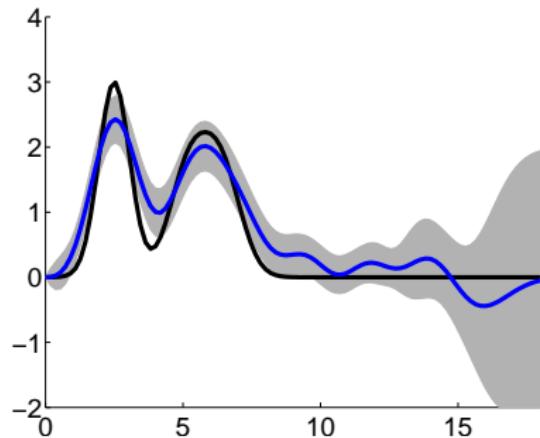
True “gene profiles” and noisy observations.



Inferred transcription factor activity.

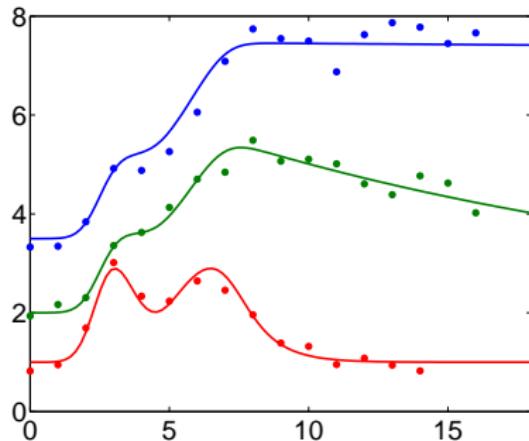
Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



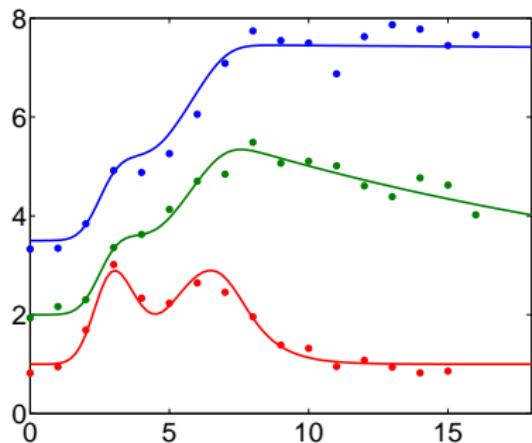
True “gene profiles” and noisy observations.



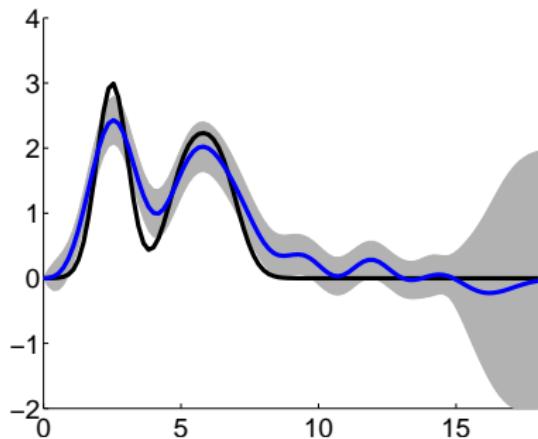
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



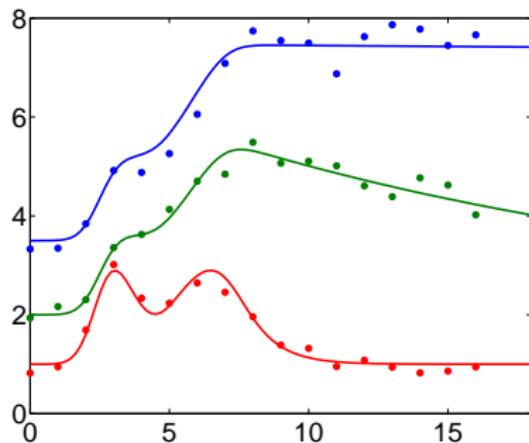
True “gene profiles” and noisy observations.



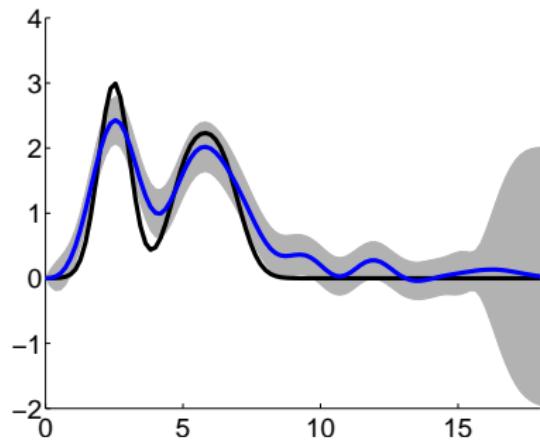
Inferred transcription factor activity.

Artificial Example: Inferring $f(t)$

Inferring TF activity from artificially sampled genes.



True “gene profiles” and noisy observations.



Inferred transcription factor activity.

p53 “Guardian of the Cell”

- ▶ Responsible for Repairing DNA damage
- ▶ Activates DNA Repair proteins
- ▶ Pauses the Cell Cycle (prevents replication of damage DNA)
- ▶ Initiates *apoptosis* (cell death) in the case where damage can't be repaired.
- ▶ Large scale feedback loop with NF- κ B.

p53 DNA Damage Repair

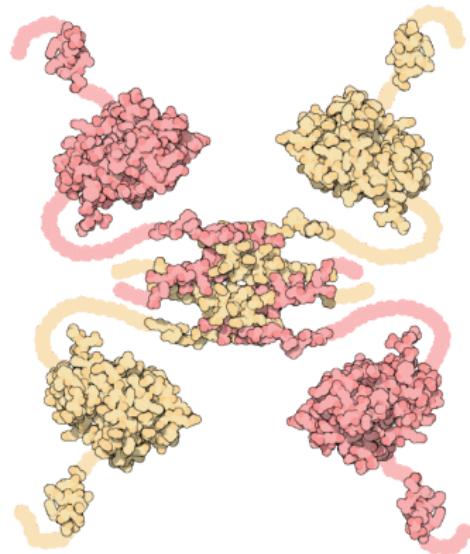
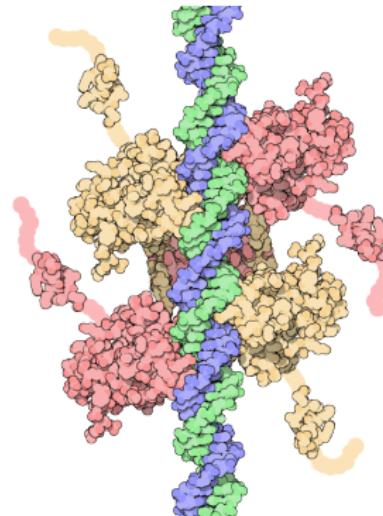


Figure: p53. *Left* unbound, *Right* bound to DNA. Images by David S. Goodsell from <http://www.rcsb.org/> (see the “Molecule of the Month” feature).

p53

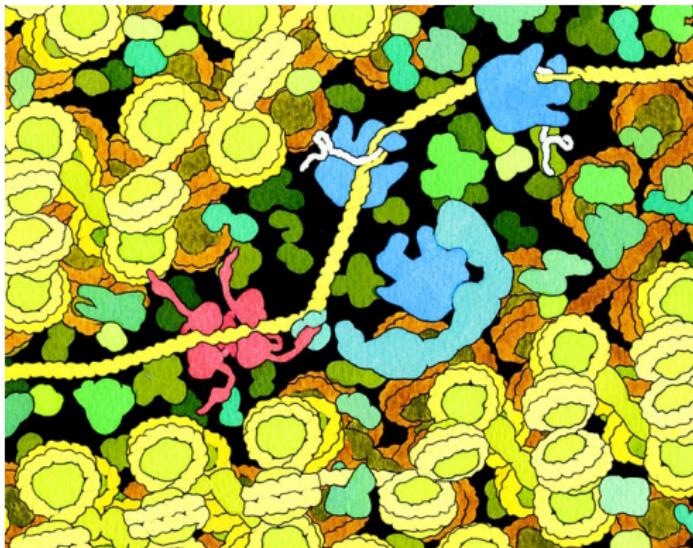


Figure: Repair of DNA damage by p53. Image from Goodsell (1999).

Response of p53 to Ionizing Radiation

- ▶ Experiment by Barenco et al. 2006.
- ▶ Human leukemia cell line (MOLT4) containing functional p53 and harvested protein and RNA at regular intervals after irradiation.
- ▶ The time course was performed in triplicate, and mRNA concentrations measured using Affymetrix U133A microarrays.

Modelling Assumption

- ▶ Assume p53 affects targets as a single input module network motif (SIM).

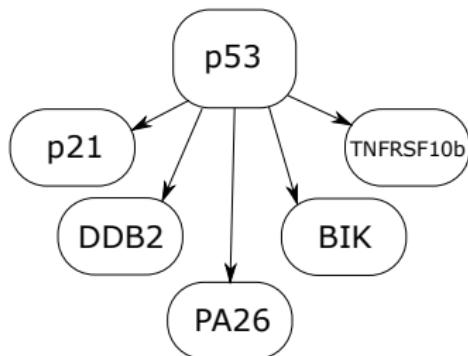


Figure: p53 SIM network motif as modelled by Barenco et al. 2006.

Ordinary Differential Equation Model

► First Order Differential Equation

$$\frac{dx_j(t)}{dt} = B_j + S_j f(t) - D_j x_j(t)$$

- Proposed by Barenco et al. (2006).
- $x_j(t)$ – concentration of gene j 's mRNA
- $f(t)$ – concentration of active transcription factor
- Model parameters: baseline B_j , sensitivity S_j and decay D_j
- Application: identifying co-regulated genes (targets)
- Problem: how do we fit the model when $f(t)$ is not observed?

Ordinary Differential Equation Model

- ▶ First Order Differential Equation

$$\frac{dx_j(t)}{dt} = B_j + S_j f(t) - D_j x_j(t)$$

- ▶ Proposed by Barenco et al. (2006).
- ▶ $x_j(t)$ – concentration of gene j 's mRNA
- ▶ $f(t)$ – concentration of active transcription factor
- ▶ Model parameters: baseline B_j , sensitivity S_j and decay D_j
- ▶ Application: identifying co-regulated genes (targets)
- ▶ Problem: how do we fit the model when $f(t)$ is not observed?

Ordinary Differential Equation Model

- ▶ First Order Differential Equation

$$\frac{dx_j(t)}{dt} = B_j + S_j f(t) - D_j x_j(t)$$

- ▶ Proposed by Barenco et al. (2006).
- ▶ $x_j(t)$ – concentration of gene j 's mRNA
- ▶ $f(t)$ – concentration of active transcription factor
- ▶ Model parameters: baseline B_j , sensitivity S_j and decay D_j
- ▶ Application: identifying co-regulated genes (targets)
- ▶ Problem: how do we fit the model when $f(t)$ is not observed?

Ordinary Differential Equation Model

- ▶ First Order Differential Equation

$$\frac{dx_j(t)}{dt} = B_j + S_j f(t) - D_j x_j(t)$$

- ▶ Proposed by Barenco et al. (2006).
- ▶ $x_j(t)$ – concentration of gene j 's mRNA
- ▶ $f(t)$ – concentration of active transcription factor
- ▶ Model parameters: baseline B_j , sensitivity S_j and decay D_j
- ▶ Application: identifying co-regulated genes (targets)
- ▶ Problem: how do we fit the model when $f(t)$ is not observed?

Ordinary Differential Equation Model

- ▶ First Order Differential Equation

$$\frac{dx_j(t)}{dt} = B_j + S_j f(t) - D_j x_j(t)$$

- ▶ Proposed by Barenco et al. (2006).
- ▶ $x_j(t)$ – concentration of gene j 's mRNA
- ▶ $f(t)$ – concentration of active transcription factor
- ▶ Model parameters: baseline B_j , sensitivity S_j and decay D_j
- ▶ Application: identifying co-regulated genes (targets)
- ▶ Problem: how do we fit the model when $f(t)$ is not observed?

Ordinary Differential Equation Model

- ▶ First Order Differential Equation

$$\frac{dx_j(t)}{dt} = B_j + S_j f(t) - D_j x_j(t)$$

- ▶ Proposed by Barenco et al. (2006).
- ▶ $x_j(t)$ – concentration of gene j 's mRNA
- ▶ $f(t)$ – concentration of active transcription factor
- ▶ Model parameters: baseline B_j , sensitivity S_j and decay D_j
- ▶ Application: identifying co-regulated genes (targets)
- ▶ Problem: how do we fit the model when $f(t)$ is not observed?

Ordinary Differential Equation Model

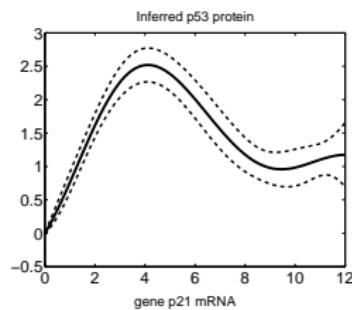
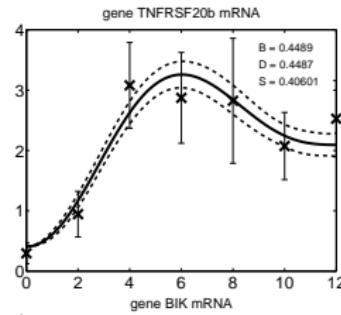
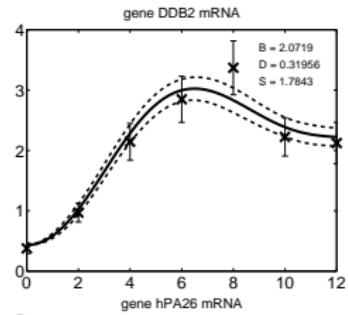
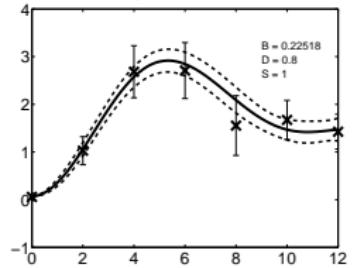
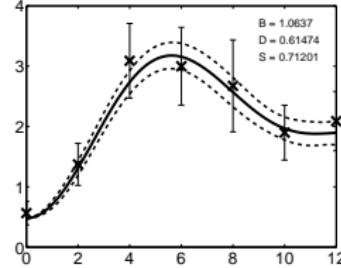
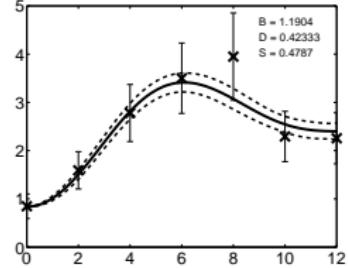
- ▶ First Order Differential Equation

$$\frac{dx_j(t)}{dt} = B_j + S_j f(t) - D_j x_j(t)$$

- ▶ Proposed by Barenco et al. (2006).
- ▶ $x_j(t)$ – concentration of gene j 's mRNA
- ▶ $f(t)$ – concentration of active transcription factor
- ▶ Model parameters: baseline B_j , sensitivity S_j and decay D_j
- ▶ Application: identifying co-regulated genes (targets)
- ▶ Problem: how do we fit the model when $f(t)$ is not observed?

p53 Results with GP

Pei Gao



Outline

Motivation and Review

Second Order ODE

Motion Capture Example

ODE Model of Transcriptional Regulation

Cascade Differential Equations

Discussion and Future Work

Cascaded Differential Equations

Antti Honkela

- ▶ Transcription factor protein also has governing mRNA.
- ▶ This mRNA can be measured.
- ▶ In signalling systems this measurement can be misleading because it is activated (phosphorylated) transcription factor that counts.
- ▶ In development phosphorylation plays less of a role.

Drosophila *Mesoderm* Development

Collaboration with Furlong Lab in EMBL Heidelberg.

- ▶ Mesoderm development in *Drosophila melanogaster* (fruit fly).
- ▶ Mesoderm forms in triploblastic animals (along with ectoderm and endoderm). Mesoderm develops into muscles, and circulatory system.
- ▶ The transcription factor Twist initiates *Drosophila* mesoderm development, resulting in the formation of heart, somatic muscle, and other cell types.
- ▶ Wildtype microarray experiments publicly available.
- ▶ Can we use the cascade model to predict viable targets of Twist?

Cascaded Differential Equations

Antti Honkela

We take the production rate of active transcription factor to be given by

$$\begin{aligned}\frac{df(t)}{dt} &= \sigma y(t) - \delta f(t) \\ \frac{dx_j(t)}{dt} &= B_j + S_j f(t) - D_j x_j(t)\end{aligned}$$

The solution for $f(t)$, setting transient terms to zero, is

$$f(t) = \sigma \exp(-\delta t) \int_0^t y(u) \exp(\delta u) du .$$

Covariance for Translation/Transcription Model

RBF covariance function for $y(t)$

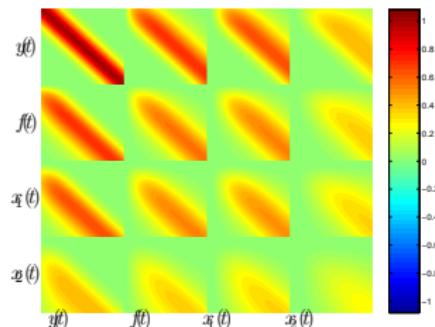
$$f(t) = \sigma \exp(-\delta t) \int_0^t y(u) \exp(\delta u) du$$

$$x_i(t) = \frac{B_i}{D_i} + S_i \exp(-D_i t) \int_0^t f(u) \exp(D_i u) du.$$

- ▶ Joint distribution for $x_1(t)$, $x_2(t)$, $f(t)$ and $y(t)$.

- ▶ Here:

δ	D_1	S_1	D_2	S_2
1	5	5	0.5	0.5



Joint Sampling of $y(t)$, $f(t)$, and $x(t)$

- `disimSample`

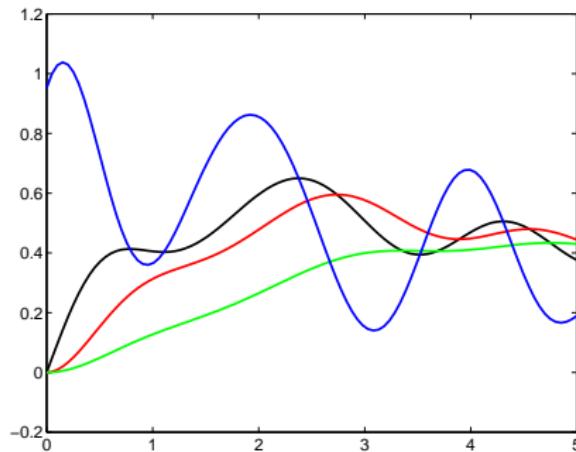


Figure: Joint samples from the ODE covariance, *blue*: $y(t)$ (mRNA of TF), *black*: $f(t)$ (TF concentration), *red*: $x_1(t)$ (high decay target) and *green*: $x_2(t)$ (low decay target)

Joint Sampling of $y(t)$, $f(t)$, and $x(t)$

- `disimSample`

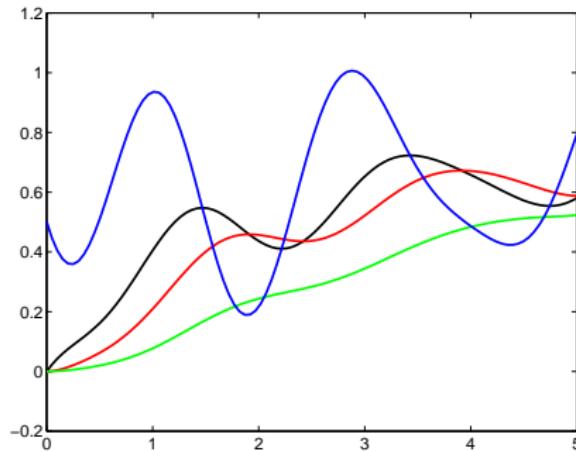


Figure: Joint samples from the ODE covariance, *blue*: $y(t)$ (mRNA of TF), *black*: $f(t)$ (TF concentration), *red*: $x_1(t)$ (high decay target) and *green*: $x_2(t)$ (low decay target)

Joint Sampling of $y(t)$, $f(t)$, and $x(t)$

- `disimSample`

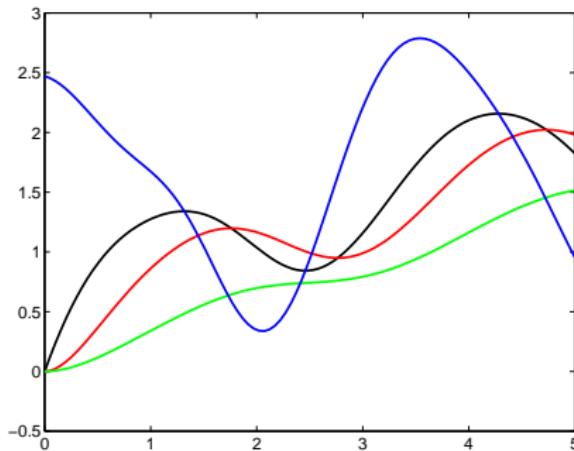


Figure: Joint samples from the ODE covariance, *blue*: $y(t)$ (mRNA of TF), *black*: $f(t)$ (TF concentration), *red*: $x_1(t)$ (high decay target) and *green*: $x_2(t)$ (low decay target)

Joint Sampling of $y(t)$, $f(t)$, and $x(t)$

- `disimSample`

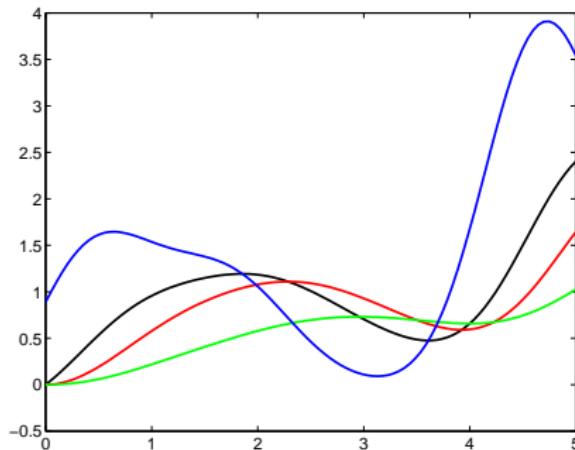


Figure: Joint samples from the ODE covariance, *blue*: $y(t)$ (mRNA of TF), *black*: $f(t)$ (TF concentration), *red*: $x_1(t)$ (high decay target) and *green*: $x_2(t)$ (low decay target)

Twist Results

- ▶ Use mRNA of Twist as driving input.
- ▶ For each gene build a cascade model that forces Twist to be the only TF.
- ▶ Compare fit of this model to a baseline (e.g. similar model but sensitivity zero).
- ▶ Rank according to the likelihood above the baseline.

Results for Twi using the Cascade model

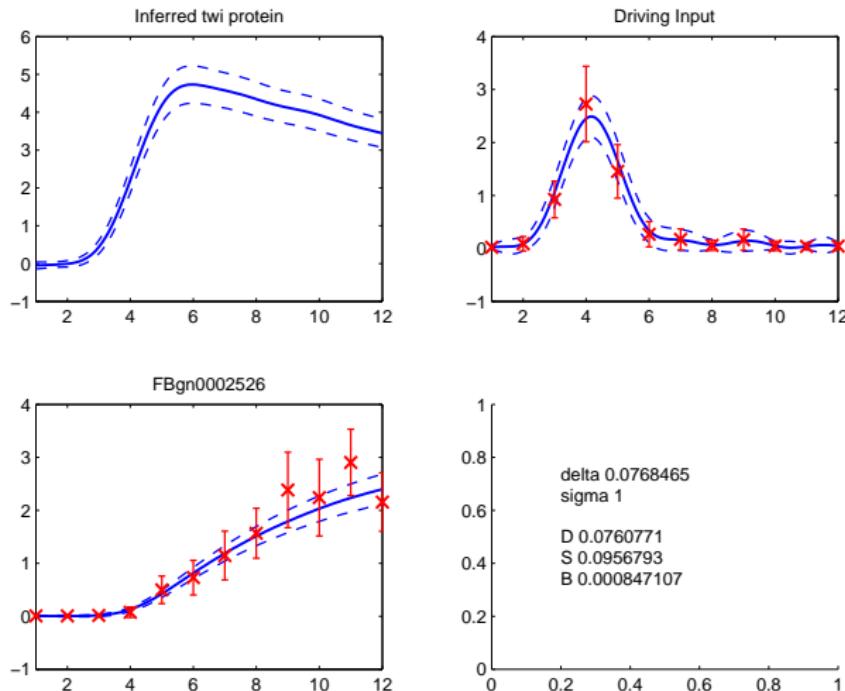


Figure: Model for flybase gene identity **FBgn0002526**.

Results for Twi using the Cascade model

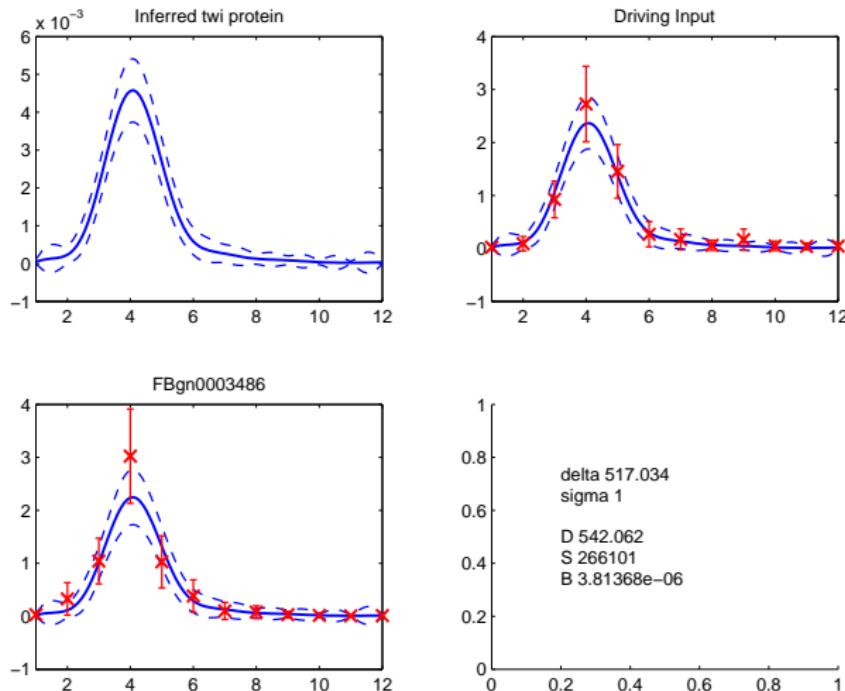


Figure: Model for flybase gene identity FBgn0003486.

Results for Twi using the Cascade model

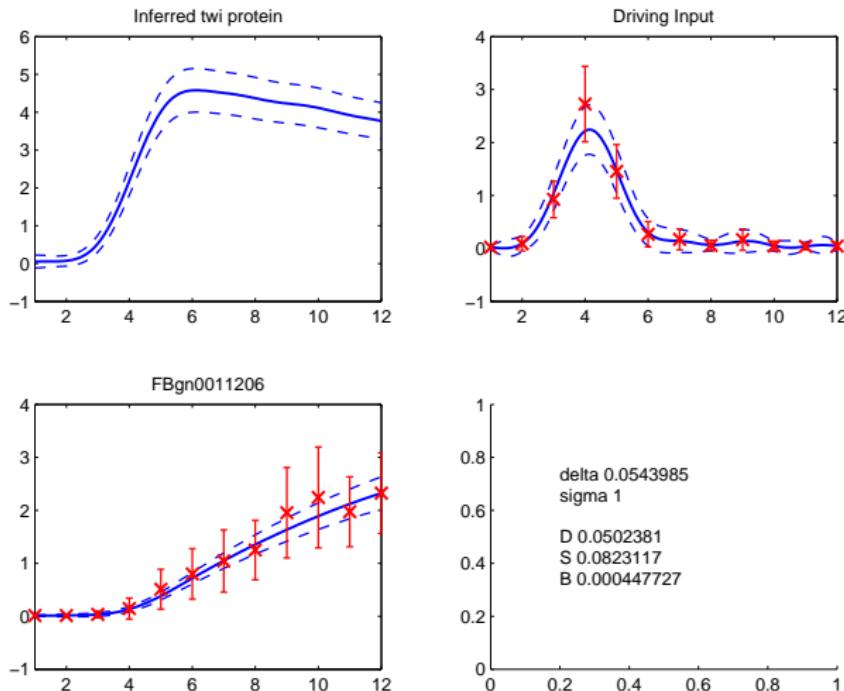


Figure: Model for flybase gene identity FBgn0011206.

Results for Twi using the Cascade model

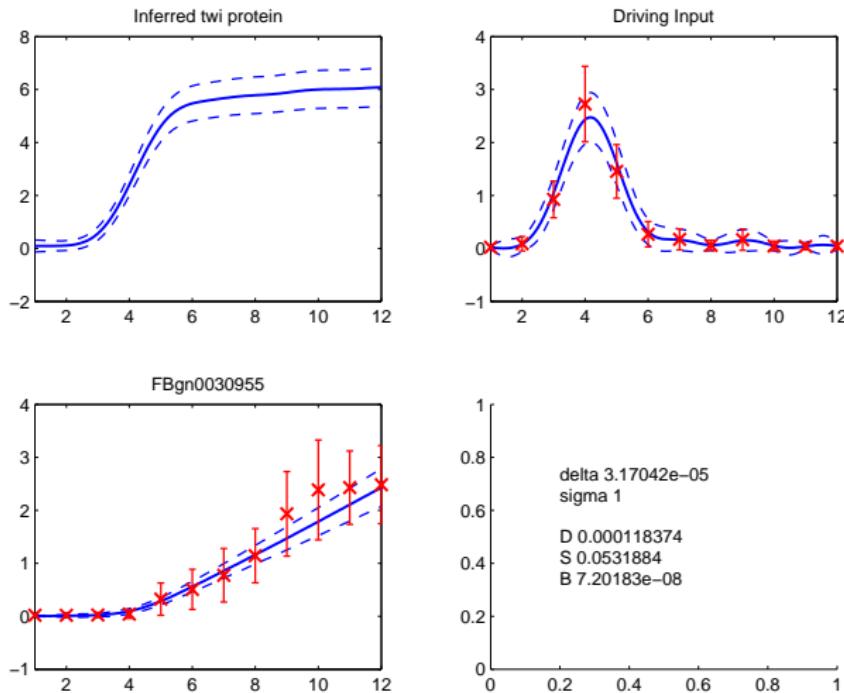


Figure: Model for flybase gene identity FBgn0030955.

Results for Twi using the Cascade model

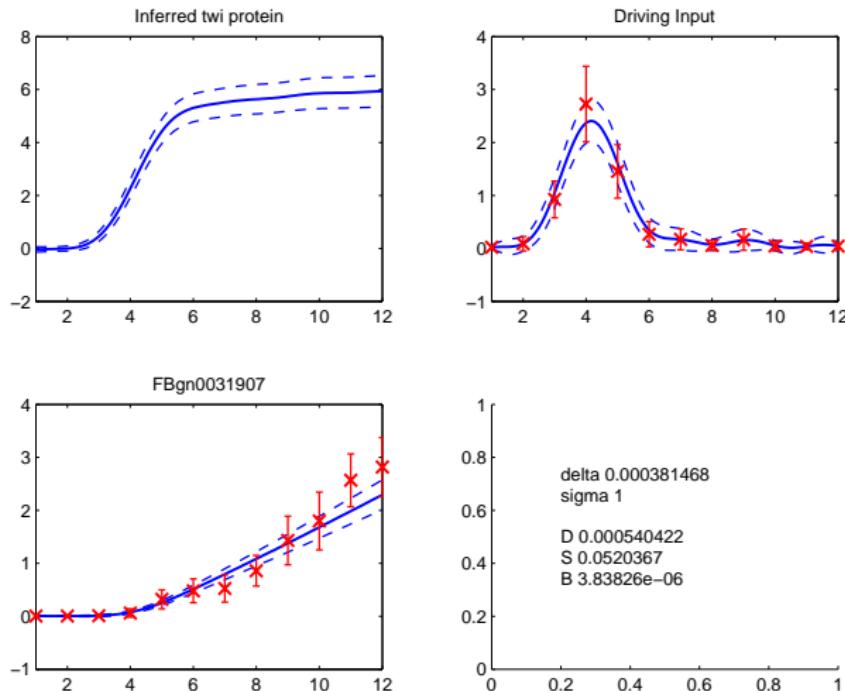


Figure: Model for flybase gene identity FBgn0031907.

Results for Twi using the Cascade model

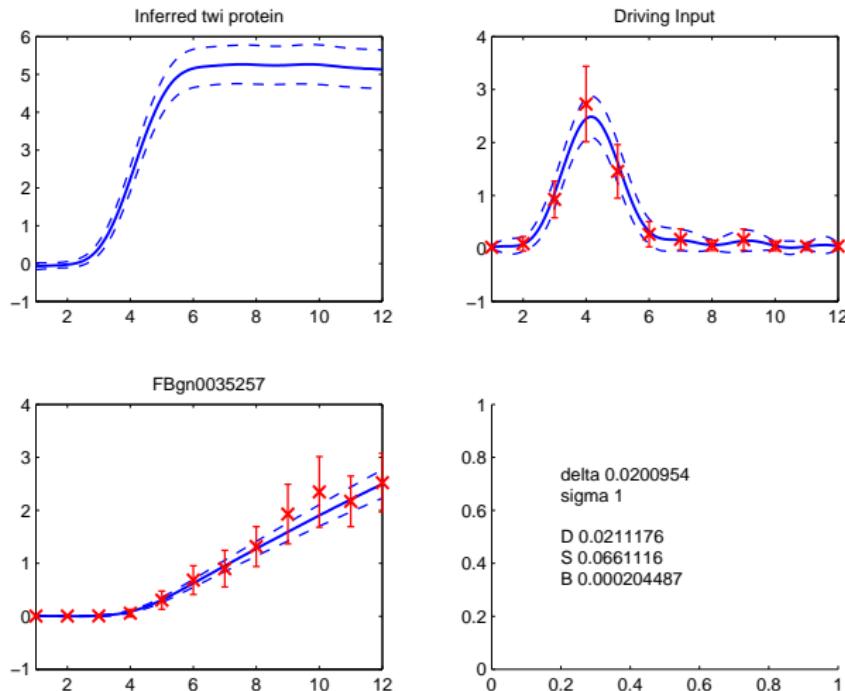


Figure: Model for flybase gene identity FBgn0035257.

Results for Twi using the Cascade model

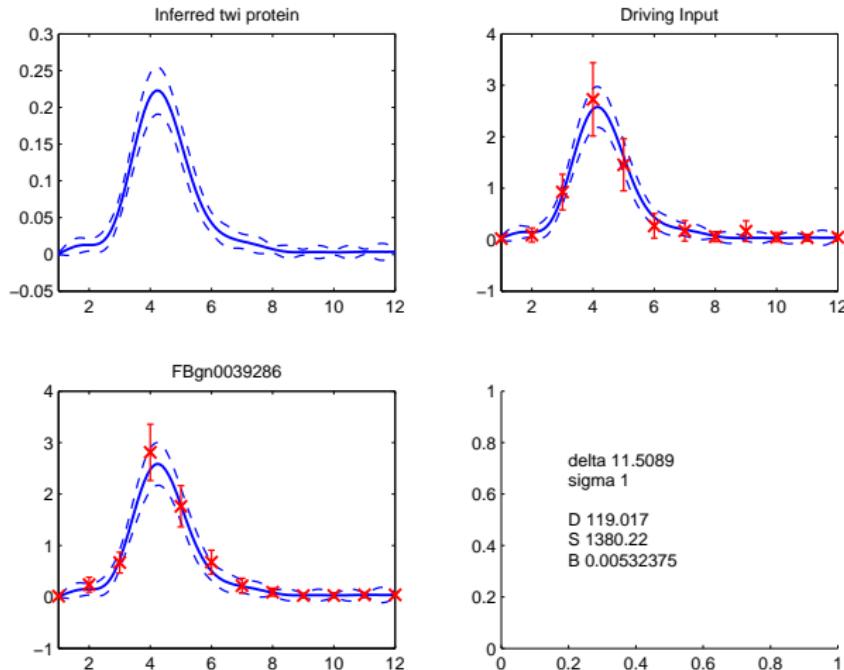


Figure: Model for flybase gene identity FBgn0039286.

Results of Ranking

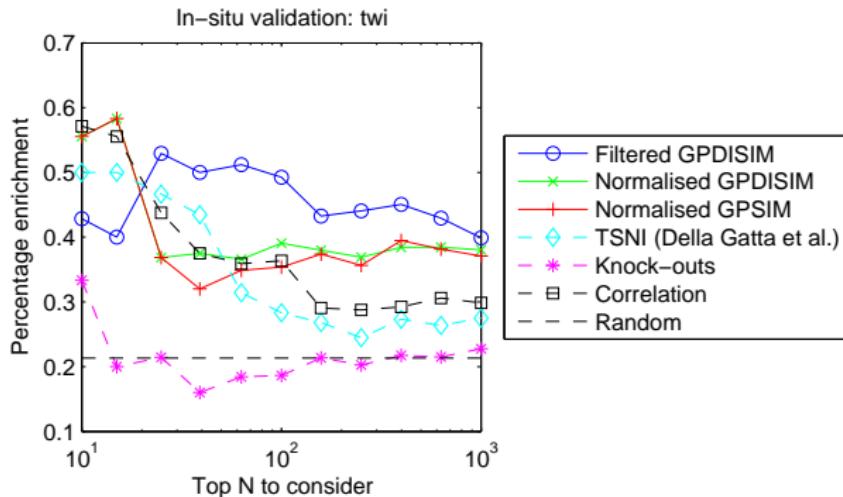


Figure: Percentage enrichment for top N targets for relevant terms in *Drosophila* in situ.

Results of Ranking

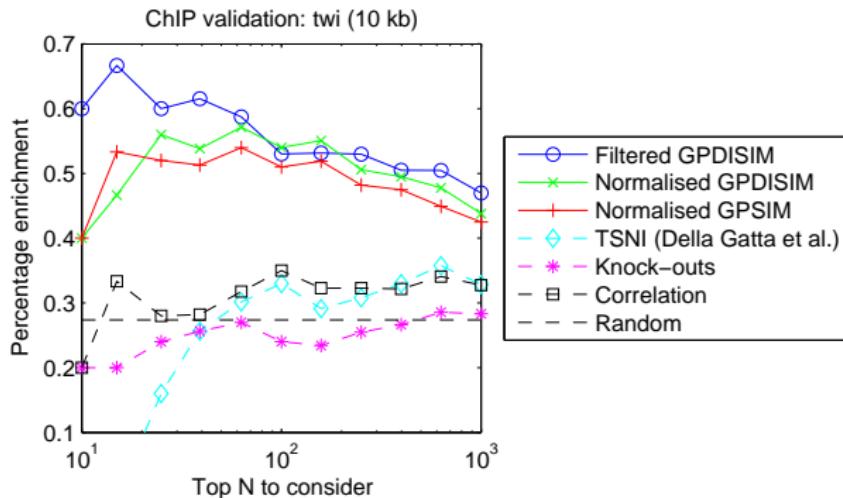


Figure: Percentage enrichment for top N targets for ChIP-chip confirmed targets.

Summary

- ▶ Cascade models allow genomewide analysis of potential targets given only expression data.
- ▶ Once a set of potential candidate targets have been identified, they can be modelled in a more complex manner.
- ▶ We don't have ground truth, but evidence indicates that the approach *can* perform as well as knockouts.

Outline

Motivation and Review

Second Order ODE

Motion Capture Example

ODE Model of Transcriptional Regulation

Cascade Differential Equations

Discussion and Future Work

Discussion and Future Work

- ▶ Integration of probabilistic inference with mechanistic models.
- ▶ Ongoing/other work:
 - ▶ Non linear response and non linear differential equations.
 - ▶ Scaling up to larger systems
 - ▶ Robotics applications
 - ▶ Applications to other types of system, e.g. spatial systems.
 - ▶ Stochastic differential equations

Acknowledgements

Investigators Neil Lawrence and Magnus Rattray

Researchers Mauricio Alvarez, Pei Gao, Antti Honkela, David Luengo, Guido Sanguinetti, Michalis Titsias, and Jennifer Withers

p53 pathway Martino Barenco and Mike Hubank at UCL Institute of Child Health.

D. Melanogaster Charles Girardot and Eileen Furlong of EMBL in Heidelberg.

Lawrence/Ratray Funding BBSRC award "Improved Processing of microarray data using probabilistic models", EPSRC award "Gaussian Processes for Systems Identification with applications in Systems Biology", University of Manchester, Computer Science Studentship, and **Google Research Award**: "Mechanistically Inspired Convolution Processes for Learning".

Other funding David Luengo's visit to Manchester was financed by the Comunidad de Madrid (project PRO-MULTIDIS-CM, S-0505/TIC/0233), and by the Spanish government (CICYT project TEC2006-13514-C02-01 and research grant JC2008-00219).

Antti Honkela visits to Manchester funded by PASCAL I & II

References I

M. Álvarez and N. D. Lawrence. Sparse convolved Gaussian processes for multi-output regression. In Koller et al. (2009). [\[PDF\]](#). To appear.

M. Álvarez, D. Luengo, and N. D. Lawrence. Latent force models. In van Dyk and Welling (2009), pages 9–16. [\[PDF\]](#).

M. Barenco, D. Tomescu, D. Brewer, R. Callard, J. Stark, and M. Hubank. Ranked prediction of p53 targets using hidden variable dynamic modeling. *Genome Biology*, 7(3):R25, 2006.

P. Boyle and M. Frean. Dependent Gaussian processes. In L. Saul, Y. Weiss, and L. Bottou, editors, *Advances in Neural Information Processing Systems*, volume 17, pages 217–224, Cambridge, MA, 2005. MIT Press.

P. Gao, A. Honkela, M. Rattray, and N. D. Lawrence. Gaussian process modelling of latent chemical species: Applications to inferring transcription factor activities. *Bioinformatics*, 24:i70–i75, 2008. [\[PDF\]](#). [\[DOI\]](#).

D. S. Goodsell. The molecular perspective: p53 tumor suppressor. *The Oncologist*, Vol. 4, No. 2, 138-139, April 1999, 4(2):138–139, 1999.

P. Goovaerts. *Geostatistics For Natural Resources Evaluation*. Oxford University Press, 1997. [\[Google Books\]](#).

D. M. Higdon. Space and space-time modelling using process convolutions. In C. Anderson, V. Barnett, P. Chatwin, and A. El-Shaarawi, editors, *Quantitative methods for current environmental issues*, pages 37–56. Springer-Verlag, 2002.

R. Khanin, V. Viciotti, and E. Wit. Reconstructing repressor protein levels from expression of gene targets in *E. Coli*. *Proc. Natl. Acad. Sci. USA*, 103(49):18592–18596, 2006. [\[DOI\]](#).

D. Koller, Y. Bengio, D. Schuurmans, and L. Bottou, editors. *Advances in Neural Information Processing Systems*, volume 21, Cambridge, MA, 2009. MIT Press. To appear.

P. S. Laplace. Mémoire sur la probabilité des causes par les évènemens. In *Mémoires de mathématique et de physique, présentés à l'Académie Royale des Sciences, par divers savans, & lù dans ses assemblées 6*, pages 621–656, 1774. Translated in Stigler (1986).

M. A. Osborne, A. Rogers, S. D. Ramchurn, S. J. Roberts, and N. R. Jennings. Towards real-time information processing of sensor network data using computationally efficient multi-output Gaussian processes. In *Proceedings of the International Conference on Information Processing in Sensor Networks (IPSN 2008)*, 2008.

References II

- A. D. Polyanin. *Handbook of Linear Partial Differential Equations for Engineers and Scientists*. Chapman & Hall/CRC, 1 edition, 2002.
- J. Quiñonero Candela and C. E. Rasmussen. A unifying view of sparse approximate Gaussian process regression. *Journal of Machine Learning Research*, 6:1939–1959, 2005.
- S. Rogers and M. Girolami. Model based identification of transcription factor regulatory activity via Markov chain Monte Carlo. Presentation at MASAMB '06, 2006.
- E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Y. Weiss, B. Schölkopf, and J. C. Platt, editors, *Advances in Neural Information Processing Systems*, volume 18, Cambridge, MA, 2006. MIT Press.
- S. M. Stigler. Laplace's 1774 memoir on inverse probability. *Statistical Science*, 1:359–378, 1986.
- Y. W. Teh, M. Seeger, and M. I. Jordan. Semiparametric latent factor models. In R. G. Cowell and Z. Ghahramani, editors, *Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics*, pages 333–340, Barbados, 6–8 January 2005. Society for Artificial Intelligence and Statistics.
- M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. *Journal of the Royal Statistical Society, B*, 6(3):611–622, 1999. [PDF]. [DOI].
- M. Titsias, N. D. Lawrence, and M. Rattray. Efficient sampling for Gaussian process inference using control variables. In Koller et al. (2009). [PDF]. To appear.
- M. K. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In van Dyk and Welling (2009), pages 567–574.
- D. van Dyk and M. Welling, editors. *Artificial Intelligence and Statistics*, volume 5, Clearwater Beach, FL, 16–18 April 2009. JMLR W&CP 5.

Outline

PDE Example

Efficient Approximations

Non-linear Response

Partial Differential Equations and Latent Forces

Mauricio Alvarez

- ▶ Can extend the concept to latent functions in PDEs.
- ▶ Jura data: concentrations of heavy metal pollutants from the Swiss Jura.
- ▶ Consider a latent function that represents how the pollutants were originally laid down (initial condition).
- ▶ Assume pollutants diffuse at different rates resulting in the concentrations observed in the data set.

$$\frac{\partial x_q(\mathbf{x}, t)}{\partial t} = \sum_{j=1}^d \kappa_j \frac{\partial^2 x_q(\mathbf{x}, t)}{\partial x_j^2},$$

- ▶ Latent function $f_r(\mathbf{x})$ represents the concentration of pollutants at time zero (i.e. the system's initial condition).

Solution to the PDE

Mauricio Alvarez

- The solution to the system (Polyanin, 2002) is then given by

$$x_q(\mathbf{x}, t) = \sum_{r=1}^R S_{rq} \int_{\mathbb{R}^d} f_r(\mathbf{x}') G_q(\mathbf{x}, \mathbf{x}', t) d\mathbf{x}'$$

where $G_q(\mathbf{x}, \mathbf{x}', t)$ is the Green's function given as

$$G_q(\mathbf{x}, \mathbf{x}', t) = \frac{1}{2^d \pi^{d/2} T_q^{d/2}} \exp \left[- \sum_{j=1}^d \frac{(x_j - x'_j)^2}{4 T_q} \right],$$

with $T_q = \kappa_q t$.

Covariance Function

Mauricio Alvarez

- ▶ For latent function given by a GP with the RBF covariance function this is tractable.

$$k_{x_p x_q}(\mathbf{x}, \mathbf{x}', t) = \sum_{r=1}^R \frac{S_{rp} S_{rq} |\mathbf{L}_r|^{1/2}}{|\mathbf{L}_{rp} + \mathbf{L}_{rq} + \mathbf{L}_r|^{1/2}} \\ \times \exp \left[-\frac{1}{2} (\mathbf{x} - \mathbf{x}')^\top (\mathbf{L}_{rp} + \mathbf{L}_{rq} + \mathbf{L}_r)^{-1} (\mathbf{x} - \mathbf{x}') \right],$$

where \mathbf{L}_{rp} , \mathbf{L}_{rq} and \mathbf{L}_r are diagonal isotropic matrices with entries $2\kappa_p t$, $2\kappa_q t$ and $1/\ell_r^2$ respectively. The covariance function between the output and latent functions is given by

$$k_{x_q f_r}(\mathbf{x}, \mathbf{x}', t) = \frac{S_{rq} |\mathbf{L}_r|^{1/2}}{|\mathbf{L}_{rq} + \mathbf{L}_r|^{1/2}} \\ \times \exp \left[-\frac{1}{2} (\mathbf{x} - \mathbf{x}')^\top (\mathbf{L}_{rq} + \mathbf{L}_r)^{-1} (\mathbf{x} - \mathbf{x}') \right].$$

Prediction of Metal Concentrations

Mauricio Alvarez

- ▶ Replicate experiments in (Goovaerts, 1997, pp. 248,249):
 - ▶ *Primary variable* (Cd, Cu, Pb, Co) predicted in conjunction with *secondary variables* (Ni and Zn for Cd; Pb, Ni, and Zn for Cu; Cu, Ni, and Zn for Pb; Ni and Zn for Co).¹
- ▶ Condition on the secondary variables to improve prediction for primary variables.
- ▶ Compare results for the diffusion kernel with independent GPs and “ordinary co-kriging” (Goovaerts, 1997, pp. 248,249).

¹Data available at <http://www.ai-geostats.org/>.

Jura Results

Mauricio Alvarez

Table: Mean absolute error and standard deviation for ten repetitions of the experiment for the Jura dataset. IGPs stands for independent GPs, GPDK stands for GP diffusion kernel, OCK for ordinary co-kriging. For the Gaussian process with diffusion kernel, we learn the diffusion coefficients and the length-scale of the covariance of the latent function.

Metals	IGPs	GPDK	OCK
Cd	0.5823 ± 0.0133	0.4505 ± 0.0126	0.5
Cu	15.9357 ± 0.0907	7.1677 ± 0.2266	7.8
Pb	22.9141 ± 0.6076	10.1097 ± 0.2842	10.7
Co	2.0735 ± 0.1070	1.7546 ± 0.0895	1.5

Outline

PDE Example

Efficient Approximations

Non-linear Response

Convolutions and Computational Complexity

Mauricio Alvarez

- ▶ Solutions to these differential equations is normally as a convolution.

$$x_i(t) = \int f(u) k_i(u-t) du + h_i(t)$$

$$x_i(t) = \int_0^t f(u) g_i(u) du + h_i(t)$$

- ▶ Convolution Processes (Higdon, 2002; Boyle and Frean, 2005).
- ▶ Convolutions lead to $N \times d$ size covariance matrices $O(N^3 d^3)$ complexity, $O(N^2 d^2)$ storage.
- ▶ Model is conditionally independent over $\{x_i(t)\}_{i=1}^d$ given $f(t)$.

Independence Assumption

Mauricio Alvarez

- ▶ Can assume conditional independence given $\{f(t_i)\}_{i=1}^k$.
(Álvarez and Lawrence, 2009)
 - ▶ Result is very similar to PITC approximation (Quiñonero Candela and Rasmussen, 2005).
 - ▶ Reduces to $O(N^3dk^2)$ complexity, $O(N^2dk)$ storage.
 - ▶ Can also do a FITC style approximation (Snelson and Ghahramani, 2006).
 - ▶ Reduces to $O(Ndk^2)$ complexity, $O(Ndk)$ storage.

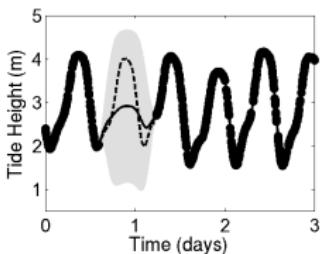
Tide Sensor Network

Mauricio Alvarez

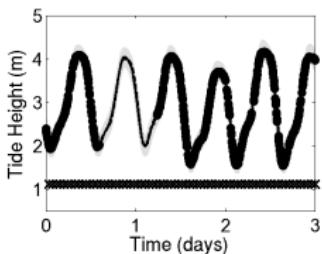
- ▶ Network of tide height sensors in the solent — tide heights are correlated.
- ▶ Data kindly provided by Alex Rogers (see Osborne et al., 2008).
- ▶ $d = 3$ and $N = 1000$ of the 4320 for the training set.
- ▶ Simulate sensor failure by knocking out one sensor for a given time.
- ▶ For the other two sensors we used all 1000 training observations.
- ▶ Take $k = 100$.

Tide Height Results

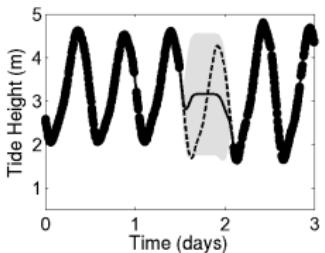
Mauricio Alvarez



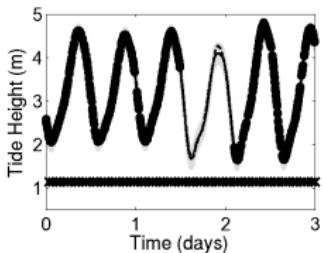
(a) Bramblemet Independent



(b) Bramblemet PITC



(c) Cambermet Independent



(d) Cambermet PITC

Cokriging Jura

Mauricio Alvarez

- ▶ Jura dataset — concentrations of several heavy metals.
- ▶ Prediction 259 data, validation 100 data points.
- ▶ Predict *primary variables* (cadmium and copper) at prediction locations in conjunction with some *secondary variables* (nickel and zinc for cadmium; lead, nickel and zinc for copper)
(Goovaerts, 1997, p. 248,249).

Swiss Jura Results

Mauricio Alvarez

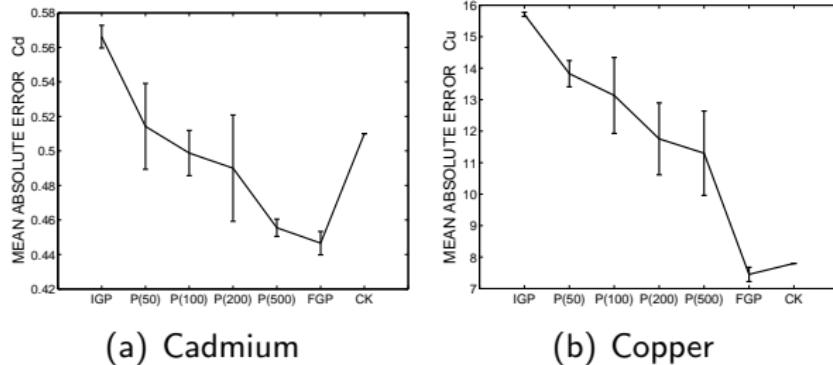


Figure: Mean absolute error. IGP stands for independent GP, $P(M)$ stands for PITC with M inducing values, FGP stands for full GP and CK stands for ordinary co-kriging.

Outline

PDE Example

Efficient Approximations

Non-linear Response

Models of non-linear regulation

- ▶ Non-linear Activation: Michaelis-Menten Kinetics

$$\frac{dx_i(t)}{dt} = B_i + \frac{S_i f(t)}{\gamma_i + f(t)} - D_i x_i(t)$$

used by Rogers and Girolami (2006)

- ▶ Non-linear Repression

$$\frac{dx_i(t)}{dt} = B_i + \frac{S_i}{\gamma_i + f(t)} - D_i x_i(t)$$

used by Khanin et al., 2006, PNAS 103

Models of non-linear regulation

- ▶ Non-linear Activation: Michaelis-Menten Kinetics

$$\frac{dx_i(t)}{dt} = B_i + \frac{S_i f(t)}{\gamma_i + f(t)} - D_i x_i(t)$$

used by Rogers and Girolami (2006)

- ▶ Non-linear Repression

$$\frac{dx_i(t)}{dt} = B_i + \frac{S_i}{\gamma_i + f(t)} - D_i x_i(t)$$

used by Khanin et al., 2006, PNAS 103

MAP Laplace Approximation

Consider the following modification to the model,

$$\frac{dx_j(t)}{dt} = B_j + S_j g(f(t)) - D_j x_j(t),$$

where $g(\cdot)$ is a non-linear function. The differential equation can still be solved,

$$x_j(t) = \frac{B_j}{D_j} + S_j \int_0^t e^{-D_j(t-u)} g_j(f(u)) du$$

Use Laplace's method (Laplace, 1774),

$$p(\mathbf{f} | \mathbf{x}) = N\left(\hat{\mathbf{f}}, \mathbf{A}^{-1}\right) \propto \exp\left(-\frac{1}{2} \left(\mathbf{f} - \hat{\mathbf{f}}\right)^T \mathbf{A} \left(\mathbf{f} - \hat{\mathbf{f}}\right)\right)$$

where $\hat{\mathbf{f}} = \text{argmax} p(\mathbf{f} | \mathbf{x})$ and $\mathbf{A} = -\nabla \nabla \log p(\mathbf{f} | \mathbf{y}) |_{\mathbf{f}=\hat{\mathbf{f}}}$ is the Hessian of the negative posterior at that point.

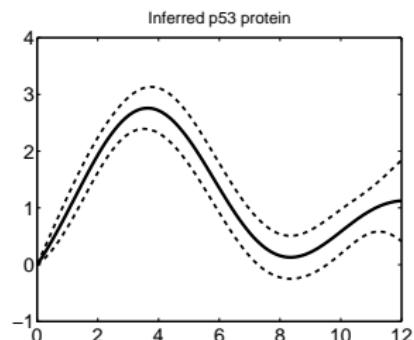
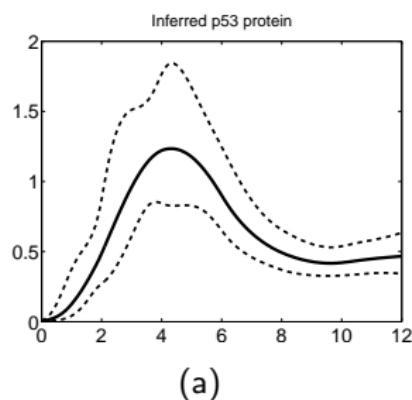
p53 and Michaelis-Menten Kinetics

Pei Gao

- ▶ The Michaelis-Menten activation model uses the following non-linearity

$$g_j(f(t)) = \frac{e^{f(t)}}{\gamma_j + e^{f(t)}},$$

where we are using a GP $f(t)$ to model the log of the TF activity.



Validation of Laplace Approximation

Michalis Titsias

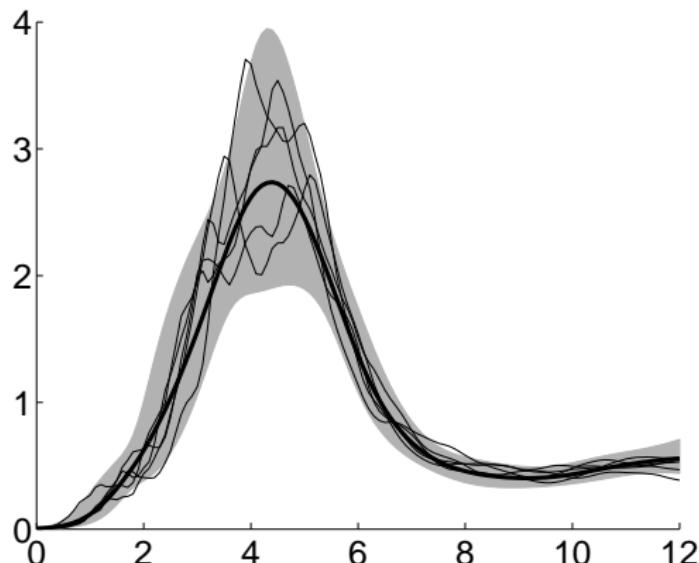


Figure: Laplace approximation error bars along with samples from the true posterior distribution.

Use Samples to Represent Posterior

Michalis Titsias

- ▶ Sample in Gaussian processes

$$p(\mathbf{f}|\mathbf{x}) \propto p(\mathbf{x}|\mathbf{f}) p(\mathbf{f})$$

- ▶ Likelihood relates GP to data through

$$x_j(t) = \alpha_j e^{-D_j t} + \frac{B_j}{D_j} + S_j \int_0^t e^{-D_j(t-u)} g_j(f(u)) du$$

- ▶ We use *control points* for fast sampling. (Titsias et al., 2009)

Sampling using control points

- ▶ Separate the points in \mathbf{f} into two groups:
 - ▶ few control points \mathbf{f}_c
 - ▶ and the large majority of the remaining points $\mathbf{f}_\rho = \mathbf{f} \setminus \mathbf{f}_c$
- ▶ Sample the control points \mathbf{f}_c using a proposal $q\left(\mathbf{f}_c^{(t+1)} | \mathbf{f}_c^{(t)}\right)$
- ▶ Sample the remaining points \mathbf{f}_ρ using the conditional GP prior $p\left(\mathbf{f}_\rho^{(t+1)} | \mathbf{f}_c^{(t+1)}\right)$
- ▶ The whole proposal is

$$Q\left(\mathbf{f}^{(t+1)} | \mathbf{f}^{(t)}\right) = p\left(\mathbf{f}_\rho^{(t+1)} | \mathbf{f}_c^{(t+1)}\right) q\left(\mathbf{f}_c^{(t+1)} | \mathbf{f}_c^{(t)}\right)$$

- ▶ Its like sampling from the prior $p(\mathbf{f})$ but imposing random walk behaviour through the control points.

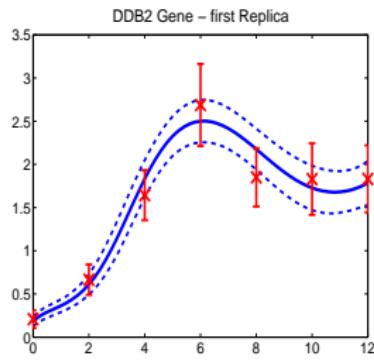
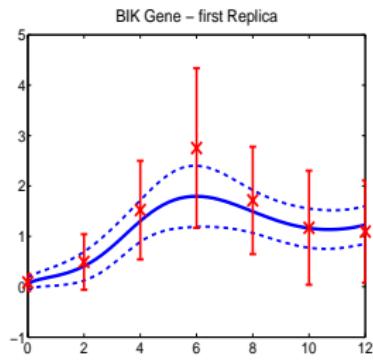
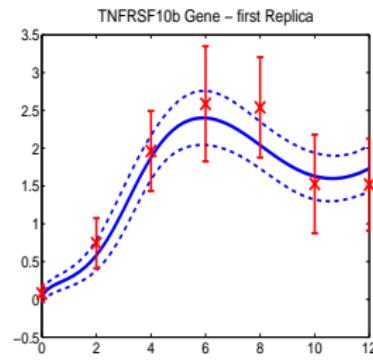
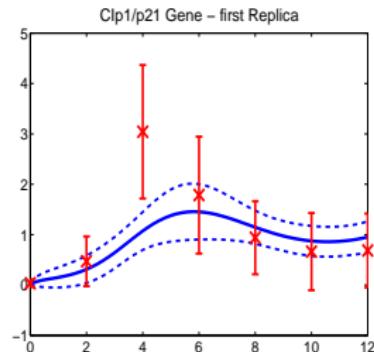
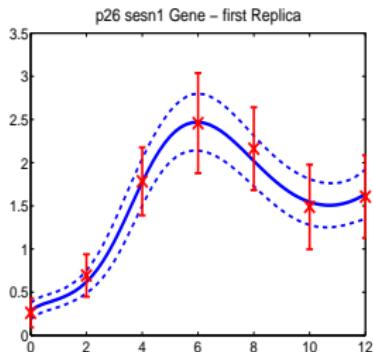
p53 System Again

- ▶ One transcription factor (p53) that acts as an activator. We consider the Michaelis-Menten kinetic equation

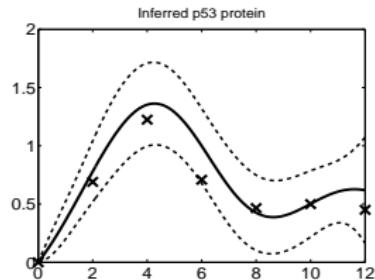
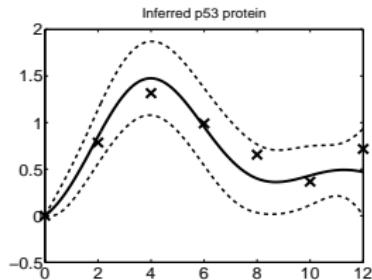
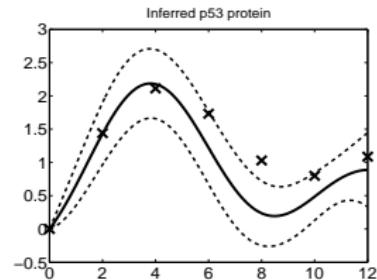
$$\frac{dx_j(t)}{dt} = B_j + S_j \frac{\exp(f(t))}{\exp(f(t)) + \gamma_j} - D_j x_j(t)$$

- ▶ MCMC details:
 - ▶ 7 control points are used (placed in a equally spaced grid)
 - ▶ Running time 4/5 hours for 2 million sampling iterations plus burn in
 - ▶ Acceptance rate for \mathbf{f} after burn in was between 15% – 25%

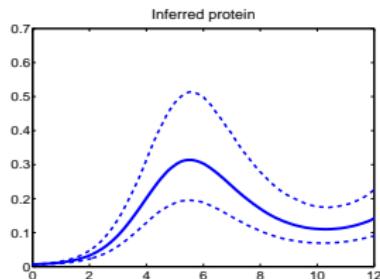
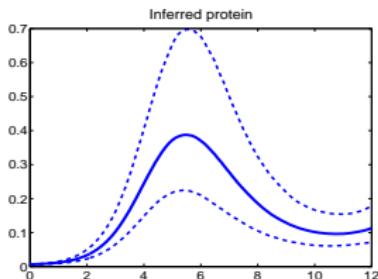
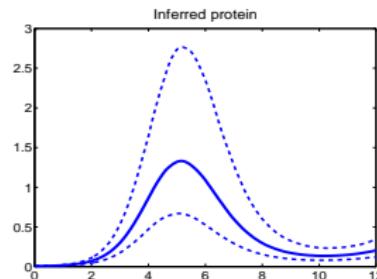
Data used by Barenco et al. (2006): Predicted gene expressions for the 1st replica



Data used by Barenco et al. (2006): Protein concentrations

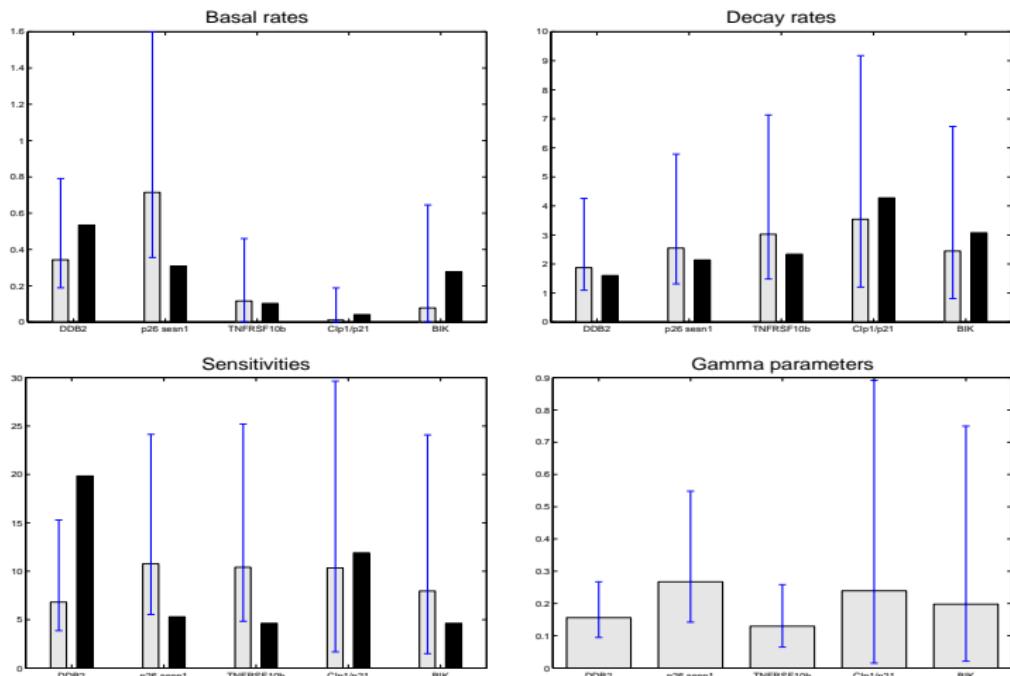


Linear model (Barenco et al. predictions are shown as crosses)



Nonlinear (Michaelis-Menten kinetic equation)

p53 Data Kinetic parameters



Our results (grey) compared with Barenco et al. (2006) (black).
Note that Barenco et al. use a linear model