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Motivation and Review



Styles of Machine Learning

Background: interpolation is easy, extrapolation is hard

» Urs Holzle keynote talk at NIPS 2005.
» Emphasis on massive data sets.
> Let the data do the work—more data, less extrapolation.
» Alternative paradigm:
» Very scarce data: computational biology, human motion.
» How to generalize from scarce data?

» Need to include more assumptions about the data (e.g.
invariances).
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General Approach

Broadly Speaking: Two approaches to modeling

data modeling

let the data “speak”
data driven
adaptive models
digit recognition

mechanistic modeling

impose physical laws
knowledge driven
differential equations

climate, weather models




Dimensionality Reduction

» Linear relationship between the data, X € RN*d and a
reduced dimensional representation, F € V>4, where g < d.

X =FW +¢,

e~N(0,X)

» Integrate out F, optimize with respect to W.
» For Gaussian prior, F ~ N (0,1)
» and ¥ = ol we have probabilistic PCA (Tipping and Bishop,

1999).
» and X constrained to be diagonal, we have factor analysis.



Dimensionality Reduction: Temporal Data

» Deal with temporal data with a temporal latent prior.

» Independent Gauss-Markov priors over each fi(t) leads to :
Rauch-Tung-Striebel (RTS) smoother (Kalman filter).

» More generally consider a Gaussian process (GP) prior,

q
p(F’t) = HN (fhi’O’ Kf:,i»f:,i) :

i=1

» Given the covariance functions for {f;(t)} we have an implied
covariance function across all {x;(t)}—(ML: semi-parametric
latent factor model (Teh et al., 2005), Geostatistics: linear
model of coregionalization).

» Rauch-Tung-Striebel smoother has been preferred

» linear computational complexity in .

» Advances in sparse approximations have made the general GP
framework practical. (Titsias, 2009; Snelson and Ghahramani,
2006; Quifionero Candela and Rasmussen, 2005).



Gaussian Distribution

Zero mean Gaussian distribution

» A multi-variate Gaussian distribution is defined by a mean and
a covariance matrix.

1 f—p) K1 (f -
N (Flu,K) = ——5— exp _(F—p) ¢ UsTORY
(2m)2 [K|2
» We will consider the special case where the mean is zero,
1 fTKIf
N(f]0,K) = —x—Fexp (— ) :
(2m)7 |K]2 2



Sampling a Function

Multi-variate Gaussians

» We will consider a Gaussian with a particular structure of
covariance matrix.

» Generate a single sample from this 25 dimensional Gaussian
distribution, f =[f, ... fa5].

» We will plot these points against their index.



Gaussian Distribution Sample
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(a) A 25 dimensional correlated ran- (b) colormap showing correlations
dom variable (values ploted against between dimensions
index)

Figure: A sample from a 25 dimensional Gaussian distribution.
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Covariance Function

The covariance matrix

» Covariance matrix shows correlation between points 7, and 7,
if nis near to m.

» Less correlation if n is distant from m.

» Our ordering of points means that the function appears
smooth.

» Combine covariance function with training data by
conditioning on one point given the other.

» Let's consider the marginal density for variables indexed by 1
and 2.
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Prediction of f5 from £,
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Covariance Functions

Where did this covariance matrix come from?

RBF Kernel Function

AN _||t_tl‘|2
k(t,t) —aexp< T

» Covariance matrix is built
using the inputs to the
function t.

» For the example above it
was based on Euclidean
distance.

» The covariance function is
also know as a kernel.




Covariance Samples

demCovFuncSample

Figure: RBF kernel with £ =1072, a =1



Covariance Samples
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Figure: RBF kernel with / =1, a =1
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demCovFuncSample

RBF kernel with £ =0.3, o =4

Figure:



Covariance Samples

demCovFuncSample

Figure: Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance
function =1, a =4



Mechanical Analogy

Back to Latent Force Models!

» These models rely on the latent variables to provide the
dynamic information.

» We now introduce a further dynamical system with a
mechanistic inspiration.

» Physical Interpretation:

» the latent functions, f;(t) are g forces.
» We observe the displacement of d springs to the forces.,
» Interpret system as the force balance equation, XD = FS + €.
» Forces act, e.g. through levers — a matrix of sensitivities,
S € R,
» Diagonal matrix of spring constants, D € RI*9.
» Original System: W = SD~ 1.



Extend Model

» Add a damper and give the system mass.
FS = XM + XC + XD +e.

» Now have a second order mechanical system.
» It will exhibit inertia and resonance.

» There are many systems that can also be represented by
differential equations.

» When being forced by latent function(s), {fi(t)}{_,, we call
this a latent force model.



Second Order ODE



Gaussian Process priors and Latent Force Models

Driven Harmonic Oscillator

» For Gaussian process we can compute the covariance matrices
for the output displacements.

» For one displace the model is

M

my X (t) + cexu(t) + diexi(t) = bi + Zsikfi(t)7 (1)
i=0

where, my is the kth diagonal element from M and similarly
for ¢, and dy. sjk is the i, kth element of S.

» Model the latent forces as g independent, GPs with RBF
covariances

t— tl 2
kfl.ﬁ(t, t') = exp (—(0_—2)) (5,‘/.

i



Covariance for ODE Model

» RBF Kernel function for f (t)

1

30 = 1 2 Siewl-ast) | ) exploju)sins ¢ - )

A

mjwj =
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» Joint distribution
for xq (t), x2 (),
x3 (t) and £ (t).
Damping ratios:
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Covariance for ODE Model

» Analogy

X = Ze,—-rf,' f,' NN(O,Z;) — X NN (0,26?2,’6,’)

» Joint distribution
for x1 (t), x2 (1),
x3 (t) and f (t).
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Covariance for ODE Model

» RBF Kernel function for f (t)
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Joint Sampling of x (t) and f (t)

» lfmSample

Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 (t) (underdamped), green: x> (t) (overdamped), and blue: x3 (t)
(critically damped).
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Figure: Joint samples from the ODE covariance, black: f (t), red:
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Joint Sampling of x (t) and f (t)

» lfmSample

2% 55 60 65 70

Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 (t) (underdamped), green: x> (t) (overdamped), and blue: x3 (t)
(critically damped).



Covariance for ODE

» RBF Kernel function for f (t)
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Motion Capture Example
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Example: Motion Capture

Mauricio Alvarez and David Luengo (Alvarez et al., 2009)

» Motion capture data: used for animating human motion.
» Multivariate time series of angles representing joint positions.
» Objective: generalize from training data to realistic motions.

» Use 2nd Order Latent Force Model with mass/spring/damper
(resistor inductor capacitor) at each joint.



Prediction of Test Motion

Model left arm only.

3 balancing motions (18, 19, 20) from subject 49.

18 and 19 are similar, 20 contains more dramatic movements.
Train on 18 and 19 and testing on 20

Data was down-sampled by 32 (from 120 fps).

Reconstruct motion of left arm for 20 given other movements.

vV V.V vV VvV VY

Compare with GP that predicts left arm angles given other
body angles.



Mocap Results

Table: Root mean squared (RMS) angle error for prediction of the left
arm’s configuration in the motion capture data. Prediction with the
latent force model outperforms the prediction with regression for all apart
from the radius's angle.

Latent Force | Regression

Angle Error Error
Radius 4.11 4.02
Wrist 6.55 6.65

Hand X rotation 1.82 3.21
Hand Z rotation 2.76 6.14
Thumb X rotation 1.77 3.10
Thumb Z rotation 2.73 6.09




Mocap Results Il

1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9

(a) Inferred Latent Force (b) Wrist (c) Hand X Rotation

l

° 1 2 3 4 5 6 7 8 © 1 2 3 4 5 6 7 8 9 © 1 2 3 4 5 6 7 8 9

(d) Hand Z Rotation (e) Thumb X Rotation  (f) Thumb Z Rotation

Figure: Predictions from LFM (solid line, grey error bars) and direct
regression (crosses with stick error bars).
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Example: Transcriptional Regulation

» First Order Differential Equation

dx; (¢)

T Bt Sif (t) — Djx; (t)

v

Can be used as a model of gene transcription: Barenco et al.,
2006; Gao et al., 2008.

xj(t) — concentration of gene j's mMRNA

v

v

f(t) — concentration of active transcription factor
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» First Order Differential Equation

dx; (t
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Can be used as a model of gene transcription: Barenco et al.,
2006; Gao et al., 2008.

xj(t) — concentration of gene j's mMRNA
f(t) — concentration of active transcription factor

Model parameters: baseline B}, sensitivity S; and decay D;
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Example: Transcriptional Regulation

» First Order Differential Equation
dx; (t)
— = B S0 -Dx()

v

Can be used as a model of gene transcription: Barenco et al.,
2006; Gao et al., 2008.

xj(t) — concentration of gene j's mMRNA
f(t) — concentration of active transcription factor
Model parameters: baseline B}, sensitivity S; and decay D;

Application: identifying co-regulated genes (targets)

vV vVv.v. v Y

Problem: how do we fit the model when f(t) is not observed?



Covariance for Transcription Model

RBF covariance function for f (t)

. t
xi (t) = % + Sjexp (—D,-t)/0 f (u)exp (Dju)du.

» Joint distribution
for ;1 (t)t X2 Et) ﬁ)\\\ \
x3 (t), and f (¢). @@\\\ N
g |HDelre|‘51 [ D, [ S [ Ds [ S ] W)\\ \ \
[ 5 [ 1T 1TJ]o05]05)] t)\\\
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Joint Sampling of f (t) and x (t)

> simSample

1 2 3 4 5

Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 (t) (high decay/sensitivity), green: x; (t) (medium
decay/sensitivity) and blue: x3 (t) (low decay/sensitivity).
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p53 “Guardian of the Cell”

Responsible for Repairing DNA damage
Activates DNA Repair proteins
Pauses the Cell Cycle (prevents replication of damage DNA)

vV v v Yy

Initiates apoptosis (cell death) in the case where damage can't
be repaired.

v

Large scale feeback loop with NF-xB.



p53 DNA Damage Repair

Figure: p53. Left unbound, Right bound to DNA. Images by David S.
Goodsell from http://www.rcsb.org/ (see the “Molecule of the Month”
feature).


http://www.rcsb.org/

Figure: Repair of DNA damage by p53. Image fromGoodsell (1999).



Response of p53 to lonizing Radiation

» Experiment by Barenco et al. 2006.

» Human leukemia cell line (MOLT4) containing functional p53
and harvested protein and RNA at regular intervals after
irradiation.

» The time course was performed in triplicate, and mRNA
concentrations measured using Affymetrix UL33A microarrays.



Modelling Assumption

» Assume pb3 affects targets as a single input module network
motif (SIM).

Figure: p53 SIM network motif as modelled by Barenco et al. 2006.
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Ordinary Differential Equation Model

» First Order Differential Equation

dx; (t)
dt

= Bj + §jf (t) — Djx; (t)

» Proposed by Barenco et al. (2006).
> xj(t) — concentration of gene j's mMRNA

» f(t) — concentration of active transcription factor



Ordinary Differential Equation Model

» First Order Differential Equation
dx; (t)
T =B+ Sf () - D(t)

Proposed by Barenco et al. (2006).
xj(t) — concentration of gene j's mMRNA
f(t) — concentration of active transcription factor
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Ordinary Differential Equation Model

» First Order Differential Equation
dx; (t)
T =B+ Sf () - D(t)

Proposed by Barenco et al. (2006).

xj(t) — concentration of gene j's mMRNA

f(t) — concentration of active transcription factor

Model parameters: baseline B;, sensitivity S; and decay D;
Application: identifying co-regulated genes (targets)

Problem: how do we fit the model when f(t) is not observed?



p53 Results with GP

Pei Gao

Inferred ps3 protein gene TNFRSF20b mRNA gene DDB2 MRNA

ol 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12
gene p21 mRNA gene BIK mRNA gene hPA26 mRNA
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Cascade Differential Equations



Cascaded Differential Equations

Antti Honkela

» Transcription factor protein also has governing mRNA.
» This mRNA can be measured.

» In signalling systems this measurement can be misleading
because it is activated (phosphorylated) transcription factor
that counts.

» In development phosphorylation plays less of a role.



Drosophila Mesoderm Development

Collaboration with Furlong Lab in EMBL Heidelberg.
» Mesoderm development in Drosophila melanogaster (fruit fly).

» Mesoderm forms in triplobastic animals (along with ectoderm
and endoderm). Mesoderm develops into muscles, and
circulatory system.

» The transcription factor Twist initiates Drosophila mesoderm
development, resulting in the formation of heart, somatic
muscle, and other cell types.

» Wildtype microarray experiments publicly available.

» Can we use the cascade model to predict viable targets of
Twist?



Cascaded Differential Equations

Antti Honkela

We take the production rate of active transcription factor to be

given by
d’;gt) oy (t) - 0F (1)
d(t) g . o o
dr Bj + Sif (t) — Djx; (t)

The solution for f(t), setting transient terms to zero, is

f(t) = oexp(—dt) /Oty(u) exp (0u)du .



Covariance for Translation/Transcription Model

RBF covariance function for y (t)

f(t)y = aexp(—ét)/oty(u)exp(éu)du

) t
xi(t) = %—l—S,-exp(—D;t)/0 f (u)exp(Dju)du.

» Joint distribution

for x1 (t), x2 (t), w)\\ \ |
f(t) and y (). ﬁ)\ \ \

» Here:
[5O[S [0 [ 5] NN\
[1] 5[5 ]05]05| 20

"

o w0 w0



Joint Sampling of y (t), f (t), and x (t)

» disimSample
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Figure: Joint samples from the ODE covariance, blue: y (t) (mRNA
of TF), black: f (t) (TF concentration), red: x; (t) (high decay
target) and green: x; (t) (low decay target)
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Joint Sampling of y (t), f (t), and x (t)

» disimSample

1 2 3 4 5

Figure: Joint samples from the ODE covariance, blue: y (t) (mRNA
of TF), black: f (t) (TF concentration), red: x; (t) (high decay
target) and green: x; (t) (low decay target)



Twist Results

» Use mRNA of Twist as driving input.

» For each gene build a cascade model that forces Twist to be
the only TF.

» Compare fit of this model to a baseline (e.g. similar model
but sensitivity zero).

» Rank according to the likelihood above the baseline.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0002526.



Results for Twi using the Cascade model

x107° Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0003486.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0011206.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn00309055.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0031907.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0035257.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0039286.



Results of Ranking

In-situ validation: twi
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Figure: Percentage enrichment for top N targets for relevant terms in
Drosophila in situs.



Results of Ranking

ChIP validation: twi (10 kb)
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Figure: Percentage enrichment for top N targets for ChIP-chip confirmed
targets.



» Cascade models allow genomewide analysis of potential
targets given only expression data.

» Once a set of potential candidate targets have been identified,
they can be modelled in a more complex manner.

» We don't have ground truth, but evidence indicates that the
approach can perform as well as knockouts.



Discussion and Future Work



Discussion and Future Work

» Integration of probabilistic inference with mechanistic models.
» Ongoing/other work:

Non linear response and non linear differential equations.
Scaling up to larger systems

Robotics applications

Applications to other types of system, e.g. spatial systems.
Stochastic differential equations

vV vy vy VvYyy
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PDE Example



Partial Differential Equations and Latent Forces

Mauricio Alvarez

» Can extend the concept to latent functions in PDEs.

» Jura data: concentrations of heavy metal pollutants from the
Swiss Jura.

» Consider a latent function that represents how the pollutants
were originally laid down (initial condition).

» Assume pollutants diffuse at different rates resulting in the
concentrations observed in the data set.

d
axq Z"iqa xq(x t) ,

» Latent function f,(x) represents the concentration of
pollutants at time zero (i.e. the system’s initial condition).



Solution to the PDE

Mauricio Alvarez

» The solution to the system (Polyanin, 2002) is then given by

R
Xq(x, t) = Z Srq /Rd fr(x') Gg(x, X', t)dx’
r=1

where Gg(x,x’, t) is the Green's function given as

1 (x5 — )’
/ _ _ J
Gq(x, X, t) = odd/2 -,-5//2 exp [ Z 4T, ’

with Ty = Kqt.



Covariance Function

Mauricio Alvarez

» For latent function given by a GP with the RBF covariance
function this is tractable.

R
5rpSrq||-r|1/2

kxx ) lvt =
P q(x X ) ; ‘Lrp+qu+Lr|1/2

X exp [—% (x — x’)T (Lip+Lg+ L)t (x—x)|,

where L, L,q and L, are diagonal isotropic matrices with
entries 2k,t, 2kqt and 1/£2 respectively. The covariance
function between the output and latent functions is given by
L

ks, ’ ,7t =
qfr(x X ) ’qu+Lr’1/2

X exp —% (x — x’)—r (Lg+L,)" (x —x')



Prediction of Metal Concentrations

Mauricio Alvarez

» Replicate experiments in (Goovaerts, 1997, pp. 248,249):
» Primary variable (Cd, Cu, Pb, Co) predicted in conjunction
with secondary variables (Ni and Zn for Cd; Pb, Ni, and Zn for
Cu; Cu, Ni, and Zn for Pb; Ni and Zn for Co).!
» Condition on the secondary variables to improve prediction for
primary variables.
» Compare results for the diffusion kernel with independent GPs
and “ordinary co-kriging” (Goovaerts, 1997, pp. 248,249).

!Data available at http://www.ai-geostats.org/.


http://www.ai-geostats.org/

Jura Results

Mauricio Alvarez

Table: Mean absolute error and standard deviation for ten repetitions of
the experiment for the Jura dataset. IGPs stands for independent GPs,
GPDK stands for GP diffusion kernel, OCK for ordinary co-kriging. For
the Gaussian process with diffusion kernel, we learn the diffusion
coefficients and the length-scale of the covariance of the latent function.

Metals IGPs GPDK OCK
Cd 0.5823+0.0133 | 0.4505+0.0126 | 0.5
Cu 15.935740.0907 | 7.16774+0.2266 | 7.8
Pb 22.9141+0.6076 | 10.1097+0.2842 | 10.7
Co 2.07354-0.1070 | 1.75464-0.0895 | 1.5




Efficient Approximations



Convolutions and Computational Complexity

Mauricio Alvarez

» Solutions to these differential equations is normally as a
convolution.

x,-(t):/f(u)k,-(u— £y du+ by ()

x,-(t):/o f(u)gi(u)du+ h; (1)

» Convolution Processes (Higdon, 2002; Boyle and Frean, 2005).
» Convolutions lead to N x d size covariance matrices
0 (N3d3) complexity, O (N2d2) storage.

» Model is conditionally independent over {x; (t)}f-fz1 given

f(t).



Independence Assumption

Mauricio Alvarez

k

» Can assume conditional independence given given {f (t;)}_;.
(Alvarez and Lawrence, 2009)

>

Result is very similar to PITC approximation (Quifionero
Candela and Rasmussen, 2005).

Reduces to O (N3dk?) complexity, O (Ndk) storage.
Can also do a FITC style approximation (Snelson and
Ghahramani, 2006).

Reduces to O (Ndk?) complexity, O (Ndk) storage.



Tide Sensor Network

Mauricio Alvarez

» Network of tide height sensors in the solent — tide heights are
correlated.

» Data kindly provided by Alex Rogers (see Osborne et al.,
2008).

» d =3 and N = 1000 of the 4320 for the training set.

» Simulate sensor failure by knocking out onse sensor for a given
time.

» For the other two sensors we used all 1000 training
observations.

» Take k = 100.



Tide Height Results

Tide Height (m)
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Cokriging Jura

Mauricio Alvarez

» Jura dataset — concentrations of several heavy metals.

» Prediction 259 data, validation 100 data points.

» Predict primary variables (cadmium and copper) at prediction
locations in conjunction with some secondary variables (nickel

and zinc for cadmium; lead, nickel and zinc for copper)
(Goovaerts, 1997, p. 248,249).



Swiss Jura Results

Mauricio Alvarez
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Figure: Mean absolute error. IGP stands for independent GP, P(M)
stands for PITC with M inducing values, FGP stands for full GP and CK
stands for ordinary co-kriging.



Non-linear Response



Models of non-linear regulation

» Non-linear Activation: Michaelis-Menten Kinetics

dX,'(t) _ n S;f(t) .
T_B'+'y;+—f(t)_D'X'(t)

used by Rogers and Girolami (2006)



Models of non-linear regulation

» Non-linear Activation: Michaelis-Menten Kinetics

dX,'(t) _ n S;f(t) -
T_B'+'y;+—f(t)_D'X'(t)

used by Rogers and Girolami (2006)
» Non-linear Repression

dx; (t)
dt

S
Vi + £ (1)
used by Khanin et al., 2006, PNAS 103

=B+ D;x; (t)



MAP Laplace Approximation

Consider the following modification to the model,

P _ b4 g (£ (1) - D (0.

where g (+) is a non-linear function. The differential equation can
still be solved,

B; b pii—y
(=5 +5 [ O g (f () du
J 0

Use Laplace's method (Laplace, 1774),

p(f10 =N (RA ) wen (5 (1) A (1))

where f = argmaxp(f | x) and A= —VVlogp(f|y) l¢_¢ is the
Hessian of the negative posterior at that point.



p53 and Michaelis-Menten Kinetics

Pei Gao

» The Michaelis-Menten activation model uses the following
non-linearity

. ef (1)
. t)) )= ——
5 (7 (0) =
where we are using a GP f (t) to model the log of the TF
activity.
Inferred p53 protein Inferred p53 protein
4 2
1.5]
1 -
05 SN
_10 2 4 6 8 10 12 OO 2 4 6 8 10 12




Valdiation of Laplace Approximation

Michalis Titsias

©o 2 4 6 8 10 12
Figure: Laplace approximation error bars along with samples from the
true posterior distribution.



Use Samples to Represent Posterior

Michalis Titsias

» Sample in Gaussian processes

p (f[x) o< p (x[f) p ()

» Likelihood relates GP to data through
B; t
() = ape Ot J ) [ e O g (F (u))du
J 0

» We use control points for fast sampling. (Titsias et al., 2009)



Sampling using control points

» Separate the points in f into two groups:

» few control points f.
» and the large majority of the remaining points f, = f \ f.

» Sample the control points f. using a proposal g (f£t+1)|f£t)>

» Sample the remaining points f, using the conditional GP prior
(t+1),g(t+1)
P (fp |fe )

» The whole proposal is
Q (f(t-f—l)‘f(t)) =p (f;(lt+1)|f£‘t+1)> q (fgt-f—l)‘fgt))

» lIts like sampling from the prior p(f) but imposing random
walk behaviour through the control points.



p53 System Again

» One transcription factor (p53) that acts as an activator. We
consider the Michaelis-Menten kinetic equation

Dy(t) o, o ew(f(1)
dt 7 Texp(f(t)) +
» MCMC details:

-D

ix;(t)

» 7 control points are used (placed in a equally spaced grid)

» Running time 4/5 hours for 2 million sampling iterations plus
burn in

» Acceptance rate for f after burn in was between 15% — 25%



Data used by Barenco et al. (2006): Predicted gene

expressions for the 1st replica
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Data used by Barenco et al. (2006): Protein concentrations

Inferred p53 protein Inferred ps3 protein Inferred ps3 protein

2 4 6 8 10 12

Linear model (Barenco et al. predictions are shown as crosses)
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Nonlinear (Michaelis-Menten kinetic equation)



p53 Data Kinetic parameters
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Our results (grey) compared with Barenco et al. (2006) (black).
Note that Barenco et al. use a linear model
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