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Motivation and Review



Styles of Machine Learning

Background: interpolation is easy, extrapolation is hard

» Urs Holzle keynote talk at NIPS 2005.
» Emphasis on massive data sets.
> Let the data do the work—more data, less extrapolation.
> Alternative paradigm:
» Very scarce data: computational biology, human motion.
» How to generalize from scarce data?

> Need to include more assumptions about the data (e.g.
invariances).
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Weakly Mechanistic vs Strongly Mechanistic

> Underlying data modeling techniques there are weakly
mechanistic principles (e.g. smoothness).

> In physics the models are typically strongly mechanistic.
> In principle we expect a range of models which vary in the
strength of their mechanistic assumptions.

» This work is one part of that spectrum: add further
mechanistic ideas to weakly mechanistic models.



Dimensionality Reduction

» Linear relationship between the data, X € R"*P, and a
reduced dimensional representation, F € 79, where g < p.

X =FW +¢,

e~N(0,X)

> Integrate out F, optimize with respect to W.
» For Gaussian prior, F ~ N (0,1)
» and ¥ = ol we have probabilistic PCA (Tipping and Bishop,

1999; Roweis, 1998).
» and ¥ constrained to be diagonal, we have factor analysis.



Dimensionality Reduction: Temporal Data

» Deal with temporal data with a temporal latent prior.

» Independent Gauss-Markov priors over each f;(t) leads to :
Rauch-Tung-Striebel (RTS) smoother (Kalman filter).

» More generally consider a Gaussian process (GP) prior,

q
p(Flt) = [TV (Fil0. K, r,) -
i=1



Joint Gaussian Process

» Given the covariance functions for {f;(t)} we have an implied
covariance function across all {x;(t)}—(ML: semi-parametric
latent factor model (Teh et al., 2005), Geostatistics: linear
model of coregionalization).

» Rauch-Tung-Striebel smoother has been preferred

> linear computational complexity in n.

» Advances in sparse approximations have made the general GP
framework practical. (Titsias, 2009; Snelson and Ghahramani,
2006; Quifionero Candela and Rasmussen, 2005).



Gaussian Process: Exponentiated Quadratic Covariance

» Take, for example, exponentiated quadratic form for

covariance.
t—t])?
k(t,t') = = gl
(t.0) p( -

» Gaussian process over
latent functions.




Mechanical Analogy

Back to Mechanistic Models!

> These models rely on the latent variables to provide the
dynamic information.

» We now introduce a further dynamical system with a
mechanistic inspiration.

» Physical Interpretation:

» the latent functions, f;(t) are g forces.

» We observe the displacement of p springs to the forces.,

» Interpret system as the force balance equation, XD = FS + €.
» Forces act, e.g. through levers — a matrix of sensitivities,

S € RI*P.

Diagonal matrix of spring constants, D € RP*P.

» Original System: W = SD!.

v



Extend Model

v

Add a damper and give the system mass.

FS = XM + XC + XD + .

v

Now have a second order mechanical system.

It will exhibit inertia and resonance.

v

v

There are many systems that can also be represented by
differential equations.

» When being forced by latent function(s), {fi(t)}7_,, we call
this a latent force model.



Physical Analogy
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Gaussian Process priors and Latent Force Models

Driven Harmonic Oscillator

» For Gaussian process we can compute the covariance matrices
for the output displacements.

» For one displacement the model is

q

myXe(t) + cexi(t) + dixi(t) = br + Z sikfi(t), (1)
i=0

where, my is the kth diagonal element from M and similarly
for ¢, and dk. sj is the i, kth element of S.

» Model the latent forces as g independent, GPs with
exponentiated quadratic covariances

(t—t)?
keh(t,t) = exp (_2—&2 Oil-



Covariance for ODE Model

» Exponentiated Quadratic Covariance function for f (t)

- t .
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Joint Sampling of x (t) and f (t)

» 1lfmSample

Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 (t) (underdamped), green: x; (t) (overdamped), and blue: x3 (t)
(critically damped).
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Motion Capture Example



Example: Motion Capture

Mauricio Alvarez and David Luengo (Alvarez et al., 2009,
2011a)

» Motion capture data: used for animating human motion.



Example: Motion Capture

Mauricio Alvarez and David Luengo (Alvarez et al., 2009,
2011a)

» Motion capture data: used for animating human motion.

» Multivariate time series of angles representing joint positions.



Example: Motion Capture

Mauricio Alvarez and David Luengo (Alvarez et al., 2009,
2011a)

» Motion capture data: used for animating human motion.
» Multivariate time series of angles representing joint positions.

» Objective: generalize from training data to realistic motions.



Example: Motion Capture

Mauricio Alvarez and David Luengo (Alvarez et al., 2009,
2011a)

v

Motion capture data: used for animating human motion.

v

Multivariate time series of angles representing joint positions.

v

Objective: generalize from training data to realistic motions.

v

Use 2nd Order Latent Force Model with mass/spring/damper
(resistor inductor capacitor) at each joint.



Prediction of Test Motion

> Model left arm only.

» 3 balancing motions (18, 19, 20) from subject 49.

> 18 and 19 are similar, 20 contains more dramatic movements.
> Train on 18 and 19 and testing on 20

» Data was down-sampled by 32 (from 120 fps).

» Reconstruct motion of left arm for 20 given other movements.

» Compare with GP that predicts left arm angles given other
body angles.



Mocap Results

Table: Root mean squared (RMS) angle error for prediction of the left
arm’s configuration in the motion capture data. Prediction with the
latent force model outperforms the prediction with regression for all apart
from the radius's angle.

Latent Force | Regression

Angle Error Error
Radius 4.11 4.02
Wrist 6.55 6.65

Hand X rotation 1.82 3.21
Hand Z rotation 2.76 6.14
Thumb X rotation 1.77 3.10
Thumb Z rotation 2.73 6.09




Mocap Results Il
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(a) Inferred Latent Force (b) Wrist (c) Hand X Rotation
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Figure: Predictions from LFM (solid line, grey error bars) and direct
regression (crosses with stick error bars).



Motion Capture Experiments

» Data set is from the CMU motion capture data basel.
» Two different types of movements: golf-swing and walking.

» Train on a subset of motions for each movement and test on a
different subset.

» This assesses the model’s ability to extrapolate.

» For testing: condition on three angles associated to the root
nodes and first five and last five frames of the motion.

» Golf-swing use leave one out cross validation on four motions.

> For the walking train on 4 motions and validate on 8 motions.

!The CMU Graphics Lab Motion Capture Database was created with
funding from NSF EIA-0196217 and is available at http://mocap.cs.cmu.edu.


http://mocap.cs.cmu.edu

Table: RMSE and R? (explained variance) for golf swing and walking

Motion Capture Results

Movement | Method RMSE R? (%)
IND GP | 21.55+2.35 | 30.99 +9.67
Golf swing MTGP 21.19+2.18 | 45.594+7.86
SLFM 21.524+1.93 | 49.32+3.03
LFM 18.09 +1.30 | 72.25 +3.08
IND GP | 8.03+2.55 | 30.55410.64
Walking MTGP 7.75+2.05 37.77 = 4.53
SLFM 7.81+2.00 36.84 + 4.26
LFM 723 +218 | 48.15+5.66




ODE Model of Transcriptional Regulation
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Example: Transcriptional Regulation

» First Order Differential Equation
dx; (t)
S = b5 ()= dg ()

» Can be used as a model of gene transcription: Barenco et al.,
2006; Gao et al., 2008.

» x;j(t) — concentration of gene j's mMRNA

» f(t) — concentration of active transcription factor

» Model parameters: baseline bj, sensitivity s; and decay d;

» Application: identifying co-regulated genes (targets)

» Problem: how do we fit the model when f(t) is not observed?



Covariance for Transcription Model

RBF covariance function for f (t)
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Joint Sampling of f (t) and x (t)

> simSample
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Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 (t) (high decay/sensitivity), green: x; (t) (medium
decay/sensitivity) and blue: x3 (t) (low decay/sensitivity).
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Radiation Damage in the Cell

» Radiation can damages molecules including DNA.

» Most DNA damage is quickly repaired—single strand breaks,
backbone break.

» Double strand breaks are more serious—a complete disconnect
along the chromosome.

> Cell cycle stages:

» Gy: Cell is not dividing.
» Gy: Cell is preparing for meitosis, chromosomes have divided.
» S: Cell is undergoing meitosis (DNA synthesis).

» Main problem is in G1. In Gy there are two copies of the
chromosome. In G; only one copy.



p53 “Guardian of the Cell”

v

Responsible for Repairing DNA damage

v

Activates DNA Repair proteins

v

Pauses the Cell Cycle (prevents replication of damage DNA)

v

Initiates apoptosis (cell death) in the case where damage can't
be repaired.

v

Large scale feeback loop with NF-xB.



p53 DNA Damage Repair

Figure: p53. Left unbound, Right bound to DNA. Images by David S.
Goodsell from http://www.rcsb.org/ (see the'Molecule of the Month”
feature).


http://www.rcsb.org/

Figure: Repair of DNA damage by p53. Image from Goodsell (1999).



Some p53 Targets

DDB2 DNA Damage Specific DNA Binding Protein 2. (also
governed by C/ EBP-beta, E2F1, E2F3,...).

p21 Cycline-dependent kinase inhibitor 1A (CDKN1A). A
regulator of cell cycle progression. (also governed by
SREBP-1a, Spl, Sp3,... ).
hPA26/SESNI sestrin 1 Cell Cycle arrest.
BIK BCL2-interacting killer. Induces cell death
(apoptosis)
TNFRSF10b tumor necrosis factor receptor superfamily, member
10b. A transducer of apoptosis signals.



Modelling Assumption

> Assume pb3 affects targets as a single input module network
motif (SIM).

Figure: p53 SIM network motif as modelled by Barenco et al. 2006.



Ordinary Differential Equation Model

» First Order Differential Equation

dx; (1)

5 by f ()~ dpg (1)



Ordinary Differential Equation Model

» First Order Differential Equation

dx; (1)

5 by f ()~ dpg (1)

» Proposed by Barenco et al. (2006).



Ordinary Differential Equation Model

» First Order Differential Equation

dx; (t)
S = by () = o (1)
» Proposed by Barenco et al. (2006).

» x;j(t) — concentration of gene j's mRNA



Ordinary Differential Equation Model

» First Order Differential Equation
dx; (t)
—5 = b s (6) —dix (1)

v

Proposed by Barenco et al. (2006).

xj(t) — concentration of gene j's mMRNA

v

v

f(t) — concentration of active transcription factor
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» First Order Differential Equation
dx; (t)
—5 = b s (6) —dix (1)
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Proposed by Barenco et al. (2006).

xj(t) — concentration of gene j's mMRNA

v
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f(t) — concentration of active transcription factor
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Model parameters: baseline b;, sensitivity s; and decay d;



Ordinary Differential Equation Model

» First Order Differential Equation
dx; (t)
—5 = b s (6) —dix (1)

v

Proposed by Barenco et al. (2006).
xj(t) — concentration of gene j's mMRNA

v

v

f(t) — concentration of active transcription factor

v

Model parameters: baseline b;, sensitivity s; and decay d;

v

Application: identifying co-regulated genes (targets)



Ordinary Differential Equation Model

» First Order Differential Equation
dx; (t
% = bj + sif (t) — dx; (1)

v

Proposed by Barenco et al. (2006).

xj(t) — concentration of gene j's mMRNA

v

v

f(t) — concentration of active transcription factor

v

Model parameters: baseline b;, sensitivity s; and decay d;

v

Application: identifying co-regulated genes (targets)

v

Problem: how do we fit the model when f(t) is not observed?



p53 Results with GP
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p53 Results with GP

(Gao et al., 2008)

Inferred p53 protein gene TNFRSF20b mRNA gene DDB2 mMRNA

o 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12
gene BIK mRNA gene hPA26 mRNA

B8=022518
D=08
s=1




Cascaded Differential Equations

Model-based method for transcription factor
target identification with limited data
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We present a computational method for identifying potential tar-  used for genome-wide scoring of putative target gen
gets of a transcription factor (TF) using wild-type gene expression  is required to apply our method is wild-type time seri
time series data. For each putative target gene we fit a simple dif-  lected over a period where TF activity is changing. Ou
ferential equation model of transcriptional regulation, and the allows for complementary evidence from expression




Cascaded Differential Equations

(Honkela et al., 2010)

v

Transcription factor protein also has governing mRNA.
This mRNA can be measured.
In signalling systems this measurement can be misleading

because it is activated (phosphorylated) transcription factor
that counts.

v

v

v

In development phosphorylation plays less of a role.



Drosophila Mesoderm Development

Collaboration with Furlong Lab in EMBL Heidelberg.
» Mesoderm development in Drosophila melanogaster (fruit fly).

» Mesoderm forms in triplobastic animals (along with ectoderm
and endoderm). Mesoderm develops into muscles, and
circulatory system.

» The transcription factor Twist initiates Drosophila mesoderm
development, resulting in the formation of heart, somatic
muscle, and other cell types.

» Wildtype microarray experiments publicly available.

» Can we use the cascade model to predict viable targets of
Twist?



Cascaded Differential Equations

(Honkela et al., 2010)

We take the production rate of active transcription factor to be

given by
dfdsf) oy (t) - 0F (1)
Pl _ st () - dg ()

The solution for f(t), setting transient terms to zero, is

f(t) = oexp(—dt) /oty(u) exp (0u)du .



Covariance for Translation/Transcription Model

RBF covariance function for y (t)

f(t) = oexp(—dt) /Ot y(u)exp (du)du

. t
xi(t) =2 +s,-exp(—d,-t)/0 F (u) exp (djur) du.

» Joint distribution y(8) \ \ .

for x1 (t), x2 (),

f () and y (1) 0 Mg Ny N

» Here:

(5[ [s] b | = | Xl(t)\ \ \

1|5 5105 |05
Is[slosios]

y(t) (1) x(t)  x(t)



Joint Sampling of y (t), f (t), and x (t)

> disimSample

0.8

0.6

0.4

0.2

% 1 2 3 a 5

Figure: Joint samples from the ODE covariance, blue: y (t) (mRNA
of TF), black: f (t) (TF concentration), red: x; (t) (high decay
target) and green: x; (t) (low decay target)
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Figure: Joint samples from the ODE covariance, blue: y (t) (mRNA
of TF), black: f (t) (TF concentration), red: x; (t) (high decay
target) and green: x; (t) (low decay target)



Joint Sampling of y (t), f (t), and x (t)

> disimSample

1 2 3 4 5

Figure: Joint samples from the ODE covariance, blue: y (t) (mRNA
of TF), black: f (t) (TF concentration), red: x; (t) (high decay
target) and green: x; (t) (low decay target)



Joint Sampling of y (t), f (t), and x (t)

> disimSample

1 2 3 4 5

Figure: Joint samples from the ODE covariance, blue: y (t) (mRNA
of TF), black: f (t) (TF concentration), red: x; (t) (high decay
target) and green: x; (t) (low decay target)



Twist Results

> Use mRNA of Twist as driving input.

» For each gene build a cascade model that forces Twist to be
the only TF.

» Compare fit of this model to a baseline (e.g. similar model
but sensitivity zero).

» Rank according to the likelihood above the baseline.

» Compare with correlation, knockouts and time series network
identification (TSNI) (Della Gatta et al., 2008).



Results for Twi using the Cascade model

Inferred twi protein Driving Input

o B N W N O o

-1

1
0.8
delta 0.0768465
sigma 1
0.6
D 0.0760771
0.4 S0.0956793
B 0.000847107
0.2
0

Figure: Model for flybase gene identity FBgn0002526.



Results for Twi using the Cascade model

x107° Inferred twi protein Driving Input

o B N W N O o

-1 -1

1
0.8
delta 517.034
sigma 1
0.6
D 542.062
0.4 S 266101
B 3.81368e-06
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0

Figure: Model for flybase gene identity FBgn0003486.



Results for Twi using the Cascade model

Inferred twi protein

o B N W N O o
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Figure: Model for flybase gene identity FBgn0011206.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn00309055.



Results for Twi using the Cascade model

Inferred twi protein Driving Input

1
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Figure: Model for flybase gene identity FBgn0031907.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0035257.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0039286.



Evaluation methods

» Evaluate the ranking methods by taking a number of
top-ranked targets and record the number of
“positives” (Zinzen et al., 2009):

» targets with ChlIP-chip binding sites within 2 kb of gene
> (targets differentially expressed in TF knock-outs)
» Compare against
» Ranking by correlation of expression profiles
» Ranking by g-value of differential expression in knock-outs
» Optionally focus on genes with annotated expression in tissues
of interest



Relative enrichment (%)

Relative enrichment (%)
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» Cascade models allow genomewide analysis of potential
targets given only expression data.

> Once a set of potential candidate targets have been identified,
they can be modelled in a more complex manner.

» We don't have ground truth, but evidence indicates that the
approach can perform as well as knockouts.



Discussion and Future Work



Discussion and Future Work

> Integration of probabilistic inference with mechanistic models.

» Ongoing/other work:

» Non linear response and non linear differential equations.

» Scaling up to larger systems Alvarez et al. (2010); Alvarez and
Lawrence (2009).

» Discontinuities through Switched Gaussian Processes Alvarez
et al. (2011b)

» Robotics applications.

» Applications to other types of system, e.g. spatial systems
Alvarez et al. (2011a).

> Stochastic differential equations Alvarez et al. (2010).
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