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Dimensionality Reduction |

e Linear relationship between the data, X € RV*9, and a reduced
dimensional representation, F € ®V*9 where ¢ < d.

X =FW +¢,

e~N(0,X)
@ Integrate out F, optimize with respect to W.

@ For temporal data and a particular Gaussian prior in the latent space:
Kalman filter/smoother.

@ More generally consider a Gaussian process (GP) prior,

q
p(F’t) = HN (f;,,"o, Kf;,i,f:,i) :

i=1
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Dimensionality Reduction Il

@ Given the covariance functions for {f;(t)} the implied covariance
functions for {x;(t)} — semi-parametric latent factor model (Teh
et al., 2005).

e Kalman filter/smoother approach has been preferred

> linear computational complexity in N.
» Advances in sparse approximations have made the general GP

framework practical. (Titsias, 2009; Snelson and Ghahramani, 2006;
Quifionero Candela and Rasmussen, 2005).
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Gaussian Distribution

Zero mean Gaussian distribution

@ A multi-variate Gaussian distribution is defined by a mean and a
covariance matrix.

N (F11.K) = —5— e (—(f RN m) -
HS

@ We will consider the special case where the mean is zero,

T —1
N (FIO,K) = — 5 exp (—f K f).
(27)2 |K| 2

2
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Sampling a Function

Multi-variate Gaussians

@ We will consider a Gaussian with a particular structure of covariance
matrix.

@ Generate a single sample from this 25 dimensional Gaussian
distribution, f =[f1, ... fs].

@ We will plot these points against their index.
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Gaussian Distribution Sample

demGPSample
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Figure: (a) 25 instantiations of a function, f,, (b) colormap of covariance matrix.
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Covariance Function

The covariance matrix

@ Covariance matrix shows correlation between points f,, and f, if nis
near to m.

Neil D. Lawrence (Manchester) Convolution Processes



Covariance Function

The covariance matrix

@ Covariance matrix shows correlation between points f,, and f, if nis
near to m.

@ Less correlation if n is distant from m.
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Covariance Function

The covariance matrix

@ Covariance matrix shows correlation between points f,, and f, if nis
near to m.

@ Less correlation if n is distant from m.

@ Our ordering of points means that the function appears smooth.
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Covariance Function

The covariance matrix

@ Covariance matrix shows correlation between points f,, and f, if nis
near to m.

@ Less correlation if n is distant from m.
@ Our ordering of points means that the function appears smooth.

@ Let's focus on the joint distribution of two points form the 25.
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Prediction of f, from f;

demGpCov2D([1 2])
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Figure: Covariance for [ f ] is Ko = [ 0.966 1
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Prediction of f, from f;

demGpCov2D([1 2])
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Prediction of f5 from £,

demGpCov2D([1 5])
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Figure: Covariance for [ f ] is Kis = [ 0574 1
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Prediction of f5 from £,

demGpCov2D([1 5])

ey

Figure: Covariance for [ ;1 ] is Kis = [ 1 0.574 ]
5
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Covariance Functions

Where did this covariance matrix come from?

RBF Kernel Function
k (t, t’) = aexp

@ Covariance matrix is built
using the inputs to the
function t.

@ For the example above it
was based on Euclidean
distance.

@ The covariance function is
also know as a kernel.
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Covariance Samples

demCovFuncSample

o

Figure: RBF kernel with / = 10_%, a=1
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with /=1, a =1
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with / =0.3, a =4
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Gaussian Process Regression

demRegression

-3

Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?

demOptimiseGp
o
g
e 10° 10° 10
length scale
N 1 FIK-If
log N (f|0,K) = ) log 21 — 5 log |K| — ——
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?
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Learning Kernel Parameters
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?
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Learning Kernel Parameters

Can we determine length scales and noise levels from the data?
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Mechanical Analogy

Back to Latent Force Models!

@ These models rely on the latent variables to provide the dynamic
information.

@ We now introduce a further dynamical system with a mechanistic
inspiration.

@ Physical Interpretation:

» the latent functions, f;(t) are g forces.

We observe the displacement of d springs to the forces.,

Interpret system as the force balance equation, XD = FS + €.

Forces act, e.g. through levers — a matrix of sensitivities, S € Raxd,
Diagonal matrix of spring constants, D € R9*¢.

Original System: W = SD1.

vV vy vVvVYVvYyy
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Extend Model

@ Add a damper and give the system mass.
FS = XM + XC + XD + e.

@ Now have a second order mechanical system.
@ It will exhibit inertia and resonance.

@ There are many systems that can also be represented by differential
equations.

» When being forced by latent function(s), {fi(t)}7_;, we call this a
latent force model.
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Gaussian Process priors and Latent Force Models

Driven Harmonic Oscillator

@ For Gaussian process we can compute the covariance matrices for the
output displacements.

@ For one displace the model is

M

myxi(t) + cexi(t) + diexic(t) = br + Zsikfi(t), (1)
i=0

where, my is the kth diagonal element from M and similarly for ¢
and dk. sic is the i, kth element of S.

@ Model the latent forces as g independent, GPs with RBF covariances

t— 1." 2
kfl.ﬁ(t, t/) = exp (—(()_—2)> (5,‘/.

i
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Covariance for ODE Model

e RBF Kernel function for f (t)

xj(t) =

1 < g o
" ZSJ-,- exp(—ajt)/o fi(u) exp(oju) sin(w;j(t — u))du

\

m.
77 =1

1(t)

@ Joint distribution
for x1 (t), x2 (1),
x3 (t) and f (t).
Damping ratios:

L a [ &]¢]
10125 [ 2 | 1|

¥,

¥,

AW

(9 no v, Y30
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Joint Sampling of x (t) and f (t)

@ demLfmSample
2
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Figure: Joint samples from the ODE covariance, cyan: f (t), red:

x1 (t)(underdamped) and green: x; (t) (overdamped) and blue: x3 (t)
(critically damped).
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Joint Sampling of x (t) and f (t)
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Figure: Joint samples from the ODE covariance, cyan: f (t), red:
x1 (t)(underdamped) and green: x; (t) (overdamped) and blue: x3 (t)
(critically damped).
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Joint Sampling of x (t) and f (t)
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Joint Sampling of x (t) and f (t)
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Covariance for ODE

e RBF Kernel function for f (t)

1
mjwj

xj(t) =

;Sjiexp(—ajt)/o fi(u)exp(aju)sin(wj(t_ u))du

\

@ Joint distribution
for x1 (t), x2 (),
x3(t) and f (t).

@ Damping ratios:
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Example: Motion Capture

Mauricio Alvarez and David Luengo (Alvarez et al., 2009)

@ Motion capture data: used for animating human motion.
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Example: Motion Capture

Mauricio Alvarez and David Luengo (Alvarez et al., 2009)

@ Motion capture data: used for animating human motion.

@ Multivariate time series of angles representing joint positions.
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Example: Motion Capture

Mauricio Alvarez and David Luengo (Alvarez et al., 2009)
@ Motion capture data: used for animating human motion.

@ Multivariate time series of angles representing joint positions.

@ Objective: generalize from training data to realistic motions.
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Example: Motion Capture

Mauricio Alvarez and David Luengo (Alvarez et al., 2009)

@ Motion capture data: used for animating human motion.
@ Multivariate time series of angles representing joint positions.
@ Objective: generalize from training data to realistic motions.

@ Use 2nd Order Latent Force Model with mass/spring/damper (resistor
inductor capacitor) at each joint. demAistats
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Example: Transcriptional Regulation

@ First Order Differential Equation

dx; (t)
dt

= Bj + 5;f (t) — Djx; (t)
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Example: Transcriptional Regulation

@ First Order Differential Equation

dx; (t)
dt

= Bj + 5;f (t) — Djx; (t)

@ Can be used as a model of gene transcription: Barenco et al., 2006;
Gao et al., 2008.
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@ First Order Differential Equation

dx; (t)
dt

= Bj + 5;f (t) — Djx; (t)

@ Can be used as a model of gene transcription: Barenco et al., 2006;
Gao et al., 2008.

@ xj(t) — concentration of gene j's mRNA
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@ First Order Differential Equation

dx; (t)
dt

= Bj + 5;f (t) — Djx; (t)

@ Can be used as a model of gene transcription: Barenco et al., 2006;
Gao et al., 2008.

@ xj(t) — concentration of gene j's mRNA

@ f(t) — concentration of active transcription factor
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Example: Transcriptional Regulation

@ First Order Differential Equation

dx; (t)
dt

= Bj + 5;f (t) — Djx; (t)

@ Can be used as a model of gene transcription: Barenco et al., 2006;
Gao et al., 2008.

@ xj(t) — concentration of gene j's mRNA
@ f(t) — concentration of active transcription factor

@ Model parameters: baseline B;, sensitivity S; and decay D;
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Example: Transcriptional Regulation

@ First Order Differential Equation

dx; (t)
dt

= Bj + 5;f (t) — Djx; (t)

@ Can be used as a model of gene transcription: Barenco et al., 2006;
Gao et al., 2008.

@ xj(t) — concentration of gene j's mRNA
@ f(t) — concentration of active transcription factor
@ Model parameters: baseline B;, sensitivity S; and decay D;

@ Application: identifying co-regulated genes (targets)
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Example: Transcriptional Regulation

@ First Order Differential Equation

dx; (t)
dt

= Bj + 5;f (t) — Djx; (t)

@ Can be used as a model of gene transcription: Barenco et al., 2006;
Gao et al., 2008.

xj(t) — concentration of gene j's mRNA

f(t) — concentration of active transcription factor

o
o
@ Model parameters: baseline B;, sensitivity S; and decay D;
@ Application: identifying co-regulated genes (targets)

°

Problem: how do we fit the model when f(t) is not observed?
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[labels=skipGPProperties|Covariance for Transcription

Model

RBF covariance function for f (t)

B; t
xi(t) = D + Siexp (—D,-t)/ f (u)exp (D;u)du.
i 0

e Joint distribution f(t)\\ ‘ B
for xq (t), X2 (t) 5
and f (t). xl(t“ ‘ -

> Here: \ -
D[S | D[S | .

1)2(t)
(5 [5[05[05] e

f@) a(t) ()
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Artificial Example: Inferring f(t)
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p53 “Guardian of the Cell”

Responsible for Repairing DNA damage
Activates DNA Repair proteins
Pauses the Cell Cycle (prevents replication of damage DNA)

Initiates apoptosis (cell death) in the case where damage can't be
repaired.

Large scale feeback loop with NF-xB.
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p53 DNA Damage Repair

Figure: pb3. Left unbound, Right bound to DNA. Images by David S. Goodsell
from http://www.rcsb.org/ (see the “Molecule of the Month” feature).
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http://www.rcsb.org/

Figure: Repair of DNA damage by p53. Image fromGoodsell (1999).




Modelling Assumption

@ Assume pb3 affects targets as a single input module network motif
(SIM).

TNFRSF10b

PA26

Figure: p53 SIM network motif as modelled by Barenco et al. 2006.
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p53 (RBF covariance)

Pei Gao

Inferred p53 protein gene TNFRSF20b mRNA gene DDB2 mRNA

B=0.4489
D =0.4487
S =0.40601
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Ranking with ERK Signalling

o Target Ranking for Elk-1.

@ Elk-1 is phosphorylated by ERK from the EGF signalling pathway.
@ Predict concentration of Elk-1 from known targets.

@ Rank other targets of Elk-1.
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Elk-1 (MLP covariance)
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selection

Fitted model used to rank potential targets of Elk-1

Predicted target gene Predicted non-target gene
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Outline

@ Discussion and Future Work
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Discussion and Future Work

@ Integration of probabilistic inference with mechanistic models.
@ These results are small simple systems.
@ Ongoing work:

» Scaling up to larger systems

» Applications to other types of system, e.g. non-steady-state
metabolomics, spatial systems etc.

» Improved approximations.

» Stochastic differential equations
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© Convolutions and Computational Complexity
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Convolutions and Computational Complexity

Mauricio Alvarez

@ Solutions to these differential equations is normally as a convolution.

x,-(t):/f(u)k,-(u— £y du+ by ()

x,-(t)=/0tf(u)g,-(u)du+h,-(r)

@ Convolution Processes (Higdon, 2002; Boyle and Frean, 2005).

@ Convolutions lead to N x d size covariance matrices O (N3d3)
complexity, O (N?d?) storage.

o Model is conditionally independent over {x; (t)}2_; given f (t).
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Independence Assumption

Mauricio Alvarez

e Can assume conditional independence given given {f(t,-)}f-‘:l. (Alvarez
and Lawrence, 2009)

> Result is very similar to PITC approximation (Quifionero Candela and
Rasmussen, 2005).

» Reduces to O (N3dk2) complexity, O (dek) storage.

» Can also do a FITC style approximation (Snelson and Ghahramani, 2006).

» Reduces to O (Ndk?) complexity, O (Ndk) storage.
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Tide Sensor Network

Mauricio Alvarez

Network of tide height sensors in the solent — tide heights are
correlated.

Data kindly provided by Alex Rogers (see Osborne et al., 2008).

d =3 and N = 1000 of the 4320 for the training set.

Simulate sensor failure by knocking out onse sensor for a given time.
For the other two sensors we used all 1000 training observations.
Take k = 100.
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Tide Height Results

Mauricio Alvarez
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Cokriging Jura

Mauricio Alvarez

@ Jura dataset — concentrations of several heavy metals.
@ Prediction 259 data, validation 100 data points.

@ Predict primary variables (cadmium and copper) at prediction
locations in conjunction with some secondary variables (nickel and
zinc for cadmium; lead, nickel and zinc for copper) (Goovaerts, 1997,
p. 248,249).
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Swiss Jura Results

Mauricio Alvarez
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Figure: Mean absolute error. IGP stands for independent GP, P(M) stands for
PITC with M inducing values, FGP stands for full GP and CK stands for ordinary
co-kriging.
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@ Non-linear Response Models
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Models of non-linear regulation
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Models of non-linear regulation

@ Non-linear Activation: Michaelis-Menten Kinetics

dx (t) _ B, Sif (t)
dt 7 4+ 1 (1)

— D,'X,' (t)

used by Rogers and Girolami (2006)
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Models of non-linear regulation

@ Non-linear Activation: Michaelis-Menten Kinetics

dx; (t) Sif (t)
=B+ ——75 —Dixi(t
dt * vi + () xi ()
used by Rogers and Girolami (2006)
@ Non-linear Repression
dx; (t) S;
dt '+’y,-+f(t) i (t)

used by Khanin et al., 2006, PNAS 103
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MAP Laplace Approximation

Consider the following modification to the model,

dx; (t)
dt

= B+ 5g(f (1)) = Dpx (1),

where g (+) is a non-linear function. The differential equation can still be
solved,

B; t ey
(0= Z+5 [ &P g (7 (w)du
J 0

Use Laplace's method (Laplace, 1774),

p(f10 =N (Ra ) wen (5 (1) A (1))

where f = argmaxp(f | x) and A = —VV log p (f | y) l¢_¢ is the Hessian
of the negative posterior at that point.
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p53 and Michaelis-Menten Kinetics

Pei Gao
@ The Michaelis-Menten activation model uses the following
non-linearity
. ef (1)
. )= —
5 (7 ()=
where we are using a GP f (t) to model the log of the TF activity.
Inferred p53 protein Inferred p53 protein
4 2
15
1 ’
ost S/ N
_]U 2 4 6 8 10 12 00 2 4 6 8 10 12
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Valdiation of Laplace Approximation

Michalis Titsias

% 2 4 6 8 10 12

Figure: Laplace approximation error bars along with samples from the true

posterior distribution.
Neil D. Lawrence (Manchester) Convolution Processes



Use Samples to Represent Posterior

Michalis Titsias

@ Sample in Gaussian processes

p (flx) oc p (x|f) p ()

o Likelihood relates GP to data through
B; t
() = ape O J i) [ e O 0g(f (u))du
J 0

@ We use control points for fast sampling. (Titsias et al., 2009)
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Sampling using control points

@ Separate the points in f into two groups:

» few control points f.
» and the large majority of the remaining points f, = f \ fc

@ Sample the control points f. using a proposal g <f§t+1)|f£-t)>

@ Sample the remaining points f, using the conditional GP prior
(t+1),g(t+1)
p(fo lfe

@ The whole proposal is
Q (f(t+1)|f(t)> —p <flgt+1)|f£t+1)> q (f£t+1)|f£t)>

o lts like sampling from the prior p(f) but imposing random walk
behaviour through the control points.
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p53 System Again

@ One transcription factor (p53) that acts as an activator. We consider
the Michaelis-Menten kinetic equation

Oo(t) . o exwlf(t)
dt T Texp(f(t)) +

— Djx;(t)

@ MCMC details:

» 7 control points are used (placed in a equally spaced grid)
» Running time 4/5 hours for 2 million sampling iterations plus burn in
» Acceptance rate for f after burn in was between 15% — 25%

Neil D. Lawrence (Manchester) Convolution Processes



Data used by Barenco et al. (2006): Predicted gene

expressions for the 1st replica

DDB2 Gene - first Replica BIK Gene - first Replica TNFRSF10b Gene - first Replica

Clp1/p21 Gene - first Replica
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Data used by Barenco et al. (2006): Protein concentrations

Inferred p53 protein Inferred ps3 protein Inferred ps3 protein

Linear model (Barenco et al. predictions are shown as crosses)

Inferred protein Inferred protein Inferred protein
o o -~
0.6 0.6 K N 25
05 RN 05|
R 2|
0.4f K N 0.4
J . 15)
0.3] [ N, 0.3
i 1
02t el N e 02|
o L T T 0.1 . 0.5
A Tl T >
o 2 2 6 B 10 12 o 2 @ 6 B 10 12 0

Nonlinear (Michaelis-Menten kinetic equation)
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p53 Data Kinetic parameters

Basal rates Decay rates
1
9
14
i
12
7
f
o
o6 1
i 1
04
2 1
oz I
i 1
T ooe2 26 seant TNFRSFi0D Coi21 EQ T ooe2 076 sesni TNFRSFI0D G2t Bk
Sensitivities Gamma parameters
25|
o7
20| 06
05
04
10 03
H H :
s I I L
° ooez 26 sesni TNFRSFL0D Gzt Bk ooB2 26 sesnt TNFRSFIOD Gzt Bk

Our results (grey) compared with Barenco et al. (2006) (black). Note that
Barenco et al. use a linear model
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@ Cascaded Differential Equations
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Cascaded Differential Equations

Antti Honkela

@ Transcription factor protein also has governing mRNA.
@ This mRNA can be measured.

@ In signalling systems this measurement can be misleading because it is
activated (phosphorylated) transcription factor that counts.

@ In development phosphorylation plays less of a role.
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Drosophila Mesoderm Development

Data from Furlong Lab in EMBL Heidelberg.

@ Describe mesoderm development.
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Cascaded Differential Equations

Antti Honkela

We take the production rate of active transcription factor to be given by

%&_t)=0y(t)—6f(t)
() 5, o »
dt = Bj + 5f (t) — Djx; (1)

The solution for f(t), setting transient terms to zero, is

F(£) = o exp (—ot) /0 Y (1) exp (5u) du
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Covariance for Translation/Transcription Model

RBF covariance function for y (t)

f(t) = aexp(—ét)/oty(u)exp(éu)du
x(t) = %+S;exp(—D;t)/otf(u)exp(D,-u)du.

@ Joint distribution
for x1 (t), x2 (t), y(t‘ ‘ ‘ 1
f(t) and y (). f(t. . .
|

@ Here:

[01] 5[5 ]05][05] =0

() f@xlﬁxz(t)
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Results for Mef2 using the Cascade

Driving Input mMRNA Gene Rya-r44F mRNA

Inferred Mef2 Protein Gene ttk MRNA

0.4

01 4 6 8 10 12 13 4 6 8 10 12
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