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Online Resources

@ Source code and slides are available online
@ This talk available from home page (see talks link on side).
@ Scripts available in the 'gpsim’ toolbox

» http://www.cs.man.ac.uk/"neill/gpsim/.

@ MATLAB commands used for examples given in typewriter font.
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http://www.cs.man.ac.uk/~neill/gpsim/

High Dimensional Data

@ High dimensional data: curse of dimensionality. Does it exist?
@ Only if data is inherently high dimensional.
@ In practice most data ‘lives’ on a lower dimensional space.

@ Latent variable models allow us to capture the structure of such data.
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@ Example: GP-LVM [Lawrence, 2004, 2005]
» Non-linear dimensional reduction using Gaussian processes.
@ Powerful uncertainly handling of GPs leads to suprising properties.

» Non-linear models can be used where there are fewer data points than
dimensions without overfitting.
» Example: Modelling a stick man in 102 dimensions with 55 data points
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Stick Man I

demStickl

Figure: The latent space for the stick man motion capture data.
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Stick Man I

demStickl
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Figure: The latent space for the stick man motion capture data.
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MAP Solutions for Dynamics Models

Data often has a temporal ordering.

Markov-based dynamics are often used.
For the GP-LVM

» Marginalising such dynamics is intractable.
» But: MAP solutions are trivial to implement.

Many choices: Kalman filter, Markov chains etc..

Wang et al. [2006] suggest using an autoregressive Gaussian Process.

» This has been applied in the context of tracking models [Urtasun et al.,
2006].
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Auto Regressive Gaussian Process Dynamics

@ Autoregressive Gaussian process mapping in latent space between
time points.
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Auto Regressive Gaussian Process Dynamics

@ Autoregressive Gaussian process mapping in latent space between
time points.
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Auto Regressive Gaussian Process Dynamics

@ Autoregressive Gaussian process mapping in latent space between
time points.
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Motion Capture Results

demStickl and demStick2

Figure: The latent space for the motion capture data without dynamics (/eft),
with auto-regressive dynamics (right) based on an RBF kernel.
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Motion Capture Results

demStickl and demStick2
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Figure: The latent space for the motion capture data without dynamics (/eft),
with auto-regressive dynamics (right) based on an RBF kernel.
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Regressive Dynamics

Inner Groove Distortion

@ Autoregressive unimodal
dynamics, p (X¢|x¢—1) -
@ Forces spiral visualisation.

@ Poorer model due to inner
groove distortion.
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Regressive Dynamics

@ Instead of auto-regressive dynamics, consider regressive dynamics.
@ Take t as an input, for the prior distribution over latent space, p (F|t).

@ Use a Gaussian process prior for p (F|t).
(also allows us to consider variable sample rate data).
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Motion Capture Results

demStickl, demStick?2 and demStick5

Figure: The latent space for the motion capture data without dynamics (/eft),
with auto-regressive dynamics (middle) and with regressive dynamics (right)
based on an RBF kernel.
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Motion Capture Results

demStickl, demStick2 and demStick5
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Figure: The latent space for the motion capture data without dynamics (/eft),
with auto-regressive dynamics (middle) and with regressive dynamics (right)
based on an RBF kernel.
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Dynamic Latent Variable Model

@ Defined a GP priors as function of time over the latent space.

f;' (t) ~ N(07 Kt)

@ GP-LVM defines a non-linear relationship the latent space and the
data, Y.

Y (t) = g ({fi (Y1) +n- n~N(1,05)

@ In contrast Probabilistic PCA [Tipping and Bishop, 1999, Roweis, 1998]
defines a linear relationship.

q
yi ()= Sifi(t)+n. n~N (1,0
i=1
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Differential Equation Dynamics

@ Alternative extension. Instead of ‘nonlinearising’, introduce dynamics

explicitly.
dy? (t) dy; (t q
Mg G éi ) + Dy () = > Siifi (t)
i=1
t
yi(t mJ ; ZSJ, exp(—a; )/0 fi(u) exp(aju) sin(w;(t — u))du
i=1
h
where . o
= 2mk’ Yk = my k>

this can be written

yi(t) =Y Lylfl(2)
i=1

o If we model f (t) as a GP then as (2) only involves linear operations
x; (t) is also a GP.
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Covariance for Transcription Model

o RBF Kernel function for f (t)

1
mjwj

yi(t) =

;Sjiexp(—ajt)/o fi(u)exp(aju)sin(wj(t_ u))du

\

1(t)

@ Joint distribution
for y1 (t), yz(t),
y3(t) and £ (t).
Damping ratios:
L a [&]¢G]
|0.125 | 2 | 1 |

¥,

¥,

AW

(9 no v, Y30

Neil Lawrence () Inferring Latent Functions



Joint Sampling of x (t) and f (t)

@ demLfmSample
2

15¢

0 5 10 15 20
Figure: Joint samples from the ODE covariance, cyan: f (t), red:

y1 (t)(underdamped) and green: y» (t) (overdamped) and blue: ys3 (t)
(critically damped).
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Joint Sampling of x (t) and f (t)

@ demLfmSample
2

15¢

0 5 10 15 20
Figure: Joint samples from the ODE covariance, cyan: f (t), red:

y1 (t)(underdamped) and green: y» (t) (overdamped) and blue: ys3 (t)
(critically damped).
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Joint Sampling of x (t) and f (t)

@ demLfmSample

0 5 10 15 20
Figure: Joint samples from the ODE covariance, cyan: f (t), red:
y1 (t)(underdamped) and green: y» (t) (overdamped) and blue: ys3 (t)
(critically damped).



Joint Sampling of x (t) and f (t)

@ demLfmSample
2.5

2

1.5¢

0 5 10 15 20
Figure: Joint samples from the ODE covariance, cyan: f (t), red:

y1 (t)(underdamped) and green: y» (t) (overdamped) and blue: ys3 (t)
(critically damped).
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Covariance for ODE

o RBF Kernel function for f (t)

1
mjwj

yi(t) =

;Sjiexp(—ajt)/o fi(u)exp(aju)sin(wj(t_ u))du

\

@ Joint distribution
for y1 (1), y2 (1),
y3(t) and £ (t).

@ Damping ratios:
L a [elG]
10125 2 | 1 |

no

¥,

AW

(9 no v, Y30
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Linear Differential Equation Model

@ We will now focus on a protein concentration example.

» Gaussian processes (GPs) are probabilistic models for functions.
» GPs provide a framework for performing inference about these
functions in the presence of uncertainty.

@ Data consists of T measurements of mMRNA expression level for N
different genes.

@ We relate gene expression, x;(t), to TFC, f(t), by

dx; (t)

g = Bt (t) - Dix(1). (1)

B; basal transcription rate of gene j,
S; is sensitivity of gene j
D; is the decay rate of the mRNA.

@ Dependence of mRNA transcription rate on TF is linear.
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Linear Response Solution

@ Solve for TFC

» The equation given in (1) can be solved to recover

X (t) = % + .'Sijexp(—Dji.“)/0 f (u) exp (Dju) du. (2)
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Computation of Joint Covariance

@ Covariance Function Computation

e We rewrite equation (2) as
B:
5 (8) = o+ LIA()
J

where
HVHH=%%M—@ﬂAfWNm@WNU 3)

is a linear operator.
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Induced Covariance

@ Gene's Covariance

@ The new covariance function is then given by

cov (Lj [f] (t) Ly [f] (1.'/)) = LJ' ® Ly [kff] (t, t,) .
more explicitly

t
ks, (t,t') = SiSkexp (—Djt — Dkt’)/ exp (Dju)
0

t
X / exp (Dku') ke (u, u') du'du.
0

@ With RBF covariance these integrals are tractable.
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Covariance Result

@ Covariance Result

b (£.) = 5T [y (£.1) + e (£.2)]
where

exp (1%)°
Dj + Dy

x {exp (=D (¢ = 1)] [erf (# —w) +erf(§ +wk)]

—exp [— (Dit’ + Dj)] |:erf (t—ll - "yk) + erf(’yk)] } .

hig (', 1) =

Here vy = %.
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Cross Covariance

e Correlation of y; (t) and f (t')

> Need the “cross-covariance” terms between y; (t) and f (t’), which is
obtained as

t
kyr (£.8) = S exp (—Djt) / exp (Dju) kis (u, t) du. (4)
0
» For RBF we have

. a2 /_
ky,f (t't) = @exp [—Dj (t’ - t)] [erf (% — ’Yj) + erf (; +7j>] .
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Posterior for f

@ Prediction for TFC

» Standard Gaussian process regression techniques [see e.g. Rasmussen
and Williams, 2006] yield

(Foose = KryKi!
KB = Kyp — Kny Ky

» Model parameters B;, D; and S; estimated by type I maximum
likelihood,

log p(y) = N (y|0, Kyy)
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Covariance for Transcription Model

e RBF Kernel function for f (t)

. t
yi(t) = % +5; exp(—D,-t)/ f (u) exp (Diu) du.
i 0

e Joint distribution f(t)\\
for y1 (t), y2(t)
and f (t). y1(t“
» Here:

|D1|51|D2|52| Yy(t)

(5 50505
@& 0@ ()
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Joint Sampling of y (t) and f (t)

@ gpsimTest
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Figure: Left: joint samples from the transcription covariance, blue: f (t),
cyan: yi (t) and red: y» (t). Right: numerical solution for f (t) of the
differential equation from y; (t) and y» (t) (blue and cyan). True f (t)
included for comparison.
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Joint Sampling of y (t) and f (t)

@ gpsimTest
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Figure: Left: joint samples from the transcription covariance, blue: f (t),
cyan: yi (t) and red: y» (t). Right: numerical solution for f (t) of the
differential equation from y; (t) and y» (t) (blue and cyan). True f (t)
included for comparison.
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Joint Sampling of y (t) and f (t)

@ gpsimTest
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Figure: Left: joint samples from the transcription covariance, blue: f (t),
cyan: yi (t) and red: y» (t). Right: numerical solution for f (t) of the
differential equation from y; (t) and y» (t) (blue and cyan). True f (t)
included for comparison.
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Covariance for Transcription Model

e RBF Kernel function for f (t)

. t
yi(t) = % +5; exp(—D,-t)/ f (u) exp (Diu) du.
i 0

e Joint distribution f(t)\\
for y1 (t), y2(t)
and f (t). y1(t“
» Here:

|D1|51|D2|52| Yy(t)

(5 50505
@& 0@ ()
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@ Application Background

» Understanding of cellular processes is improving through microarrays,
chromatin immunoprecipitation etc..
» Quantitative description of regulatory mechanisms requires:

* transcription factor (TF) concentrations,
* gene-specific constants such as the baseline expression, mMRNA decay
rate and sensitivity to TF concentrations (TFCs).
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Example Application

Transcription Factor Inference
Model the dynamics of gene transcription.
Infer transcription factor concentration (TFC).

Infer parameters of the transcription model (decay rates, sensitivities
etc.)

Infer these quantities using a set of known target genes.
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Methodology

@ Treat TFC as a latent function in a differential equation model.

@ Assume a Gaussian process (GP) prior distribution for the latent
function.

@ Derive GP covariance jointly for genes and transcription factor.

e Maximise likelihood with respect to parameters (mostly physically
meaningful).

» These quantities are hard to measure directly.

@ They can be inferred using a systems biology model and Gaussian
processes (GPs).
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Gaussian Processes

GP Advantages
@ GPs allow for inference of continuous profies, accounting naturally for
temporal structure.
» GPs avoid cumbersome interpolation to estimate mRNA production
rates.
@ GPs deal consistently with the uncertainty inherent in the
measurements.
@ GPs outstrip MCMC for computational efficiency.

@ Note: GPs have previously been proposed for solving differential
equations [Graepel, 2003] and in dynamical systems [Murray-Smith
and Pearlmutter].
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Noise Corruption

Estimate Underlying Noise

@ Allow the mRNA abundance of each gene at each time point to be
corrupted by noise, for observations at t; for i=1,..., T ,

yj (i) = x; (1) + ¢ (t:) (5)

with € (tj) ~ N <O,O'J-2,-).
» Estimate noise level using probe-level processing techniques of

Affymetrix microarrays (€.g. mmgMOS, [Liu et al., 2005]).
» The covariance of the noisy process is then Kyy = ¥~ + Ky, with

— g 2 2 2 2
Z—dlag(all,...,alT,...,aNl,...,aNT).
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Artificial Data

@ Results from an artificial data set.
@ We used a ‘known TFC’ and derived six ‘mRNA profiles'.

» Known TFC composed of three Gaussian basis functions.
» mRNA profiles derived analytically.

@ Fourteen subsamples were taken and corrupted by noise.

@ This ‘data’ was then used to infer a distribution over plausible TFCs.
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Artificial Data Results

demToyProbleml
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene mRNA
concentration profiles each obtained by using different parameter sets {B;, S, D,-}f’::L
(lines) along with noise corrupted ‘data’ . Right: The inferred TFC (with error bars).
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Artificial Data Results
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene mRNA
concentration profiles each obtained by using different parameter sets {B;, S, D,-}f’::L
(lines) along with noise corrupted ‘data’ . Right: The inferred TFC (with error bars).
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Artificial Data Results
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene mRNA
concentration profiles each obtained by using different parameter sets {B;, S, D,-}f’::L
(lines) along with noise corrupted ‘data’ . Right: The inferred TFC (with error bars).
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Artificial Data Results
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene mRNA
concentration profiles each obtained by using different parameter sets {B;, S, D,-}f’::L
(lines) along with noise corrupted ‘data’ . Right: The inferred TFC (with error bars).
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Artificial Data Results
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene mRNA
concentration profiles each obtained by using different parameter sets {B;, S, D,-}f’::L
(lines) along with noise corrupted ‘data’ . Right: The inferred TFC (with error bars).
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Artificial Data Results
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene mRNA
concentration profiles each obtained by using different parameter sets {B;, S, D,-}f’::L
(lines) along with noise corrupted ‘data’ . Right: The inferred TFC (with error bars).

Neil Lawrence () Inferring Latent Functions



Artificial Data Results
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene mRNA
concentration profiles each obtained by using different parameter sets {B;, S, D,-}f’::L
(lines) along with noise corrupted ‘data’ . Right: The inferred TFC (with error bars).
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Artificial Data Results
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene mRNA
concentration profiles each obtained by using different parameter sets {B;, S, D,-}f’::L
(lines) along with noise corrupted ‘data’ . Right: The inferred TFC (with error bars).
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Artificial Data Results
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene mRNA
concentration profiles each obtained by using different parameter sets {B;, S, D,-}f’::L
(lines) along with noise corrupted ‘data’ . Right: The inferred TFC (with error bars).
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Artificial Data Results
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene mRNA
concentration profiles each obtained by using different parameter sets {B;, S, D,-}f’::L
(lines) along with noise corrupted ‘data’ . Right: The inferred TFC (with error bars).
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Artificial Data Results
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene mRNA
concentration profiles each obtained by using different parameter sets {B;, S, D,-}f’::L
(lines) along with noise corrupted ‘data’ . Right: The inferred TFC (with error bars).
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Artificial Data Results
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene mRNA
concentration profiles each obtained by using different parameter sets {B;, S, D,-}f’::L
(lines) along with noise corrupted ‘data’ . Right: The inferred TFC (with error bars).
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Artificial Data Results
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene mRNA
concentration profiles each obtained by using different parameter sets {B;, S, D,-}f’::L
(lines) along with noise corrupted ‘data’ . Right: The inferred TFC (with error bars).
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Artificial Data Results
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene mRNA
concentration profiles each obtained by using different parameter sets {B;, S, D,-}f’::L
(lines) along with noise corrupted ‘data’ . Right: The inferred TFC (with error bars).
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Artificial Data Results

demToyProbleml
14 4
12 3
10
2f,
8
1
6
4 0 -
-1 ‘,‘
0 5 10 K 5 10

Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene mRNA
concentration profiles each obtained by using different parameter sets {B;, S, D,-}f’::L
(lines) along with noise corrupted ‘data’ . Right: The inferred TFC (with error bars).
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Artificial Data Results
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene mRNA
concentration profiles each obtained by using different parameter sets {B;, S, D,-}f’::L
(lines) along with noise corrupted ‘data’ . Right: The inferred TFC (with error bars).
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Artificial Data Results

demToyProbleml
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene mRNA
concentration profiles each obtained by using different parameter sets {B;, S, D,-}?:1
(lines) along with noise corrupted ‘data’ . Right: The inferred TFC (with error bars).
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Mesoderm Development

@ Development of the mesoderm in Drosophila.

Figure: mRNA expression levels for target genes of tinman. (a) pannier, (b)
hibris, (c) CG12744, (d) CG10516 (e) CG31368 .
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Results — Drosophila

s1ll-12e s12l

Figure: Inferred Transcription Factor Activities for tinman.
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@ Recently published biological data set studied using linear response
model by Barenco et al. [2006].

@ Study focused on the tumour suppressor protein p53.

@ mRNA abundance measured for five targets: DDB2, p21,
SESN1/hPA26, BIK and TNFRSF10b.

@ Quadratic interpolation for the mRNA production rates to obtain
gradients.

@ They used MCMC sampling to obtain estimates of the model
parameters B;, S;, D; and f(t).

Neil Lawrence () Inferring Latent Functions



Linear response analysis

@ We analysed data using the linear response model

@ Raw data was processed using the mmgMOS model of Liu et al.
[2005] which provides variance as well as expression level.

@ We present posterior distribution over TFCs.

@ Results of inference on the values of the hyperparameters B;, S; and
D;.

@ Samples from the posterior distribution were obtained using Hybrid
Monte Carlo (see e.g. Neal, 1996).
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Linear Response Results

demBarencol

Figure: Predicted protein concentration for p53. Solid line is mean, dashed lines 95%
credibility intervals. The prediction of [Barenco et al., 2006] was pointwise and is shown
as crosses.
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Results — Transcription Rates

@ Estimation of Equation Parameters demBarenco1l

DDB2 hPA26 TNFRSF20b p21 BIK

Figure: Basal transcription rates. Our results (black) compared with
Barenco et al. [2006] (white).
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Results — Transcription Rates

@ Estimation of Equation Parameters demBarencol

25

15
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0
DDB2 hPA26 TNFRSF20b p21 BIK

Figure: Sensitivities. Our results (black) compared with Barenco et al.
[2006] (white).
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Results — Transcription Rates

@ Estimation of Equation Parameters demBarenco1l

DDB2 hPA26 TNFRSF20b p21 BIK

Figure: Decays. Our results (black) compared with Barenco et al. [2006] (white).
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Linear Response Discussion

@ Note oscillatory behaviour, possible artifact of RBF covariance
Rasmussen and Williams [see page 123 in 2006].
@ Results are in good accordance with the results obtained by Barenco
et al..
@ Differences in estimates of the basal transcription rates probably due
to:
» different methods used for probe-level processing of the microarray

data.
» Our failure to constrain f (0) = 0.
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Non-linear Response Model

@ All the quantities in equation (1) are positive, but direct samples from
a GP will not be.

@ Linear models don’t account for saturation.

@ Solution: model response using a positive nonlinear function.
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Non Linear Response Formalism

@ Introduce a non-linearity g (-) parameterised by 6;

dy;
7: = B; + g(f(t),6;) — Djx;

yi(t) = % + exp (—Djt) /Otdug(f(u),ej)exp (Dju) .

@ The induced distribution of y;(t) is no longer a GP.
@ Derive the functional gradient and learn a MAP solution for f(t).

@ Also compute Hessian so we can approximate the marginal likelihood.
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Implementation

Implementation requires a discretised time.
Compute the gradient and Hessian on a grid.
Integrate them by approximate Riemann quadrature.

We choose a uniform grid {t,,},’;/’:1 so that A = t, — t,_1 is constant.

The vector f = {fp}gﬂzl is the function f at the grid points.

1(t) = /Ot f (u)exp (Dju) du

M
I(t) = f(tp)exp (Ditp) A
p=1
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Log Likelihood

e Given noise-corrupted data y; (t;) the log-likelihood is

log p(Y|f,0;) = — ZZ |:(Xj(t'yj(t')) — log (aﬁ):| — g log(27)
Ji

Iljl

@ The functional derivative of the log-likelihood wrt f is

5|ogp(Y|f) Z@(t t)ZM ’(f(t))e_D ti—t)
of (t) = UJ,

©(x) — Heaviside step function.
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Log Likelihood

@ Functional Hessian
e Given noise-corrupted data y; (t;) the log-likelihood is

log p(Y|f,0;) = — ZZ |:(Xj(t'yj(t')) — log (012,):| — g log(27)
Ji

i=1 j=1
@ The negative Hessian of the log-likelihood wrt f is
T N
w(t,t) =30t — )5 (t—1) 3 7(“(“);_” () g eype- it
i=1 j=1 Ji

+ Z o(t; — )0 (t — t') Zo*g' (F(0) &' (F()) et

g'(f) = 0g/Of and g"(f) = 0°g/Of2.
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Implementation I

@ Combine with Prior

@ Combine these with prior to compute gradient and Hessian of log
posterior W(f) = log p(Y|f) + log p(f) [see Rasmussen and Williams,
2006, chapter 3]

ov(f) _ Ologp(YI|f)

of of K
(6)
Pu(f) -1
o~ (WK
K prior covariance evaluated at the grid points.
e Use to find a MAP solution via, f, using Newton’s algorithm.
@ The Laplace approximation is then
log p(Y) =~ log p(Y|f) — %fTKflf — % log |/ + KW/|. (7)

Neil Lawrence () Inferring Latent Functions



Example: linear response

@ Linear response with non-RBF kernels
@ Start by taking g(-) to be linear.
@ Provides 'sanity check’ and i.e. non-stochastic) covariance function.

@ Avoids double numerical integral that would normally be required.
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Response Results

@ demBarencoMapl, demBarencoMap2

Figure: Left: RBF prior on f (log likelihood -101.4); Right: MLP prior
on f (log likelihood -105.6). Solid line is mean prediction, dashed lines
are 95% credibility intervals.
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Non-linear response analysis

Non-linear responses

Exponential response model (constrains protein concentrations
positive).

log (1 + exp (f)) response model.

o 3
1+exp(—f)
Inferred MAP solutions for the latent function f are plotted below.
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exp (-) Response Results

@ demBarencoMap3, demBarencoMap4

6

6

5r 5r

Figure: Exponential response: Left: squared exponential prior covariance on f (log
likelihood -100.6); Right: MLP prior covariance on f (log likelihood -106.4). Solid
line is mean prediction, dashed lines show 95% credibility intervals.
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log (1 + exp (f)) Response Results

@ demBarencoMapb, demBarencoMap6

6—— : : 6
5 { s
4 4

Figure: Left: squared exponential prior covariance on f (log likelihood -100.9);
Right: shows MLP prior covariance on f (log likelihood -110.0).
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3

Response Results

1-+exp(—f)

@ demBarencoMap7, demBarencoMap8

1 ‘ : : 0.8

0.8f
0.6f
0.61
0.47
0.4f

.2f
0.2r 0

Figure: PLeft: squared exponential prior covariance on f (log likelihood -104.1);
Right: an MLP prior covariance on f (log likelihood -111.2). Solid line is mean
prediction, dashed lines show 95% credibility intervals.
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Discussion

@ Promising applications for dynamics in latent variable modelling.

@ Exampled showed how GPs can be used in modelling dynamics of a
simple regulatory network motif.

@ We are applying similar models to motion capture data (second order
ODEs).

@ there is no need to restrict the inference to the observed time points,
the temporal continuity of the inferred functions is accounted for
naturally.

@ GPs allow us to handle uncertainty in a natural way.
@ Code on-line http://www.cs.man.ac.uk/ " neill/gpsim/.
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