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Abstract

Bayesian belief networks can represent the complicated probabilistic
processes that form natural sensory inputs. Once the parameters of the
network have been learned, nonlinear inferences about the input can be
made by computing the posterior distribution over the hidden units (e.g.,
depth in stereo vision) given the input. Computing the posterior distri-
bution exactly is not practical in richly-connected networks, but it turns
out that by using a variational (a.k.a., mean field) method, it is easy to
find a product-form distribution that approximates the true posterior dis-
tribution. This approximation assumes that the hidden variables are in-
dependent given the current input. In this paper, we explore a more pow-
erful variational technique that models the posterior distribution using a
Markov chain. We compare this method with inference using mean fields
and mixtures of mean fields in randomly generated networks.

Submitted to NIP98, Algorithms and Architectures, oral presentation.

1 Introduction

Belief networks express how the joint distribution over a set of variables s � �s�� � � � � sN �
factors into a product of conditional distributions. This decomposition can be used to sim-
plify inference algorithms and learning algorithms. Figure 1a shows the directed graph
for a simple belief network, where each node represents a variable in s. Taking Ai as the
set of indices for the parents of si (those variables having edges directed to si), the joint
distribution can be written

P �s� �
QN

i��P �sijfsjgj�Ai
�� (1)



In the case of sigmoid belief networks (Neal, 1992), the variables are binary and the param-
eterized conditional probability that unit si has the value 1 is given by the logistic sigmoid
function of the net input:

P �si � �jfsjgj�Ai
��� � ���� � e�ni�� ni �

PN
j���ijsj � (2)

where we have introduced an extra unit s� that is clamped to 1 to account for a bias in the
net input. The graph structure is represented by clamping some weights to 0: �ij � � if
j �� Ai (except for j � �). Notice that the net input ni is a random variable given by a
weighted sum of the stochastically chosen binary activities of the parents of si, in contrast
to the mean activities used by nonlinear multilayer perceptrons. The joint distribution for a
sigmoid belief network is

P �sj�� �
QN

i��e
sini��� � eni�� ni �

PN
j���ijsj � (3)

For a given input pattern, probabilistic inference consists of computing the posterior dis-
tribution over the unobserved hidden units h given the observed data d. For example, the
observed units in Figure 1a are shown in black, whereas the unobserved ones are shown
in white. In general, different units may be observed in different cases, although in some
learning problems such as vision, V is fixed. In richly-connected networks such as layered
networks, the time needed to compute the posterior distribution exactly grows exponen-
tially with the number of hidden units. So, we usually approximate inference using Markov
chain Monte Carlo methods (Neal, 1992), recognition networks (Hinton et al., 1995), loopy
probability propagation (Frey, 1998), or variational techniques (Jordan et al., 1998).

In a variational approximation we try to fit a parameterized distribution to the hidden units
for the current input pattern. To simplify the math, we form a parameterized variational
distribution over all of the variables, and then fix some of the parameters so that the visible
units take on their observed values. The dependence of the variational distribution on the
parameters � is indicated by writing Q�sj��. The relative entropy between P �sj�� and
Q�sj�� is

F����� � hlnQ�sj��i � hlnP �sj��i� (4)

where h�i is an expectation with respect to Q��j��.

Denoting the hidden units for the current input pattern by h, it is easy to show that

F����� � hlnQ�hj��i � hlnP �hjd���i � lnP �dj��� (5)

(Recall that the variational parameters � fix the values of d, so hlnQ�dj��i � �.) This
is just the relative entropy between the posterior and the variational distribution, minus a
the log-likelihood of the data, which does not depend on �. So, minimizing F����� with
respect to � is equivalent to fitting the variational distribution to the posterior.

In the “free energy” in (4), hlnP �sj��i can be simplified using (3):

hlnP �sj��i �
PN

i��

PN
j���ijhsisji �

PN
i��hln�� � eni�i� (6)

Evaluation of the last term requires an exponential number of computations, so we follow
Saul et al. (1996) and bound it. Applying the identity

hln�� � eni�i � hln e�ini�e��ini � e����i�ni�i � �ihnii� hln�e��ini � e����i�ni�i�
(7)

we then use Jensen’s inequality to exchange the expectation and the logarithm:

hln�� � eni�i � �ihnii� ln�he��inii� he����i�nii�� (8)



This gives an upper bound L������� on F����� that is more tractable:

L������� � hlnQ�sj��i�
PN

i��

PN
j���ij

�
�ihsji � hsisji

�
�
PN

i�� ln
�
he��inii� he����i�nii

�
� (9)

By minimizing L������� with respect to � and �, we are minimizing a bound on the
distance between the posterior distribution and the variational distribution.

An advantage of using L������� as a Lyapunov function for inference is that it is also an
upper bound on the negative log-likelihood of the data, since hlnQ�hj��i�hlnP �hjd���i
in (5) is always positive:

L������� � F����� � � lnP �dj��� (10)

By setting some of the parameters in � to account for the visible units d and then min-
imizing L������� with respect to �, � and �, we can perform generalized expectation
maximization (Neal and Hinton, 1993).

2 Markovian inference

The mean field theory for sigmoid belief networks (Saul et al., 1996) uses
a product-form variational distribution over the hidden units. In this paper,
we consider a variational distribution which is described by a Markov chain.
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m

Figure 1: (a) A densely connected be-
lief network. Clamped input and output
units are black, while hidden units are
white. (b) Mean field assumes a fully fac-
torized distribution over hidden units. (c)
In the mixed mean field approach, there
is an additional mixture component vari-
able shown in grey. (d) In this paper, we
consider a posterior approximation corre-
sponding to one Markov chain for each
layer of hidden units.

The Markov chain model is more general
than the factorized distribution of mean
field theory, and provides an alternative ap-
proach to a mixture of mean field models
(Jaakkola and Jordan, 1998; Bishop et al.,
1997). In order to simplify the math, we
will consider Markov chains that decouple
different layers in the network; i.e., we ef-
fectively use one Markov chain per layer
of hidden units. We can express the vari-
ational model graphically, and compare it
with alternative approaches, as shown in
Figure 1.

This form of variational distribution re-
quires that a particular ordering of the hid-
den units be chosen. However, in the types
of networks that we are considering there
is an interchange symmetry with respect to
the hidden units before learning. Exchang-
ing the labels of any two hidden units gives
an equivalent network structure with identi-
cal joint distribution over the observed vari-
ables. The specific choice of ordering ef-
fectively breaks this symmetry without loss
of generality. We will assume the units are
ordered layer by layer.

Let the Markov chain transition matrix for
si given the previous variable si�� be

Ai �

�
Q�si � �jsi�� � �� Q�si � �jsi�� � ��
Q�si � �jsi�� � �� Q�si � �jsi�� � ��

�
�

�
�� ai� �� ai�
ai� ai�

�
� (11)



We parameterize the probability aij by �ij using aij � �����exp���ij ��. For the sake of
notational simplicity, we will assume the Markov chain weaves its way through all layers
of the network, including the visible layers. If si is visible, we fix ai� � ai� � � if si � �
and fix ai� � ai� � � if si � �. If si is the first unit in a layer, we decouple it from the
previous layer by constraining ai� � ai�. Finally, in order to account for the beginning of

the chain (s� � �), we define A� �

�
�
�

�
. The joint probability of all variables can be

written

Q�sj�� � as������ a���
��s�

NY
i��

�
asii���� ai��

��si
�si�� �

asii���� ai��
��si

���si��
�

(12)

2.1 Evaluation of the Bound

To compute (9), we must evaluate expressions of the form hsii, hsisji, he��inii, and
he����i�nii. If si is observed, hsii is just set to the observed value. If si is not observed,
we evaluate its marginal distribution using the standard forward algorithm:

Q�si� �
X
s�

� � �
X
si��

Q�sijsi���Q�si��jsi��� � � � Q�s�js��Q�s��

�
X
si��

Q�sijsi���
X
si��

Q�si��jsi��� � � �
X
s�

Q�s�js��Q�s��� (13)

where we have dropped the conditioning on� and d to avoid clutter. This can be expressed
as a series of matrix multiplications:�

Q�si � �j��d�
Q�si � �j��d�

�
�
Q�

j�iAj � (14)

where
Q�

j�i indicates that matrix Ai appears on the far left and vector A� appears on the
far right. The computation of (14) takes time which is linear in the length of the chain, and
hence is tractable. We then have

hsii � �� ��
Q�

j�iAj � (15)

where the row vector �� �� extracts the second component of the distribution.

Now consider the computation of hsisji in (9). As a consequence of the layered structure
of the belief network, the prefactor �ij is nonzero only if units i and j are in different layers.
Since we constrain the layers to be decoupled in the Markov chain, we need only consider
i and j for which hsisji � hsiihsji.

We are now faced with the evaluation of he��inii and he����i�nii in (9). Once again, these
are easily evaluated using a forward propagation along the chain:

he��inii � h
QN

j��e
��i�ijsj i

�
X
s�

� � �
X
sN

e��i�iNsNQ�sN jsN���e
��i�iN��sN�� � � � Q�s�js��e

��i�i�s�Q�s��e
��i�i�

�
X
sN

e��i�iNsN
X
sN��

Q�sN jsN���e
��i�iN��sN�� � � �

X
s�

Q�s�js��e
��i�i�s�Q�s��e

��i�i�

� �� ��
Q�

j�NKijAj � (16)

and

he����i�nii � �� ��
Q�

j�N
eKijAj � (17)



where we have defined

Kij �

�
� �
� e��i�ij

� eKij �

�
� �
� e����i��ij

�
� (18)

Finally, we need to evaluate hlnQ�sj��i in (9). To do this we make use of the Markov
chain property to obtain

hlnQ�sj��i � H�a��� �
PN

i��

�
hsi��iH�ai�� � ��� hsi��i�H�ai��

�
� (19)

where we have introduced the negative binary entropy function
H�aij� � aij ln aij � ��� aij� ln��� aij�� (20)

Using the above formulas, the time needed to compute the likelihood bound scales linearly
with the number of edges in the network.

2.2 Probabilistic Inference: The Generalized E-Step

For a given input pattern d, probabilistic inference entails setting some of the parameters
in � to account for d and then minimizing L������� with respect to � and �. To compute
the derivative with respect to �, we use the following:

�he��inii

��i
�

NX
k��

�� ��
�Qk��

j�NKijAj

�� � �
� ��ike

��i�ik

�
Ak

�Q�
j�k��KijAj

�

�he����i�nii

��i
�

NX
k��

�� ��
�Qk��

j�N
eKijAj

�� � �
� ��ike

����i��ik

�
Ak

�Q�
j�k��

eKijAj

�
�

(21)

By storing partial products in the forward and reverse directions, all of these derivatives
can be computed in time that scales linearly with the number of edges in the network.

To compute the derivative of L������� with respect to �jk , we need the derivatives of
hsii, he��inii, and he����i�nii. �hsii���j� � �hsii���j� � � if sj and si are in different
layers. Also, from (15), �hsii���j� � �hsii���j� � � if j � i. Otherwise,

�hsii

��j�
� aj���� aj���� ��

�Qj��
k�iAk

��
�� �
� �

��Q�
k�j��Ak

�
�

�hsii

��j�
� aj���� aj���� ��

�Qj��
k�iAk

��
� ��
� �

��Q�
k�j��Ak

�
� (22)

The time needed to compute these derivatives for all i and j in a layer scales as the square
of the number of units in the layer.

The derivatives of he��inii and he����i�nii with respect to �j� and �j� are � if j �� Ai.
Otherwise,

�he��inii

��j�
� aj���� aj���� ��

�Qj��
k�NKikAk

�
Kij

�
�� �
� �

��Q�
k�j��KikAk

�
�he��inii

��j�
� aj���� aj���� ��

�Qj��
k�NKikAk

�
Kij

�
� ��
� �

��Q�
k�j��KikAk

�
�he����i�nii

��j�
� aj���� aj���� ��

�Qj��
k�N

eKikAk

�eKij

�
�� �
� �

��Q�
k�j��

eKikAk

�
�he����i�nii

��j�
� aj���� aj���� ��

�Qj��
k�N

eKikAk

�eKij

�
� ��
� �

��Q�
k�j��

eKikAk

�
�

(23)



The time needed to evaluate these derivatives for all units in a layer scales as the product
of the number of units in the layer and the number of units in the parent layer.

Having evaluated the bound and its derivatives with respect to � and �, we can use a
standard gradient-based minimization algorithm such as conjugate gradients to optimize
the variational distribution.

2.3 Learning: The Generalized M-Step

Once we have optimized the variational distribution for each pattern in a training set (the
generalized E-Step), we can modify the network parameters � (the generalized M-Step).
To compute derivative of the likelihood bound L������� for one input pattern, we use the
following:

�he��inii

��ij
� �� ��

�Qj��
k�NKikAk

�� � �
� ��ie

��i�ij

�
Aj

�Q�
k�j��KikAk

�
�he����i�nii

��ij
� �� ��

�Qj��
k�N

eKikAk

�� � �
� ��� �i�e

����i��ij

�
Aj

�Q�
k�j��

eKikAk

�
�

(24)

The time needed to evaluate these derivatives for all units in a layer scales as the product
of the number of units in the layer and the number of units in the parent layer.

3 Results on inference

Figure 2: The
connectivity of
the networks
used for testing
inference. In this
case the fan-out
of the hidden
units is n � �.

In this section, we summarize the performance of Markovian infer-
ence in randomly drawn networks and compare it with mean field
theory (Saul et al., 1996) and mixtures of mean fields (Jaakkola
and Jordan, 1998; Bishop et al., 1997). Figure 2 shows the con-
nectivity of the networks we used for testing inference. We used
networks with 5 visible units and 5 hidden units – the number of
hidden units was chosen to be small so that we could compute the
true log-likelihood. Each hidden unit had a fan-out of n and was
connected to nearby visible units, as shown for n � � in figure 2.
For n � �� �� 	� 
 and 5, we evaluated inference performance in 100
networks constructed by drawing the parameters uniformly from the
interval ���� �� and then performing inference when all of the visible
units were clamped to 0. The variational parameters for Markovian
inference were initialized to give the same approximation to the pos-
terior as given by the output of the mean field method.

For n � � (each hidden unit paired with a visible unit), all three inference techniques
should be exact. For n � �, when the visible units are clamped the hidden units form a
1st order Markov chain. For this reason, Markovian inference should be exact, whereas
mean field and mixtures of mean fields should be inexact. In fact, for a fan-out of n, nth-
order Markovian inference will be exact. So, for n � �, the 1st order Markovian inference
method described in this paper becomes inexact.

Figure 3 shows the mean percentage error in the bound (compared to the true log-
likelihood) versus n, for mean field (dot-dashed), mixtures of mean fields (dotted) and
Markovian inference (dashed). Markovian inference performs uniformly better for all n.
We are investigating why our implementation of Markovian inference was not exact for
n � � and why the mixture method was not exact for n � �.
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Figure 3: Mean percentage error in the bound (compared to the true log-likelihood) versus
the fan-out n of the hidden units, for mean field (dot-dashed), mixtures of mean fields
(dotted) and Markovian inference (dashed).

4 Conclusions

Computing the posterior distribution exactly is not practical in richly-connected belief net-
works, but it turns out that by using a variational (a.k.a., mean field) method, it is easy
to find a product-form distribution that approximates the true posterior distribution. This
approximation assumes that the hidden variables are independent given the current input.
In this paper, we explored a more powerful variational technique that models the posterior
distribution using a Markov chain. As expected, this “Markovian inference” method per-
formed better at inference than the mean field method. We are currently investigating the
performance of the learning algorithm.
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