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Abstract. We are interested in the situation where we have two or mgnefe
sentations of an underlying phenomenon. In particular weiraterested in the
scenario where the representation are complementary.ifipiges that a sin-
gle individual representation is not sufficient to fully clisninate a specific in-
stance of the underlying phenomenon, it also means thatrepchsentation is
an ambiguous representation of the other complementagespin this paper
we present a latent variable model capable of consolidatinlfiple comple-
mentary representations. Our method extends canonicadlaton analysis by
introducing additional latent spaces that are specific ¢odifferent representa-
tions, thereby explaining the full variance of the obsdoret. These additional
spaces, explaining representation specific varianceraghamodel the variance
in a representation ambiguous to the other. We develop drapatgorithm for
fast computation of the embeddings and a probabilistic inbadsed on Gaussian
processes) for validation and inference. The proposed hhadeseveral potential
application areas, we demonstrate its use for multi-maetglession on a bench-
mark human pose estimation data set.

1 Introduction

A common situation in machine learning is the consolidatibtwo disparate, but re-
lated, data sets. Examples include: consolidation of liwentent with cepstral coef-
ficients for improving the quality of robust speech recoignit consolidation of two
different language renderings of the same document fosdamgjuage information re-
trieval; and consolidation of human pose data with imagermftion for marker-less
motion capture.

Formally, we will consider the situation where we are preddavith two data sets,
Y = [y1...yn]" € RV*XDY andZ = [z1...zx]" € RV*P7, for which there
is some kind of correspondence between each point. For dgasgrh measurement
could have been taken at the same time or under the sameragpéal conditions. We
are interested in answering questions about the relatiprshandy,,. For example:
what is the most likely,,, giveny,,? This question can be answered by direct modeling
of the conditional probability (z,, |y, ). However, this distribution can be very complex
in practice. If we for example used a regression model, itld/amly be valid if the
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Fig. 1. Latent representation associated with a static pose m¢g360° and its corresponding
silhouette image features. Theaxis represents the dimension that is common to both spaces
They-axis isimage feature specifion theleft and pose feature specifion theright. We have
also used the GP-LVM model to associate each location imtatpace with a likelihood. White
represents high and black low regions of likelihood. Nogdmbiguities in pose associated with
the image feature space (ambiguous poses have simitard y positions). In the pose space
these ambiguities are resolved in thaxis.

relationship between the observations was unimodal, gtufién an invalid assumption.
Multi-modalities that arise are a manifestation of a nojediive relationship between
y.» andz,, one that is difficult to express in a standard regressionaindtle could
turn to a model for conditional probability estimation tleiows for multi-modalities
[13]. However, the nature of the multi-modal relationshéplikely to be difficult to
learn when the size of the data set is restricted. In thispaperopose an alternative
approach, one that is based explicitly on assumptions abeuglationship betweey,
andz,,. In particular we will assume that the data is generated loyval dimensional
latent variable. The approach is similar in character td tiacanonical correlation
analysis (CCA) with one key difference: the latent space@ased with CCA describes
only the characteristics of the data that are common to bwhrépresentations. We
will construct a latent space that representsftiiedata set We will subdivide the
latent space into thregon-overlappingartitions. One partition will be associated only
with the'Y data another partition is associated only with Fhdata and the remaining
partition is associated with the common or shared inforomattietweerlY andZ. The
remaining non-shared or private latent subspaces modehiation not present in the
corresponding observation space. This means when estgtifrom y,, the private
space represents the ambiguitiez.gfwhen presented witj,,

A simple example of such an ambiguity is given in Figure 1 vettbe the proposed
model has been applied to a toy data set of a rotated charabter-axis direction in
both plots is shared for both pose and silhouette. jHagis in the left plot represents
information specific to the silhouette, while in the in thght plot, information specific
to the pose. When looking at the information in thaxis only, the pose is ambiguous.



Fig. 2. Graphical model of the NCCA Model. The two observati¥handZ are generated from
low-dimensional embeddingé®'Y andX*'Z indicated by rounded rectangles. The embeddings
share a common subspaB&® representing the shared variance in each observation spetiis

is variance inY andZ that can be described as a functionbandY respectively. An additional
subspaceXY andXZ completes the embedding, representing the non-sharednaribetween
the observationsby and®z collects the parameters associated with each mapping.

However, in the right plot (from the motion capture) the pissdisambiguated on the
y-axis,i.e. each pose is associated with a single location. JHagis does not help in
disambiguation in the left plot (which encodes silhouetif®imation). Clearly, aug-
menting the latent space with a direction representingphedte information’ will be
vital in disambiguating the pose from the silhouette.

Outline of the paper: In the next section we will present the NCCA model for data
consolidation, we will then show results on both real andsgtic data in Section 3
followed by conclusions in Section 4.

2 TheNCCA Model

Given two sets of corresponding observatidfs- [yq, . .. ,yN]T andZ = [zq, . .. ,zN]T
wherey,, € R andz, € RP- we wish to characterize the relationship between the
data sets through a latent variable model. We will assumdliawo data sets can be
generated by noise corrupted smooth functions that map fhentatent space to the
data-spaces in the following way,

Yni = fvy (XZ»XZ) + Ezm Zni = fiZ (XZ,X%) + €7Zmiv (1)
where{y, z},,, represent dimensioinof pointn ande!;, ¢Z; are sampled from a zero
mean Gaussian distribution.

Distance preserving approaches to dimensionality reduodtipically imply that
there is a smooth mapping in tieverse directionin particular, kernel-CCA [4] im-
plicitly assumes that there is a smooth mapping from eadheoflata-spaces to a shared
latent space,

S

i =97 (yn) = 97 (za). )
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Algorithm 1 NCCA Consolidation

Input:
Y = [Y1,-~-,YN]7 Yi €§RDY
Z=z,...,2zN]|, z; € RP2
Ky, Kz

Stage 1, Learn latent embedding
Find kernel spaces frol, andK; by kernel PCA:
1) Apply CCA to find shared embedded d&z&, Eq. (8)
2) Apply NCCA to find non-shared embedded data
XY andX?, Eq. (9)
Stage 2, Learn mappingdet J be eitherY or Z,
By GP-regression find:
1) Generative mapst” : [X®; X/] — J Eq. (10)
2) Shared maps}’ : J — X° Eq. (11)
3) Non-shared map#”’ : J — X7 Eq. (12)
See Figure 2
Return:
Pose Estimationg? and f#
General CaseAll maps learned above.

However, CCA does not characterize the nature of the ottemtigubspaceX and
XZ. In Section 2.1 we will introduce an algorithm for extragtithese spaces which
we refer to as th@on-consolidatingubspaces. Underpinning the algorithm will be a
further assumption about the non-consolidating subspaces

le = th (yn) ern‘ = hz‘Z (2n), Q)
whereh) () andh?Z () are smooth functions. A graphical representation of thesabn
idation model is shown in Figure 2. Our approach will be akfas, we will construct a
model by assuming the smooth mappings in (2) and (3) hold. i¢hen validate the
model quality through assessing how well the resulting efdiveys respect (1). We are
inspired in our approach by the suggestion that spectratoastare used to initialize
the GP-LVM in [5] and by the observation of [3] that the qualitf an embedding is
nicely indicated by the log likelihood of the GP-LVM.

To allow for non-linear relationships in the data we will firepresent the observa-
tions in kernel induced feature spadks : Y — FY; ¥, : Z — FZ, by introducing
kernelsKy andKz. The first step in the model is to apply kernel canonical datien
analysis (CCA) [4] to find the directions of high correlatibatween the two feature
spaces. We therefore briefly review the CCA algorithm. Thedlve in CCA is to find
linear transformation¥y and'W ; maximizing the correlation betweé&V,Y and
W Z. Applied in the kernel feature space of each observation,

{Wy, Wy} = argmaxy, w, tr (WyKyK;Wz), (4)
st tr (WiKyKyWy) =1
tr (WK K, Wy) =1,



\Y

the optima is found through an eigenvalue problem. In [4 guggested to apply CCA
in the dominant principal subspace of each feature spatesith®f directly in the fea-
ture space, this constraif®y and Wz to explain only the significant variance. We
found this suggestion to be important in practice.

Applying CCA recovers two sets of bas®8y and W z explaining the correlated
or shared variance between the two feature spaces. Howewevish to represent the
full variance of each feature space. To achieve this furteés of bases representing
the remaining variance are required. We derive a new alguarihon consolidating
component analysis, for finding these additional bases.

2.1 NCCA

Once a set of basis-vectors in each feature space have bewed ttaat describe the
shared variance, we need to find directions in each feataweghat individually rep-
resents the remaining variance of each data space. Wedheprbceed by seeking the
directions of maximum variance in the data that ardogonalto the directions given
by the canonical correlates. We call the following procedion-consolidating compo-
nents analysi§NCCA). The NCCA algorithm is applied in the same space as CCA
but now we seek the first direction of maximum variance which is orthogonal to the
canonical directions that were already extracted,

vi = argmay, vi Kvi (5)
subject toviv; = 1 andvI'W = 0, (here we have temporarily dropped the partition
subscript),W are the canonical directions akdis the covariance matrix in the domi-
nant principal subspace of the feature space. The optinizl found via an eigenvalue
problem,

(C—WWTK) v; = Avy. (6)

For successive directions further eigenvalue problemisefdrm

k—1
(K — (WWT +> vw?) K) Vi = AV (7)

=1
need to be solved.
After applying CCA and NCCA we have recovered the followingbeddings of
the data

X% =1 (WyFy + W;Fy) (8)

XY =VyFy; XZ=V;Fy, 9)
whereFy andF ; represent the kernel PCA representation of each obsengiace.
The latent variableXY, XZ represent the non shared variance of each feature space
andX® represents the shared variance.

Our methodology results in a purely spectral algorithm:dpgmization problems

are convex and they lead to unique solutions. However, thgsetral methods are per-
haps less useful when it comes to inquisition of the resyltirodel. The pre-image
problem means that handling missing data can be ratheniest@B]. Probabilistic la-
tent variable models lack the elegant convex solutionsigeal/by spectral methods,



Vi

but they facilitate model inquisition. Harmeling [3] hasrfoemed a series of embed-
ding experiments for which the ground truth is available cBynparing the embeddings
from several different spectral algorithms with the grotmuth, a good correpondence
between the likelihood of the GP-LVM and the quality of thetetding is shown. In-
tuitively this is because: if the assumptions in (2) and (@drand the manifold has
been correctly ‘unraveled’ (1) should also hold. If (1) hottien the likelihood of the
GP-LVM will be high and inferences undertaken with the GPM.Will be accurate.
This allows us to proceed by combining our algorithm with @Ge-LVM for model
selection and inference.

The NCCA algorithm results in implicit mappings from the ebsation spaces to
the embeddings or, if non function based kernels are used ¢k &si those resulting
from the MVU algorithm [14], a mapping can be learned exgiicHowever, this leaves
us with the pre-image problem [10]. For a given latent lamatiwhat is the correct
observation? The next stage is, therefore, to build Gaugszcess mappings from the
latent to the data space. This will result in a combinatio®BfLVM models that can be
used for any inference tasks in the model. This means thapastgrocessing step, we
learn mappings to regenerate the observations spécasd Z from the embeddings.
We define théY’ andZ specific latent space &Y = [X%; XY ], X5Z = [X%; XZ]
respectively. The mappings,

8y = 0T +ef sz = AP + €, (10)
g7 xF =g (vi) + ey =97 (i) + e, (11)
WY 2Y o = hY (i) + e s %7 = hP () + €, (12)
wheree{?’f’,}l} are samples from zero mean Gaussian distributions, aned@arsing

GP-regression [8].

Note that we have, in effect, created a set of back-congmaBP-LVMs from our
data [6]. We could have used the GP-LVM algorithm directly lE=rning this model,
in practice though, the spectral approach we have descisbedich quicker and has
fewer problems with local minima.

2.2 Inference

The proposed model represents two data sets using a low siomah latent variable.
Once the latent representations have been learned we arest®d in inferring the
locationz,, corresponding to a previously unseen ingut The input and the sought
output locations latent representation coincide on thesshiatent subspad&®, which
can be determined from the input through the mappihgTherefore, to determine the
full location of the corresponding output, it remains toetatine the location over the
private space associated with the output. However, thafgrsubspace is orthogonal to
the input specific latent subspace. This implgescan provide no further information
to disambiguate over this spades. each location over the private space corresponds
to outputs that are ambiguous to the input location. We thezeproceed by finding
the most probable,’s generated byf# for different locations oveiX?. From our
model’s perspective, this is equivalent to minimizing thedictive variance of'# [8]
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with respect tacZ under the constraint that® is given,
X7 = argmax; [k(x27,x7%) — k(x27, XH)T(K + 67 Dk(xI7, X57)] .

(13)
The optimalk?Z is found by optimizing Eq. (13) using gradient based methddsare
looking to find all the locationg, that are consistent with a specific. The separa-
tion of Z into shared and non-shared means that the ambiguities grelese in the
shared subspace. Therefore, we can explore the differes¢ sy looking for nearest
neighbors in the shared subspace and initializing the GM-dgtimizations from those
neighbors.

3 Human Pose Estimation

We now consider the application of the model to human posmaton. We will first
briefly review relevant previous work in this area, much ofiethhas provided the in-
spiration of our approach. Human pose estimation is thedbektimating the full pose
configuration of a human from an image. Due to the high dinwmaadity of the image
representation it is common practice, as a preprocessagg sto represent each image
by a lower dimensional image feature vector. In the simpase, where there is no
ambiguity between the image features and the pose, théoredhtp can be modeled
with regression as was demonstrated by [1]. However, regnesnodels are not suffi-
cient to accurately describe the multi-modalities that weeet to arise as a result of
ambiguities associated with common image features. Amredte approach to deal-
ing with the multi-modalities is to use a conditional mode¢othe image feature space
given the poses [13]. However, due to the high dimensignahid relative data spar-
sity care must be taken in choosing the class of conditiomalats. One solution is to
incorporate a low dimensional manifold within the conditid density model, thereby
avoiding the curse of dimensionality. This approach isolwd by [2, 7] who exploit
the shared GP-LVM [11] to jointly learn a low dimensional regentation of both the
image features and the pose space. An advantage of basingptied on the GP-LVM
[5] is that it provides a principled probabilistic framewdor the resulting inference of
pose, easily allowing, for example, the incorporation afi@yical models [2].

A key problem with the application of the shared GP-LVM instiebntext is that a
single latent space is used to explaihthe variance in the data. Since we know that
only a portion of the variance is shared, with the remain@émdpspecific to each data
partition, it seems to make much more sense to encode thigidypThe proposed
NCCA model does this by decomposing the latent space integspabes which encode
the shared variance and subspaces which encode the vatigatide private to each
data set. These constraints on the latent spaces lead toctmacter representation of
the ambiguities in practice (as we shall see in Section 8vhen combining the image
features with the motion capture the shared latent spacesenpts the variance in the
pose space that can be discriminated from the image featca#idn. The ambiguities,
if they exist, therefore necessarily lie in the portion of tatent space that is specific to
the motion capture data. As we shall see this makes them nasibreo visualize and
interpret.
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Further, it is likely that a significant amount of the variario a descriptor does
not help in disambiguating the pose. In the shared GP-LVd ihiormation is still
encoded in the model: the shared GP-LVM attempts to malléhe variance in the
data. The NCCA model encodes this information separatdiiclwmeans it does not
influence the inference procedure. This is a key advantageomodel compared to
other conditional models, where inference is polluted liyresting this task irrelevant
variance.

Once again we direct the reader to Figure 1 to see this effbety-axis in the left
plotis encoding the spurious information from the imageess. It does not help with
encoding the true pose. It also is prevented from corrugtiegnformation that arises
from the motion capture data (right plot).

3.1 Experiments

We considered a walking sequence from the HumanEva dat@§b2jsd here are four
cycles in a circular walk, we use two for training and two festing for the same
subject. In the original data the subject is walking in a detselockwise direction, to
introduce further ambiguities into the data we transforicheimmage and pose to also
include the clockwise motion. Each image is representatyusi 00 dimensional inte-
gral HOG descriptor [15] with 4 orientation bins and the pssace by th8 D locations
of 19 major body joints. There are two types of motion in the ddie,global motion
of the subject moving around B space and the local body relative motiae, each
stride. We assume that each local movement in the trainitagislipossible at all global
locations. To decorrelate the two motions we represent tise gpace as the sum of a
MVU kernel [14] applied to the full pose space and a lineankéepplied on the local
motion. The NCCA algorithm with this kernel over the posecgpand a MVU kernel
over the image features results in a one dimensional shaeemk £xplainind% and
18% of the variance in the image feature and pose space respigciio retaind5% of
the variance in each observation two dimensions are needegtesent the non-shared
variance for both the pose and the image feature space. Heegpecific latent space
takes the shape of a torus, the larger circle is associatédié heading direction and
the smaller circles associated with the stride at that jposiigure 4. The total compu-
tation time for learning the embedding and the required rimeygowvas about0 minutes
on a Intel Core Duo with 1GB of RAM. In Figure 6 tRed and3rd row show inference
of two different image features from the test data is shovine ihference procedure us-
ing 20 nearest neighbor initializations per image took ageasonds to compute.
Shared GP-LVM: The inference procedure in the NCCA model consists of aidiscr
inative mapping followed by the optimization over a sub«fahe pose specific latent
space. In comparison to the shared GP-LVM [2, 7] the optitiopnais done over the
full latent representation of both image feature and posés means that the objec-
tive is influenced by how well the latent locations represerriance in the image
features that are irrelevant for discriminating the posecdntrast, the optimization in
the NCCA model is done over latent dimensions representihg @ose relevant vari-
ance. We applied the shared GP-LVM model suggested in [He@bove data set. To
compare models with similar inference complexity we leatwa dimensional shared
latent representation of image feature and pose. The (attion on the latent space is



Fig. 3. Pose inference from silhouette using two different silti@sefrom the training data. From
the silhouette in the leftimage it is not possible to detamthe positioning of the legs, this results
in an elongated region of high probability in the pose prevatibspace that describs a full stride.
The right image shows a silhouette from which it is not pdegibdifferentiate between the right
and the left leg. This results in two clear modes over the stwared dimensions representing the
two possible leg labellings in the silhouette.

initialized by the nearest neighbors in the training datateNhat this is a search in the
100 dimensional image feature space compared to the algoritarpresent were the
nearest neighbor search takes place amadimensional space. In Figure 6 the bottom
two rows shows the results of applying the Shared GP-LVMferance the pose of the
same images as for the NCCA model.

4 Conclusion

We have presented a practical approach to consolidatingltasets with known cor-
respondences via a latent variable model. We constructesheragtive latent variable
model for inference and model validation and a spectralrdlyuo for fast learning of

the embeddings, both these interpretations of our modéldgudn canonical correla-
tion analysis. The resulting model was successful in vigimg the ambiguities on a
benchmark human motion data set. Moreover, not only is thegmted model fast to
train, but also it is efficient in the test phase. Inferenaeadized by a fast discrimina-
tive model that constrains the related generative modés fEsults in a much simpler
estimation compared to previous generative approaches.
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Fig.5. Pose inference on a sequence of images from the HumanEvaetafeop row:
original test set image. Second row: visualisation of thelemin the non-shared por-
tion of the pose specific latent space. Note how the modegeeaslthe subject moves.
When the subject is heading in a direction perpendiculantowiew-plane, it is not pos-
sible to disambiguate the heading direction imagie2(and6) this is indicated by two
elongated modes. In imag® { 5) it is not possible to disambiguate the configuration
of the arms and legs this gives rise to a set of discrete modkstioe latent space each
associated with a different configuration. Bottom row: tles@ coming from the mode
closest to the ground truth is shown. The different typesaafexare explored further in
Figure 6.
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Fig.6. The top row shows two images from the training data. Zhé and 3rd row
shows results from infering the pose using the NCCA coretiid, the first column
shows the likelihood sampled over the pose specific latertiesponstrained by the im-
age features, the remaining columns shows the modes as=beiith the locations of
the white dots over the pose specific latent spBIE&CA: In the 2nd row the position
of the leg and the heading angle cannot be determined in astolsay from the image
features. This is reflected by two elongated modes over thetlspace representing the
two possible headings. The poses along each mode reprafifatent leg configura-
tions. The top row of thend column shows the poses generated by sampling along the
right mode and the bottom row along the left mode. In3hé row the position of the
leg and the heading angle is still ambiguous to the featusgydver here the ambiguity
is between a discrete set of poses indicated by four cleaemdthe likelihood over
the pose specific latent spa@GP-LVM: The4th and 5¢h row show the results of
doing inference using the SGP-LVM model. Even though the¢ likely modes found
are in good correspondece to the ambiguities in the imageatient space is cluttered
by local minima that the optimization can get stuck in.



