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Abstract. We are interested in the situation where we have two or more repre-
sentations of an underlying phenomenon. In particular we are interested in the
scenario where the representation are complementary. Thisimplies that a sin-
gle individual representation is not sufficient to fully discriminate a specific in-
stance of the underlying phenomenon, it also means that eachrepresentation is
an ambiguous representation of the other complementary spaces. In this paper
we present a latent variable model capable of consolidatingmultiple comple-
mentary representations. Our method extends canonical correlation analysis by
introducing additional latent spaces that are specific to the different representa-
tions, thereby explaining the full variance of the observations. These additional
spaces, explaining representation specific variance, separately model the variance
in a representation ambiguous to the other. We develop a spectral algorithm for
fast computation of the embeddings and a probabilistic model (based on Gaussian
processes) for validation and inference. The proposed model has several potential
application areas, we demonstrate its use for multi-modal regression on a bench-
mark human pose estimation data set.

1 Introduction

A common situation in machine learning is the consolidationof two disparate, but re-
lated, data sets. Examples include: consolidation of lip movement with cepstral coef-
ficients for improving the quality of robust speech recognition; consolidation of two
different language renderings of the same document for cross language information re-
trieval; and consolidation of human pose data with image information for marker-less
motion capture.

Formally, we will consider the situation where we are provided with two data sets,
Y = [y1 . . .yN ]

T
∈ ℜN×DY andZ = [z1 . . . zN ]

T
∈ ℜN×DZ , for which there

is some kind of correspondence between each point. For example, each measurement
could have been taken at the same time or under the same experimental conditions. We
are interested in answering questions about the relationship zn andyn. For example:
what is the most likelyzn, givenyn? This question can be answered by direct modeling
of the conditional probabilityp (zn|yn). However, this distribution can be very complex
in practice. If we for example used a regression model, it would only be valid if the
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Fig. 1. Latent representation associated with a static pose rotating 360
◦ and its corresponding

silhouette image features. Thex-axis represents the dimension that is common to both spaces.
They-axis is image feature specificon theleft and pose feature specificon theright. We have
also used the GP-LVM model to associate each location in latent space with a likelihood. White
represents high and black low regions of likelihood. Note the ambiguities in pose associated with
the image feature space (ambiguous poses have similarx and y positions). In the pose space
these ambiguities are resolved in they axis.

relationship between the observations was unimodal, this is often an invalid assumption.
Multi-modalities that arise are a manifestation of a non-bijective relationship between
yn andzn, one that is difficult to express in a standard regression model. We could
turn to a model for conditional probability estimation thatallows for multi-modalities
[13]. However, the nature of the multi-modal relationship is likely to be difficult to
learn when the size of the data set is restricted. In this paper we propose an alternative
approach, one that is based explicitly on assumptions aboutthe relationship betweenyn

andzn. In particular we will assume that the data is generated by a lower dimensional
latent variable. The approach is similar in character to that of canonical correlation
analysis (CCA) with one key difference: the latent space associated with CCA describes
only the characteristics of the data that are common to both the representations. We
will construct a latent space that represents thefull data set. We will subdivide the
latent space into threenon-overlappingpartitions. One partition will be associated only
with theY data another partition is associated only with theZ data and the remaining
partition is associated with the common or shared information betweenY andZ. The
remaining non-shared or private latent subspaces model information not present in the
corresponding observation space. This means when estimating zn from yn the private
space represents the ambiguities ofzn when presented withyn

A simple example of such an ambiguity is given in Figure 1 where the the proposed
model has been applied to a toy data set of a rotated character. Thex-axis direction in
both plots is shared for both pose and silhouette. They-axis in the left plot represents
information specific to the silhouette, while in the in the right plot, information specific
to the pose. When looking at the information in thex axis only, the pose is ambiguous.
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Fig. 2. Graphical model of the NCCA Model. The two observationsY andZ are generated from
low-dimensional embeddingsXS,Y andX

S,Z indicated by rounded rectangles. The embeddings
share a common subspaceX

S representing the shared variance in each observation space. This
is variance inY andZ that can be described as a function ofZ andY respectively. An additional
subspaceXY andX

Z completes the embedding, representing the non-shared variance between
the observations.ΦY andΦZ collects the parameters associated with each mapping.

However, in the right plot (from the motion capture) the poseis disambiguated on the
y-axis, i.e. each pose is associated with a single location. They-axis does not help in
disambiguation in the left plot (which encodes silhouette information). Clearly, aug-
menting the latent space with a direction representing the ‘private information’ will be
vital in disambiguating the pose from the silhouette.

Outline of the paper: In the next section we will present the NCCA model for data
consolidation, we will then show results on both real and synthetic data in Section 3
followed by conclusions in Section 4.

2 The NCCA Model

Given two sets of correspondingobservationsY = [y1, . . . ,yN ]
T andZ = [z1, . . . , zN ]

T

whereyn ∈ ℜDy andzn ∈ ℜDz we wish to characterize the relationship between the
data sets through a latent variable model. We will assume that the two data sets can be
generated by noise corrupted smooth functions that map fromthe latent space to the
data-spaces in the following way,

yni = fY
i

(

xs

n,xY
n

)

+ ǫY
ni, zni = fZ

i

(

xs

n,xZ
n

)

+ ǫZ
ni, (1)

where{y, z}ni represent dimensioni of point n andǫY
ni, ǫZ

ni are sampled from a zero
mean Gaussian distribution.

Distance preserving approaches to dimensionality reduction typically imply that
there is a smooth mapping in thereverse direction. In particular, kernel-CCA [4] im-
plicitly assumes that there is a smooth mapping from each of the data-spaces to a shared
latent space,

xs

ni = gY
i (yn) = gZ

i (zn) . (2)
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Algorithm 1 NCCA Consolidation
Input:

Y = [y1, . . . ,yN ], yi ∈ ℜDY

Z = [z1, . . . , zN ], zi ∈ ℜDZ

KY ,KZ

Stage 1, Learn latent embedding
Find kernel spaces fromKy andKZ by kernel PCA:
1) Apply CCA to find shared embedded dataXS, Eq. (8)
2) Apply NCCA to find non-shared embedded data

XY andXZ, Eq. (9)
Stage 2, Learn mappings,let J be eitherY or Z,
By GP-regression find:
1) Generative maps:fJ : [XS ;XJ ] → J Eq. (10)
2) Shared maps:gJ : J → XS Eq. (11)
3) Non-shared maps:hJ : J → XJ Eq. (12)

See Figure 2
Return:
Pose Estimation:gY andfZ

General Case:All maps learned above.

However, CCA does not characterize the nature of the other latent subspaces,XY and
XZ . In Section 2.1 we will introduce an algorithm for extracting these spaces which
we refer to as thenon-consolidatingsubspaces. Underpinning the algorithm will be a
further assumption about the non-consolidating subspaces,

xY
ni = hY

i (yn) , xZ
ni = hZ

i (zn) , (3)

wherehY
i (·) andhZ

i (·) are smooth functions. A graphical representation of the consol-
idation model is shown in Figure 2. Our approach will be as follows, we will construct a
model by assuming the smooth mappings in (2) and (3) hold. We will then validate the
model quality through assessing how well the resulting embeddings respect (1). We are
inspired in our approach by the suggestion that spectral methods are used to initialize
the GP-LVM in [5] and by the observation of [3] that the quality of an embedding is
nicely indicated by the log likelihood of the GP-LVM.

To allow for non-linear relationships in the data we will first represent the observa-
tions in kernel induced feature spacesΨY : Y → FY ; ΨZ : Z → FZ , by introducing
kernelsKY andKZ . The first step in the model is to apply kernel canonical correlation
analysis (CCA) [4] to find the directions of high correlationbetween the two feature
spaces. We therefore briefly review the CCA algorithm. The objective in CCA is to find
linear transformationsWY andWZ maximizing the correlation betweenWY Y and
WZZ. Applied in the kernel feature space of each observation,

{ŴY ,ŴZ} = argmax{WY ,WZ}tr
(

WT

Y KT

Y KZWZ

)

, (4)

s.t. tr
(

WT

Y KT

Y KY WY

)

= I

tr
(

WT

ZKT

ZKZWZ

)

= I,
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the optima is found through an eigenvalue problem. In [4] it is suggested to apply CCA
in the dominant principal subspace of each feature space instead of directly in the fea-
ture space, this constrainsWY andWZ to explain only the significant variance. We
found this suggestion to be important in practice.

Applying CCA recovers two sets of basesWY andWZ explaining the correlated
or shared variance between the two feature spaces. However,we wish to represent the
full variance of each feature space. To achieve this furthersets of bases representing
the remaining variance are required. We derive a new algorithm, non consolidating
component analysis, for finding these additional bases.

2.1 NCCA

Once a set of basis-vectors in each feature space have been found that describe the
shared variance, we need to find directions in each feature space that individually rep-
resents the remaining variance of each data space. We therefore proceed by seeking the
directions of maximum variance in the data that areorthogonalto the directions given
by the canonical correlates. We call the following procedurenon-consolidating compo-
nents analysis(NCCA). The NCCA algorithm is applied in the same space as CCA,
but now we seek the first directionv1 of maximum variance which is orthogonal to the
canonical directions that were already extracted,

v1 = argmax
v1

vT

1
Kv1 (5)

subject to:vT
1 v1 = 1 andvT

1 W = 0, (here we have temporarily dropped the partition
subscript),W are the canonical directions andK is the covariance matrix in the domi-
nant principal subspace of the feature space. The optimalv1 is found via an eigenvalue
problem,

(

C− WWTK
)

v1 = λ1v1. (6)

For successive directions further eigenvalue problems of the form
(

K −

(

WWT +
k−1
∑

i=1

viv
T

i

)

K

)

vk = λkvk (7)

need to be solved.
After applying CCA and NCCA we have recovered the following embeddings of

the data

XS = 1

2
(WY FY + WZFZ) (8)

XY = VY FY ; XZ = VZFZ , (9)

whereFY andFZ represent the kernel PCA representation of each observation space.
The latent variablesXY , XZ represent the non shared variance of each feature space
andXS represents the shared variance.

Our methodology results in a purely spectral algorithm: theoptimization problems
are convex and they lead to unique solutions. However, thesespectral methods are per-
haps less useful when it comes to inquisition of the resulting model. The pre-image
problem means that handling missing data can be rather involved [9]. Probabilistic la-
tent variable models lack the elegant convex solutions provided by spectral methods,
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but they facilitate model inquisition. Harmeling [3] has performed a series of embed-
ding experiments for which the ground truth is available. Bycomparing the embeddings
from several different spectral algorithms with the groundtruth, a good correpondence
between the likelihood of the GP-LVM and the quality of the embedding is shown. In-
tuitively this is because: if the assumptions in (2) and (3) hold and the manifold has
been correctly ‘unraveled’ (1) should also hold. If (1) holds then the likelihood of the
GP-LVM will be high and inferences undertaken with the GP-LVM will be accurate.
This allows us to proceed by combining our algorithm with theGP-LVM for model
selection and inference.

The NCCA algorithm results in implicit mappings from the observation spaces to
the embeddings or, if non function based kernels are used — such as those resulting
from the MVU algorithm [14], a mapping can be learned explicitly. However, this leaves
us with the pre-image problem [10]. For a given latent location, what is the correct
observation? The next stage is, therefore, to build Gaussian process mappings from the
latent to the data space. This will result in a combination ofGP-LVM models that can be
used for any inference tasks in the model. This means that as apost processing step, we
learn mappings to regenerate the observations spacesY andZ from the embeddings.
We define theY andZ specific latent space asXS,Y = [XS ;XY ], XS,Z = [XS ;XZ ]
respectively. The mappings,

f{Y,Z} :yi = fY (xS,Y
i ) + ǫY

f ; zi = fZ(xS,Z
i ) + ǫZ

f , (10)

g{Y,Z} :xS
i = gY (yi) + ǫY

g = gZ(zi) + ǫZ
g , (11)

h{Y,Z} :xY
i = hY (yi) + ǫY

h ;xZ
i = hZ(zi) + ǫZ

h , (12)

whereǫ
{Y,Z}
{f,g,h} are samples from zero mean Gaussian distributions, are learned using

GP-regression [8].
Note that we have, in effect, created a set of back-constrained GP-LVMs from our

data [6]. We could have used the GP-LVM algorithm directly for learning this model,
in practice though, the spectral approach we have describedis much quicker and has
fewer problems with local minima.

2.2 Inference

The proposed model represents two data sets using a low dimensional latent variable.
Once the latent representations have been learned we are interested in inferring the
locationz∗, corresponding to a previously unseen inputy∗. The input and the sought
output locations latent representation coincide on the shared latent subspaceXS , which
can be determined from the input through the mappinggY . Therefore, to determine the
full location of the corresponding output, it remains to determine the location over the
private space associated with the output. However, the private subspace is orthogonal to
the input specific latent subspace. This impliesy∗ can provide no further information
to disambiguate over this space,i.e. each location over the private space corresponds
to outputs that are ambiguous to the input location. We therefore proceed by finding
the most probablez∗’s generated byfZ for different locations overXZ . From our
model’s perspective, this is equivalent to minimizing the predictive variance offZ [8]



VII

with respect toxZ
∗ under the constraint thatxS

∗ is given,

x̂Z
∗ = argmax

xZ
∗

[

k(xS,Z
∗ ,xS,Z

∗ ) − k(xS,Z
∗ ,XS,Z)T(K + β−1I)k(xS,Z

∗ ,XS,Z)
]

.

(13)
The optimal̂xZ

∗ is found by optimizing Eq. (13) using gradient based methods. We are
looking to find all the locationsz∗ that are consistent with a specificy∗. The separa-
tion of Z into shared and non-shared means that the ambiguities are very close in the
shared subspace. Therefore, we can explore the different modes by looking for nearest
neighbors in the shared subspace and initializing the GP-LVM optimizations from those
neighbors.

3 Human Pose Estimation

We now consider the application of the model to human pose estimation. We will first
briefly review relevant previous work in this area, much of which has provided the in-
spiration of our approach. Human pose estimation is the taskof estimating the full pose
configuration of a human from an image. Due to the high dimensionality of the image
representation it is common practice, as a preprocessing stage, to represent each image
by a lower dimensional image feature vector. In the simplestcase, where there is no
ambiguity between the image features and the pose, the relationship can be modeled
with regression as was demonstrated by [1]. However, regression models are not suffi-
cient to accurately describe the multi-modalities that we expect to arise as a result of
ambiguities associated with common image features. An alternative approach to deal-
ing with the multi-modalities is to use a conditional model over the image feature space
given the poses [13]. However, due to the high dimensionality and relative data spar-
sity care must be taken in choosing the class of conditional models. One solution is to
incorporate a low dimensional manifold within the conditional density model, thereby
avoiding the curse of dimensionality. This approach is followed by [2, 7] who exploit
the shared GP-LVM [11] to jointly learn a low dimensional representation of both the
image features and the pose space. An advantage of basing themodel on the GP-LVM
[5] is that it provides a principled probabilistic framework for the resulting inference of
pose, easily allowing, for example, the incorporation of dynamical models [2].

A key problem with the application of the shared GP-LVM in this context is that a
single latent space is used to explainall the variance in the data. Since we know that
only a portion of the variance is shared, with the remainder being specific to each data
partition, it seems to make much more sense to encode this explicitly. The proposed
NCCA model does this by decomposing the latent space into sub-spaces which encode
the shared variance and subspaces which encode the variancethat is private to each
data set. These constraints on the latent spaces lead to muchcleaner representation of
the ambiguities in practice (as we shall see in Section 3.1).When combining the image
features with the motion capture the shared latent space represents the variance in the
pose space that can be discriminated from the image feature location. The ambiguities,
if they exist, therefore necessarily lie in the portion of the latent space that is specific to
the motion capture data. As we shall see this makes them much easier to visualize and
interpret.
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Further, it is likely that a significant amount of the variance in a descriptor does
not help in disambiguating the pose. In the shared GP-LVM this information is still
encoded in the model: the shared GP-LVM attempts to modelall the variance in the
data. The NCCA model encodes this information separately, which means it does not
influence the inference procedure. This is a key advantage ofour model compared to
other conditional models, where inference is polluted by estimating this task irrelevant
variance.

Once again we direct the reader to Figure 1 to see this effect.They-axis in the left
plot is encoding the spurious information from the image features. It does not help with
encoding the true pose. It also is prevented from corruptingthe information that arises
from the motion capture data (right plot).

3.1 Experiments

We considered a walking sequence from the HumanEva database[12]. There are four
cycles in a circular walk, we use two for training and two for testing for the same
subject. In the original data the subject is walking in a counter-clockwise direction, to
introduce further ambiguities into the data we transform each image and pose to also
include the clockwise motion. Each image is represented using a100 dimensional inte-
gral HOG descriptor [15] with 4 orientation bins and the posespace by the3D locations
of 19 major body joints. There are two types of motion in the data, the global motion
of the subject moving around in3D space and the local body relative motion,i.e. each
stride. We assume that each local movement in the training data is possible at all global
locations. To decorrelate the two motions we represent the pose space as the sum of a
MVU kernel [14] applied to the full pose space and a linear kernel applied on the local
motion. The NCCA algorithm with this kernel over the pose space and a MVU kernel
over the image features results in a one dimensional shared space explaining9% and
18% of the variance in the image feature and pose space respectively. To retain95% of
the variance in each observation two dimensions are needed to represent the non-shared
variance for both the pose and the image feature space. The pose specific latent space
takes the shape of a torus, the larger circle is associated with the heading direction and
the smaller circles associated with the stride at that position Figure 4. The total compu-
tation time for learning the embedding and the required mappings was about10 minutes
on a Intel Core Duo with 1GB of RAM. In Figure 6 the2nd and3rd row show inference
of two different image features from the test data is shown. The inference procedure us-
ing 20 nearest neighbor initializations per image took a fewseconds to compute.
Shared GP-LVM: The inference procedure in the NCCA model consists of a discrim-
inative mapping followed by the optimization over a sub-setof the pose specific latent
space. In comparison to the shared GP-LVM [2, 7] the optimization is done over the
full latent representation of both image feature and pose. This means that the objec-
tive is influenced by how well the latent locations represents variance in the image
features that are irrelevant for discriminating the pose. In contrast, the optimization in
the NCCA model is done over latent dimensions representing only pose relevant vari-
ance. We applied the shared GP-LVM model suggested in [7] to the above data set. To
compare models with similar inference complexity we learn atwo dimensional shared
latent representation of image feature and pose. The optimization on the latent space is
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Fig. 3. Pose inference from silhouette using two different silhouettes from the training data. From
the silhouette in the left image it is not possible to determine the positioning of the legs, this results
in an elongated region of high probability in the pose private subspace that describs a full stride.
The right image shows a silhouette from which it is not possible to differentiate between the right
and the left leg. This results in two clear modes over the non-shared dimensions representing the
two possible leg labellings in the silhouette.

initialized by the nearest neighbors in the training data. Note that this is a search in the
100 dimensional image feature space compared to the algorithm we present were the
nearest neighbor search takes place in aonedimensional space. In Figure 6 the bottom
two rows shows the results of applying the Shared GP-LVM to inference the pose of the
same images as for the NCCA model.

4 Conclusion

We have presented a practical approach to consolidating twodata sets with known cor-
respondences via a latent variable model. We constructed a generative latent variable
model for inference and model validation and a spectral algorithm for fast learning of
the embeddings, both these interpretations of our model built upon canonical correla-
tion analysis. The resulting model was successful in visualizing the ambiguities on a
benchmark human motion data set. Moreover, not only is the presented model fast to
train, but also it is efficient in the test phase. Inference isrealized by a fast discrimina-
tive model that constrains the related generative model. This results in a much simpler
estimation compared to previous generative approaches.
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NCCA

Shared GP-LVM

Fig. 6. The top row shows two images from the training data. The2nd and 3rd row
shows results from infering the pose using the NCCA consolidation, the first column
shows the likelihood sampled over the pose specific latent space constrained by the im-
age features, the remaining columns shows the modes associated with the locations of
the white dots over the pose specific latent space.NCCA: In the2nd row the position
of the leg and the heading angle cannot be determined in a robust way from the image
features. This is reflected by two elongated modes over the latent space representing the
two possible headings. The poses along each mode representsdifferent leg configura-
tions. The top row of the2nd column shows the poses generated by sampling along the
right mode and the bottom row along the left mode. In the3rd row the position of the
leg and the heading angle is still ambiguous to the feature, however here the ambiguity
is between a discrete set of poses indicated by four clear modes in the likelihood over
the pose specific latent space.SGP-LVM: The4th and 5th row show the results of
doing inference using the SGP-LVM model. Even though the most likely modes found
are in good correspondece to the ambiguities in the images the latent space is cluttered
by local minima that the optimization can get stuck in.


