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Latent Function Perspective

@ Introduce vector valued functions through latent function perspective.

@ Vector valued function, f(-) is linearly dependent on latent function,
u(+).

@ Gaussian process perspective:

» If the latent function is a Gaussian process.
» Observed function is also a Gaussian process.
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Probabilistic Perspective

e Kernel function is covariance of probabilistic process (need not be

Gaussian!).

Efu(x)u(x')] = k(x,x)

@ For zero mean process (convenient) it is the second moment.
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Probabilistic Perspective

e Kernel function is covariance of probabilistic process (need not be

Gaussian!).

fi(x) = wiu(x)
f2(x) = wou(x)
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Probabilistic Perspective

e Kernel function is covariance of probabilistic process (need not be

Gaussian!).

(Ff(x) ") =

@ For zero mean process (convenient) it is the second moment.

wik(x,x')  wiwsk(x, x')
wiwok(x,x')  wik(x,x')
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Probabilistic Perspective

e Kernel function is covariance of probabilistic process (need not be

Gaussian!).
2
NT\ _ / wy wiwp
()T = Kxex) | 13

@ For zero mean process (convenient) it is the second moment.

Lawrence () Vector Valued ICML Workshops 4/ 75



Probabilistic Perspective

e Kernel function is covariance of probabilistic process (need not be

Gaussian!).

(Fx)F(x)") = k(x, x)ww

@ For zero mean process (convenient) it is the second moment.

Lawrence () Vector Valued ICML Workshops 4/ 75



Probabilistic Perspective

e Kernel function is covariance of probabilistic process (need not be

Gaussian!).

(F(x)f(x)") = k(x,x')B

@ For zero mean process (convenient) it is the second moment.
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Coregionalization Matrix

@ In above example coregionalization matrix, B, is reduced rank.
o If f(x) = Wu(x)

@ Where elements of u(x) are independent each with covariance k(x,x’).

(F(x)f(x')") = k(x,x")B
B=ww'
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Simple Markov Chain

@ Assume 1-d latent state, a vector over time, x = [x1 ... xT].
o Markov property,

Xi =Xj-1 + €,

ei ~N (0, )

= x; ~N (xi—1, @)
@ Initial state,
Xp ~~ N (0, ao)

e If xg ~ N (0,a) we have a Markov chain for the latent states.
@ Markov chain it is specified by an initial distribution (Gaussian) and a

transition distribution (Gaussian).
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Gauss Markov Chain

X():O, G/NN(O,].)

xo = 0.000, ¢ = —2.24
x1 = 0.000 — 2.24 = —2.24
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Gauss Markov Chain

X():O, G/NN(O,].)

X1 = —2.24, € = 0.457
xp = —2.24 + 0.457 = —1.78
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Gauss Markov Chain

X():O, G/NN(O,].)

Xp = —1.78, €3 = 0.178
x3=—178+0.178 = —1.6
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Gauss Markov Chain

X():O, G/NN(O,].)

x3=—16, e =—0.292
xs = —1.6—0.292 = —1.89
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Gauss Markov Chain

X():O, G/NN(O,].)

X4 = —1.89, €5 = —0.501
x5 = —1.89 — 0.501 = —2.39
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Gauss Markov Chain

X():O, G/NN(O,].)

xs = —2.39, € =132
X6 = —2.39 +1.32 = —1.08

Lawrence () Vector Valued ICML Workshops 7/75



Gauss Markov Chain

X():O, G/NN(O,].)

X6 — —1.08, €7 = 0.989
x7 = —1.08 + 0.989 = —0.0881
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Gauss Markov Chain

X():O, G/NN(O,].)

X7 = —00881, €g — —0.842
xg = —0.0881 — 0.842 = —0.93
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Gauss Markov Chain

X():O, G/NN(O,].)

xg = —0.93, €9 = —0.41
xo = —0.93 — 0.410 = —1.34
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Multivariate Gaussian Properties: Reminder

If
z NN(”vc)
and
x=Wz+b
then
x ~ N (wu + b,wch)
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Multivariate Gaussian Properties: Reminder

Simplified: If

z ~ N (0,0°1)
and
x =Wz
then
x ~ N (0, 0—2wa)
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Matrix Representation of Latent Variables
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Matrix Representation of Latent Variables

X1
X3
X

X5
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Matrix Representation of Latent Variables

X1
X2
X

X5
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Matrix Representation of Latent Variables

X1
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Matrix Representation of Latent Variables

X1
X2
X3

X

Lawrence ()
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Matrix Representation of Latent Variables
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Multivariate Process

@ Since x is linearly related to € we know x is a Gaussian process.

@ Trick: we only need to compute the mean and covariance of x to
determine that Gaussian.
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Latent Process Mean

X=L1€
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Latent Process Mean
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Latent Process Mean

<X> = |.10
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Latent Process Mean
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Latent Process Covariance

xx' = Ljee'L;

x =e'L’
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Latent Process Covariance

<xxT> = <LleeTL1T>
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Latent Process Covariance

<xxT> =L <eeT> L,
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Latent Process Covariance

<xxT> =L <eeT> L,

e ~N(0,al)
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Latent Process Covariance

<xxT> = alL;
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Latent Process

x = L€
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Latent Process

X=|.1€

e ~ N (0,al)
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Latent Process

x = L€

e ~ N (0,al)
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Latent Process

x = Lje
e ~ N (0,al)
—

x ~ N (0,aLily)
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Covariance for Latent Process ||

e Given

e~N(0,al) = € NN(O,aLlLI) .

Then
e~ N(0,Atal) = e~ N (0, AtaL1L1T> .

where At is the time interval between observations.
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Covariance for Latent Process Il

e~ N(0,altl), x~N (o, aAtLlLlT)
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Covariance for Latent Process I

€ ~ N (0,artl), x~N (o, aAtLlLlT)

K = aAtL L]
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Covariance for Latent Process ||

€ ~ N (0,artl), x~N (0, aAtLlLI)

K = aAtL L]
kij = altll). ;

where 1., is a vector from the kth row of Ly: the first k elements are one,
the next T — k are zero.
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Covariance for Latent Process ||

€ ~ N (0,artl), x~N (0, aAtLlLI)

K = aAtL L]

T
k,',j = OéAﬂ:’,-';,j

where 1., is a vector from the kth row of Ly: the first k elements are one,
the next T — k are zero.

define Ati = t; so
kij = amin(t;, tj) = k(t;, tj)
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Covariance Functions

Where did this covariance matrix come from?

Markov Process

k (t,t') = amin(t, t)

@ Covariance matrix is built
using the inputs to the
function t.
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Simple Kalman Filter |

o We have state vector X =[x ...xq] € R7*9 and if each state evolves
independently we have

o p(X) =TI, p(x.i) p(x.i) = N (x.i0,K).
@ We want to obtain outputs through:

Yi;. = WXi,:

Lawrence () Vector Valued ICML Workshops 18 / 75



Stacking and Kronecker Products |

® Represent with a ‘stacked’ system:
p(x) = N (x[0,1© K)

where the stacking is placing each column of X one on top of another
as
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Kronecker Product

2 b aK bK
< cK dK
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Kronecker Product
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Stacking and Kronecker Products |

® Represent with a ‘stacked’ system:
p(x) = N (x[0,1© K)

where the stacking is placing each column of X one on top of another
as
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Column Stacking
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Two Ways of Stacking

Can also stack as follows:

XT,:

p(x) =N (x|0,K® 1)
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Row Stacking
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For this stacking the marginal distribution over the latent variables is given
by the block diagonals.
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For this stacking the marginal distribution over the latent variables is given
by the block diagonals.
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Observed Process

If we relate the observations to the data as follows:

Yi. = WXi,: + €:

e ~ N (0,071
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Output Covariance

This leads to a covariance of the form
NI W)(KeDN1oWT) + 102
Using (A ® B)(C ® D) = AC ® BD This leads to

Ko WW' + 102

or

yNN(QWWT®K+wﬁ
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Learning Covariance Parameters

Can we determine covariance parameters from the data?

1 y' Kly
N 07 K) = — . . X I —
(y[0,K) 2K P 5
The parameters are inside the covariance function
(matrix).
k,'J = k(x,-,xj;O)
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Learning Covariance Parameters

Can we determine covariance parameters from the data?

1 TK!
log NV (y]0, K) = . log 21—~ log \K\—u
2 2 2
The parameters are inside the covariance function
(matrix).
k,'J = k(x,-,xj;O)
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Learning Covariance Parameters

Can we determine covariance parameters from the data?

1 Tw-1

y Ky
E()=-log|K|+21 — 7
(6) = 5 log K| +>—

The parameters are inside the covariance function
(matrix).

k,'J = k(x,-,xj; 0)
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Eigendecomposition of Covariance

K = RA°RT

where A is a diagonal matrix and R'TR = 1.
Useful representation since |K| = |A2] = |A[*.
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Capacity control: log|K]
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Capacity control: log|K]
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Capacity control: log |K|

A1 0
A2

A1

|A| = A2
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Capacity control: log|K]
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Capacity control: log|K]
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Capacity control: log|K]
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Capacity control: log|K]
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Capacity control: log|K]

Lawrence ()

w11

W2 1

wi 2

w2 2

A2

IRA| = A

Vector Valued

AL

ICML Workshops

30/ 75



. “1pe—1
Data Fit: #

Y2
()

Lawrence ()

Vector Valued




. “1pe—1
Data Fit: #

Y2
()

Lawrence ()

Vector Valued




. 11
Data Fit: #

Y2
()
[

6 -4 -2 0
Y1

Lawrence () Vector Valued



Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

20

15

10

o
¢

107t 10° 10!

X length scale, ¢

1 TK1
EO) =5 K|+ 52
2 2
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

20
15
10

5

-5
-10

107! 10° 10!

X length scale, ¢
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?
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E(6) = 5 K|+ Y

Lawrence () Vector Valued



Learning Covariance Parameters

Can we determine length scales and noise levels from the data?
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?
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x

Lawrence ()
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?
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Gene Expression Example

Global expression estimation with | = == Global expression estimation with | = 30
2 1.5
§ 5
2 4 ﬁ 1 +
o + o +
4 - g os
o + o +
2 9 + + + + + 2 9 +
8 4 + 2-0.5 Fa—
g g1
-2 -1.5]
0 5 100 150 200 0 50 100 150 200
time(mins) time(mins)
(@) (b)
Global expression estimation with | = 15.6 Log-marginal ikefihood function
T
2) 10? ! I -6
5 I/ ;
2 .
g1 « \
g o
x Z 10
o o 2] -8
2
8 9
# -1 10 R
2 .
5 10 15 20 25 30 °
0 50 100 150 200 Length-scale
time(mins)
() (d)

Data from Della Gatta et al. (2008). Figure from Kalaitzis and Lawrence
(2011).
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Efficient inference in matrix-variate Gaussian models
with iid observation noise

Oliver Stegle' Christoph Lippert!
Max Planck Institutes Max Planck Institutes
Tiibingen, Germany Tiibingen, Germany
stegle@tuebingen.mpg.de clippert@tuebingen.mpg.de
Joris Mooij Neil Lawrence
Institute for Computing and Information Sciences Department of Computer Science
Radboud University University of Sheffield
Niimaaan Tha Natharlande Qhafhiald TTK (B

et al., 2012; Stegle et al., 2011)
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Kernels for Vector Valued Outputs: A Review

Foundations and Trends® in
Machine Learning

Vol. 4, No. 3 (2011) 195-266 n‘w

@© 2012 M. A. Alvarez, L. Rosasco and N. D. Lawrence
DOI: 10.1561/2200000036 the essence of knowledge

Kernels for Vector-Valued
Functions: A Review

By Mauricio A. Alvarez,
Lorenzo Rosasco and Neil D. Lawrence
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Kronecker Structure GPs

@ This Kronecker structure leads to several published models.
(K(X, x,))d,d’ = k(X, X/)kT(d, dl),

where k has x and k7 has n as inputs.

@ Can think of multiple output covariance functions as covariances with
augmented input.

@ Alongside x we also input the d associated with the output of interest.
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Separable Covariance Functions

e Taking B = WW ' we have a matrix expression across outputs.
K(x,x") = k(x,x")B,

where B is a p X p symmetric and positive semi-definite matrix.
@ B is called the coregionalization matrix.

@ We call this class of covariance functions separable due to their
product structure.
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Sum of Separable Covariance Functions

@ In the same spirit a more general class of kernels is given by

@ This can also be written as
q
K(X,X) => " B;® ki(X,X),
j=1

@ This is like several Kalman filter-type models added together, but
each one with a different set of latent functions.

@ We call this class of kernels sum of separable kernels (SoS kernels).
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Geostatistics

@ Use of GPs in Geostatistics is called kriging.

@ These multi-output GPs pioneered in geostatistics: prediction over
vector-valued output data is known as cokriging.

@ The model in geostatistics is known as the linear model of
coregionalization (LMC, Journel and Huijbregts (1978); Goovaerts
(1997)).

@ Most machine learning multitask models can be placed in the context
of the LMC model.
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Weighted sum of Latent Functions

@ In the linear model of coregionalization (LMC) outputs are expressed
as linear combinations of independent random functions.

@ In the LMC, each component fy is expressed as a linear sum
q
fa(x) = > wajuj(x).
Jj=1
where the latent functions are independent and have covariance

functions kj(x,x’).
@ The processes {ﬁ-(x)};’:1 are independent for g # j'.
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Kalman Filter Special Case

@ The Kalman filter is an example of the LMC where u;(x) — x;(t).

@ l.e. we've moved form time input to a more general input space.
@ In matrix notation:
@ Kalman filter
F =WX

Q@ LMC
F=WU

where the rows of these matrices F, X, U each contain g samples
from their corresponding functions at a different time (Kalman filter)
or spatial location (LMC).
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Intrinsic Coregionalization Model

o If one covariance used for latent functions (like in Kalman filter).

@ This is called the intrinsic coregionalization model (ICM, Goovaerts
(1997)).

@ The kernel matrix corresponding to a dataset X takes the form

K(X,X) = B® k(X, X).
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Autokrigeability

o If outputs are noise-free, maximum likelihood is equivalent to
independent fits of B and k(x,x’) (Helterbrand and Cressie, 1994).

@ In geostatistics this is known as autokrigeability (Wackernagel, 2003).

@ In multitask learning its the cancellation of intertask transfer (Bonilla
et al., 2008).
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Intrinsic Coregionalization Model

K(X,X) =ww' ® k(X,X).
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Intrinsic Coregionalization Model
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Intrinsic Coregionalization Model

K(X,X) = B ® k(X, X).

1 05
2= /s 15
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Intrinsic Coregionalization Model

K(X,X) = B® k(X, X).
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Intrinsic Coregionalization Model

K(X,X) = B® k(X, X).
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Intrinsic Coregionalization Model
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Intrinsic Coregionalization Model

K(X,X) = B® k(X, X).

B~ |ps 15 e N

05 15
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LMC Samples

K(X,X) = B; ® ky(X, X) + B2 ® ka(X, X)

_[14 05]
0.5 1.2

=1

(1 0.5]
05 1.3

l=0.2

B, =
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LMC Samples

K(x7 X) =B ® kl(X, X) +B;® k2(X7 X)
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LMC in Machine Learning and Statistics

@ Used in machine learning for GPs for multivariate regression and in
statistics for computer emulation of expensive multivariate computer
codes.

@ Imposes the correlation of the outputs explicitly through the set of
coregionalization matrices.

@ Setting B = I, assumes outputs are conditionally independent given
the parameters 6. (Minka and Picard, 1997; Lawrence and Platt,
2004; Yu et al., 2005).

@ More recent approaches for multiple output modeling are different
versions of the linear model of coregionalization.

Lawrence () Vector Valued ICML Workshops 47 / 75



Semiparametric Latent Factor Model

o Coregionalization matrices are rank 1 Teh et al. (2005). rewrite
equation (?7) as

q
KX, X) => w. w; @ ki(X,X).
j=1

@ Like the Kalman filter, but each latent function has a different
covariance.

@ Authors suggest using an exponentiated quadratic characteristic
length-scale for each input dimension.
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Semiparametric Latent Factor Model Samples

K(X, X) = W:,lw:—l,—l ® kl(x7 X) + W:,2W:T2 ® k2(xa X)

W [0.5]
1_-1-
w —_1_
>~ |05
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Semiparametric Latent Factor Model Samples

K(X,X) = w:,lwf1 ® ki (X, X) + w:72wr2 ® ko(X, X)

Lawrence () Vector Valued ICML Workshops 49 / 75



Semiparametric Latent Factor Model Samples

K(X,X) = w:,lwf1 ® ki (X, X) + w:72wr2 ® ko(X, X)

Wy =

Lawrence ()

Vector Valued

ICML Workshops

49 / 75



Semiparametric Latent Factor Model Samples

K(X,X) = w:,lwf1 ® ki (X, X) + w:72wr2 ® ko(X, X)

Wy =

Lawrence ()

Vector Valued

ICML Workshops

49 / 75



Semiparametric Latent Factor Model Samples

K(X,X) = w:,lwf1 ® ki (X, X) + w:72wr2 ® ko(X, X)

Wy =

Lawrence ()

Vector Valued

ICML Workshops

49 / 75



Gaussian processes for Multi-task, Multi-output and
Multi-class

@ Bonilla et al. (2008) suggest ICM for multitask learning.
@ Use a PPCA form for B: similar to our Kalman filter example.

@ Refer to the autokrigeability effect as the cancellation of inter-task
transfer.

@ Also discuss the similarities between the multi-task GP and the ICM,
and its relationship to the SLFM and the LMC.
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Multitask Classification

@ Mostly restricted to the case where the outputs are conditionally
independent given the hyperparameters ¢ (Minka and Picard, 1997;
Williams and Barber, 1998; Lawrence and Platt, 2004; Seeger and Jordan,
2004; Yu et al., 2005; Rasmussen and Williams, 2006).

@ Intrinsic coregionalization model has been used in the multiclass
scenario. Skolidis and Sanguinetti (2011) use the intrinsic
coregionalization model for classification, by introducing a probit
noise model as the likelihood.

@ Posterior distribution is no longer analytically tractable: approximate
inference is required.
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Computer Emulation

@ A statistical model used as a surrogate for a computationally
expensive computer model.

e Higdon et al. (2008) use the linear model of coregionalization to
model images representing the evolution of the implosion of steel
cylinders.

@ In Conti and O'Hagan (2009) use the ICM to model a vegetation
model: called the Sheffield Dynamic Global Vegetation Model
(Woodward et al., 1998).
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© Convolution Processes
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Convolution Process

@ A convolution process is a moving-average construction that
guarantees a valid covariance function.

o Consider a set of functions {f;(x)}" i1

@ Each function can be expressed as

x) = /X Gj(x — z)u(z)dz = Gj(x) * u(x).

o Influence of more than one latent function, {uj(z)}?_; and inclusion
of an independent process w;(x)

() = 60) + wx Z/ 3¢ = 2)un(z)dz + w3
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A pictorial representation

u(x) W\\

u(x): latent function.
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A pictorial representation

G,(x)
*

u(x) \/\/\/W\N\\
*

/N

u(x): latent function.
G(x): smoothing kernel.
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A pictorial representation

G“X)J\

WWM

* — /‘\
LN

u(x): latent function.
G(x): smoothing kernel.
f(x): output function.
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A pictorial representation

<
WWM

—_— f1(X) W1(X)
\/\/\ +

Wy(X)

f,(x)
G,(x) /\

u(x): latent function.
G(x): smoothing kernel.
f(x): output function.
w(x): independent process.
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A pictorial representation

\W\M

f,(X) W,(X)
\/\/\ +

G,(x) A |
u(x): latent function.y(x): noisy output function.
G(x): smoothing kernel.

f(x): output function.
w(x): independent process.
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Covariance of the output functions.

The covariance between y;(x) and yj(x’) is given as

cov [yj(x), yjy (x')] =cov [;(x), f:(X')] + cov [w;(x), wy(X')] 6;

where

cov [fj(x), fir(x')] = /X Gj(x — 2) /X Gy (X' — 2)cov [u(z), u(Z')] dz'dz
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Different forms of covariance for the output functions.

@ Input Gaussian process

cov [f, fr] = /X Gj(x — z)/X Gi(xX' — 2)ky u(z,2')dz'dz

@ Input white noise process

cov [fj, ] = /X Gj(x — z)Gy(x' — z)dz

@ Covariance between output functions and latent functions

cov [fj, u] = / Gj(x — 2')ky,u(Z, 2)d2’
x
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Dimensionality Reduction

@ Linear relationship between the data, X € R"*P, and a reduced
dimensional representation, F € 1"*9, where g < p.

X =FW +¢,

e~N(0,X)

@ Integrate out F, optimize with respect to W.
e For Gaussian prior, F ~ N (0,1)
» and ¥ = ol we have probabilistic PCA (Tipping and Bishop, 1999;

Roweis, 1998).
» and X constrained to be diagonal, we have factor analysis.
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Dimensionality Reduction: Temporal Data

@ Deal with temporal data with a temporal latent prior.

o Independent Gauss-Markov priors over each fi(t) leads to :
Rauch-Tung-Striebel (RTS) smoother (Kalman filter).

@ More generally consider a Gaussian process (GP) prior,

q
p(Flt) = TV (Fi10.Ks ) -
i=1
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Joint Gaussian Process

@ Given the covariance functions for {f;(t)} we have an implied
covariance function across all {x;(t)}—(ML: semi-parametric latent
factor model (Teh et al., 2005), Geostatistics: linear model of
coregionalization).

@ Rauch-Tung-Striebel smoother has been preferred

> linear computational complexity in n.

» Advances in sparse approximations have made the general GP
framework practical. (Titsias, 2009; Snelson and Ghahramani, 2006;
Quifionero Candela and Rasmussen, 2005).
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Mechanical Analogy

Back to Mechanistic Models!

@ These models rely on the latent variables to provide the dynamic
information.

@ We now introduce a further dynamical system with a mechanistic
inspiration.

@ Physical Interpretation:

» the latent functions, f;(t) are g forces.

» We observe the displacement of p springs to the forces.,

> Interpret system as the force balance equation, XD = FS + €.

» Forces act, e.g. through levers — a matrix of sensitivities, S € RI*P,
» Diagonal matrix of spring constants, D € RP*P.

» Original System: W = SD~ 1.
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Extend Model

Add a damper and give the system mass.
FS = XM + XC + XD +e.

Now have a second order mechanical system.

It will exhibit inertia and resonance.

There are many systems that can also be represented by differential
equations.

» When being forced by latent function(s), {f;(t)}7_;, we call this a
latent force model.
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Mass Spring Damper Analogy

pulleys

spring A
d 'e

observations

latent input

Figure: Mass spring damper analogy, an unobserved force drives multiple
oscillators.
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Mass Spring Damper Analogy
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latent input

Figure: Mass spring damper analogy, an unobserved force drives multiple
oscillators.
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Gaussian Process priors and Latent Force Models

Driven Harmonic Oscillator

@ For Gaussian process we can compute the covariance matrices for the
output displacements.

@ For one displacement the model is

miki(t) + cki(t) + dixic(t) = b+ Y sfi(t), (1)
i=0

where, my is the kth diagonal element from M and similarly for ¢k
and di. sj is the i, kth element of S.

@ Model the latent forces as g independent, GPs with exponentiated
quadratic covariances

(t—t)?
ke (t,t') = exp <—2€I2 il

Lawrence () Vector Valued ICML Workshops 65 / 75



Covariance for ODE Model

e Exponentiated Quadratic Covariance function for f (t)

1

mjwj

xj(t) =

S s exp(—ajt) / £(r) exp(a;7) sin(w;(t — 7))dr

i=1 0

@ Joint distribution
for xq (t), x2 (),
x3 (t) and £ (t).
Damping ratios:
L G [&]¢]
|0.125 | 2 | 1 |

ACE )

A

AU

f(t) v, ¥,(t) JAU)
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Covariance for ODE Model

@ Analogy

X = Ze,—-rf,' f,' NN(O,Z,‘) —x~N <O,Ze,-TZ,-e,->

N |
e
e
.
\
..
‘ N

(9 no v, Y3

()

@ Joint distribution
for xq (t), x2 (),
x3 (t) and f (t).
Damping ratios:

L a [ &]¢G]
10125 [ 2 | 1 |

Y,

AU

AW
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Covariance for ODE Model

e Exponentiated Quadratic Covariance function for f (t)

1

mjwj

xj(t) =

S s exp(—ajt) / £(r) exp(a;7) sin(w;(t — 7))dr

i=1 0

@ Joint distribution
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x3 (t) and £ (t).
Damping ratios:
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Joint Sampling of x (t) and f (t)

@ 1fmSample

L L L
50 55 60 65 70

Figure: Joint samples from the ODE covariance, black: f (t), red: xi (t)
(underdamped), green: x; (t) (overdamped), and blue: x3 (t) (critically
damped).
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Joint Sampling of x (t) and f (t)

@ 1fmSample
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Figure: Joint samples from the ODE covariance, black: f (t), red: xi (t)
(underdamped), green: x; (t) (overdamped), and blue: x3 (t) (critically

damped).
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Figure: Joint samples from the ODE covariance, black: f (t), red: xi (t)
(underdamped), green: x; (t) (overdamped), and blue: x3 (t) (critically
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Covariance for ODE

e Exponentiated Quadratic Covariance function for f (t)

()= S spexplaye) [ () explayr)sin(e(e — )i
1 0

mjwj =

@ Joint distribution
for x1 (t), x2 (1),
x3(t) and f (t).

@ Damping ratios:
L a [elG]
10125 2 | 1 |

ACE )

A

AU

f(t) v, ¥,(t) JAU)
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9 Motion Capture Example
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Example: Motion Capture

Mauricio Alvarez and David Luengo (Alvarez et al., 2009, 2011)

@ Motion capture data: used for animating human motion.
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Example: Motion Capture

Mauricio Alvarez and David Luengo (Alvarez et al., 2009, 2011)

@ Motion capture data: used for animating human motion.

@ Multivariate time series of angles representing joint positions.
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Example: Motion Capture

Mauricio Alvarez and David Luengo (Alvarez et al., 2009, 2011)
@ Motion capture data: used for animating human motion.

@ Multivariate time series of angles representing joint positions.

@ Objective: generalize from training data to realistic motions.
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Example: Motion Capture

Mauricio Alvarez and David Luengo (Alvarez et al., 2009, 2011)

Motion capture data: used for animating human motion.
Multivariate time series of angles representing joint positions.
Objective: generalize from training data to realistic motions.

Use 2nd Order Latent Force Model with mass/spring/damper (resistor
inductor capacitor) at each joint.
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Prediction of Test Motion

Model left arm only.

3 balancing motions (18, 19, 20) from subject 49.

18 and 19 are similar, 20 contains more dramatic movements.
Train on 18 and 19 and testing on 20

Data was down-sampled by 32 (from 120 fps).

Reconstruct motion of left arm for 20 given other movements.

Compare with GP that predicts left arm angles given other body
angles.
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Mocap Results

Table: Root mean squared (RMS) angle error for prediction of the left arm’s
configuration in the motion capture data. Prediction with the latent force model
outperforms the prediction with regression for all apart from the radius’s angle.

Latent Force | Regression

Angle Error Error
Radius 411 4.02
Wrist 6.55 6.65

Hand X rotation 1.82 3.21
Hand Z rotation 2.76 6.14
Thumb X rotation 1.77 3.10
Thumb Z rotation 2.73 6.09
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Mocap Results |l

o 1 2 3 a4 5 6 7 8 9

(d) Hand Z Rotation
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