
Kernels for Vector-Valued Functions

Neil D. Lawrence
includes work with Mauricio Alvarez and Lorenzo Rosasco

ICML Workshop on Next Generation Kernels
30th June 2012

Lawrence () Vector Valued ICML Workshops 1 / 75

Outline

1 Background

2 Convolution Processes

3 Motion Capture Example

Lawrence () Vector Valued ICML Workshops 2 / 75

Latent Function Perspective

Introduce vector valued functions through latent function perspective.

Vector valued function, f (·) is linearly dependent on latent function,
u(·).

Gaussian process perspective:
I If the latent function is a Gaussian process.
I Observed function is also a Gaussian process.

Lawrence () Vector Valued ICML Workshops 3 / 75

Probabilistic Perspective

Kernel function is covariance of probabilistic process (need not be

Gaussian!).

E [u(x)u(x′)] = k(x, x′)

For zero mean process (convenient) it is the second moment.

Lawrence () Vector Valued ICML Workshops 4 / 75

Probabilistic Perspective

Kernel function is covariance of probabilistic process (need not be

Gaussian!).

〈u(x)u(x′)〉 = k(x, x′)
For zero mean process (convenient) it is the second moment.

Lawrence () Vector Valued ICML Workshops 4 / 75

Probabilistic Perspective

Kernel function is covariance of probabilistic process (need not be

Gaussian!).

f1(x) = w1u(x)

f2(x) = w2u(x)

For zero mean process (convenient) it is the second moment.

Lawrence () Vector Valued ICML Workshops 4 / 75

Probabilistic Perspective

Kernel function is covariance of probabilistic process (need not be

Gaussian!).

f(x) =

[
w1u(x)
w2u(x)

]
For zero mean process (convenient) it is the second moment.

Lawrence () Vector Valued ICML Workshops 4 / 75

Probabilistic Perspective

Kernel function is covariance of probabilistic process (need not be

Gaussian!).〈
f(x)f(x′)>

〉
=

[
w 2

1k(x, x
′) w1w2k(x, x′)

w1w2k(x, x′) w 2
2k(x, x

′)

]
For zero mean process (convenient) it is the second moment.

Lawrence () Vector Valued ICML Workshops 4 / 75

Probabilistic Perspective

Kernel function is covariance of probabilistic process (need not be

Gaussian!).〈
f(x)f(x′)>

〉
= k(x, x′)

[
w 2

1 w1w2

w1w2 w 2
2

]
For zero mean process (convenient) it is the second moment.

Lawrence () Vector Valued ICML Workshops 4 / 75

Probabilistic Perspective

Kernel function is covariance of probabilistic process (need not be

Gaussian!). 〈
f(x)f(x′)>

〉
= k(x, x′)ww>

For zero mean process (convenient) it is the second moment.

Lawrence () Vector Valued ICML Workshops 4 / 75

Probabilistic Perspective

Kernel function is covariance of probabilistic process (need not be

Gaussian!). 〈
f(x)f(x′)>

〉
= k(x, x′)B

For zero mean process (convenient) it is the second moment.

Lawrence () Vector Valued ICML Workshops 4 / 75

Coregionalization Matrix

In above example coregionalization matrix, B, is reduced rank.

If f(x) = Wu(x)

Where elements of u(x) are independent each with covariance k(x, x′).〈
f(x)f(x′)>

〉
= k(x, x′)B

B = WW>

Lawrence () Vector Valued ICML Workshops 5 / 75

Simple Markov Chain

Assume 1-d latent state, a vector over time, x = [x1 . . . xT].

Markov property,

xi =xi−1 + εi ,

εi ∼N (0, α)

=⇒ xi ∼N (xi−1, α)

Initial state,
x0 ∼ N (0, α0)

If x0 ∼ N (0, α) we have a Markov chain for the latent states.

Markov chain it is specified by an initial distribution (Gaussian) and a
transition distribution (Gaussian).

Lawrence () Vector Valued ICML Workshops 6 / 75

Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x0 = 0.000, ε1 = −2.24

x1 = 0.000− 2.24 = −2.24

Lawrence () Vector Valued ICML Workshops 7 / 75

Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x1 = −2.24, ε2 = 0.457

x2 = −2.24 + 0.457 = −1.78

Lawrence () Vector Valued ICML Workshops 7 / 75

Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x2 = −1.78, ε3 = 0.178

x3 = −1.78 + 0.178 = −1.6

Lawrence () Vector Valued ICML Workshops 7 / 75

Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x3 = −1.6, ε4 = −0.292

x4 = −1.6− 0.292 = −1.89

Lawrence () Vector Valued ICML Workshops 7 / 75

Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x4 = −1.89, ε5 = −0.501

x5 = −1.89− 0.501 = −2.39

Lawrence () Vector Valued ICML Workshops 7 / 75

Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x5 = −2.39, ε6 = 1.32

x6 = −2.39 + 1.32 = −1.08

Lawrence () Vector Valued ICML Workshops 7 / 75

Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x6 = −1.08, ε7 = 0.989

x7 = −1.08 + 0.989 = −0.0881

Lawrence () Vector Valued ICML Workshops 7 / 75

Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x7 = −0.0881, ε8 = −0.842

x8 = −0.0881− 0.842 = −0.93

Lawrence () Vector Valued ICML Workshops 7 / 75

Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x8 = −0.93, ε9 = −0.41

x9 = −0.93− 0.410 = −1.34

Lawrence () Vector Valued ICML Workshops 7 / 75

Multivariate Gaussian Properties: Reminder

If
z ∼ N (µ,C)

and
x = Wz + b

then
x ∼ N

(
Wµ + b,WCW>

)

Lawrence () Vector Valued ICML Workshops 8 / 75

Multivariate Gaussian Properties: Reminder

Simplified: If
z ∼ N

(
0, σ2I

)
and

x = Wz

then
x ∼ N

(
0, σ2WW>

)

Lawrence () Vector Valued ICML Workshops 9 / 75

Matrix Representation of Latent Variables

x1

x2

x3

x4

x5

ε1

ε2

ε3

ε4

ε5

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1

×=

x1 = ε1

Lawrence () Vector Valued ICML Workshops 10 / 75

Matrix Representation of Latent Variables

x1

x2

x3

x4

x5

ε1

ε2

ε3

ε4

ε5

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1

×=

x2 = ε1 + ε2

Lawrence () Vector Valued ICML Workshops 10 / 75

Matrix Representation of Latent Variables

x1

x2

x3

x4

x5

ε1

ε2

ε3

ε4

ε5

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1

×=

x3 = ε1 + ε2 + ε3

Lawrence () Vector Valued ICML Workshops 10 / 75

Matrix Representation of Latent Variables

x1

x2

x3

x4

x5

ε1

ε2

ε3

ε4

ε5

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1

×=

x4 = ε1 + ε2 + ε3 + ε4

Lawrence () Vector Valued ICML Workshops 10 / 75

Matrix Representation of Latent Variables

x1

x2

x3

x4

x5

ε1

ε2

ε3

ε4

ε5

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1

×=

x5 = ε1 + ε2 + ε3 + ε4 + ε5

Lawrence () Vector Valued ICML Workshops 10 / 75

Matrix Representation of Latent Variables

x εL1 ×=

Lawrence () Vector Valued ICML Workshops 10 / 75

Multivariate Process

Since x is linearly related to ε we know x is a Gaussian process.

Trick: we only need to compute the mean and covariance of x to
determine that Gaussian.

Lawrence () Vector Valued ICML Workshops 11 / 75

Latent Process Mean

x = L1ε

Lawrence () Vector Valued ICML Workshops 12 / 75

Latent Process Mean

〈x〉 = 〈L1ε〉

Lawrence () Vector Valued ICML Workshops 12 / 75

Latent Process Mean

〈x〉 = L1 〈ε〉

Lawrence () Vector Valued ICML Workshops 12 / 75

Latent Process Mean

〈x〉 = L1 〈ε〉

ε ∼ N (0, αI)

Lawrence () Vector Valued ICML Workshops 12 / 75

Latent Process Mean

〈x〉 = L10

Lawrence () Vector Valued ICML Workshops 12 / 75

Latent Process Mean

〈x〉 = 0

Lawrence () Vector Valued ICML Workshops 12 / 75

Latent Process Covariance

xx> = L1εε
>L>1

x> = ε>L>

Lawrence () Vector Valued ICML Workshops 13 / 75

Latent Process Covariance

〈
xx>
〉
=
〈
L1εε

>L>1
〉

Lawrence () Vector Valued ICML Workshops 13 / 75

Latent Process Covariance

〈
xx>
〉
= L1

〈
εε>
〉

L>1

Lawrence () Vector Valued ICML Workshops 13 / 75

Latent Process Covariance

〈
xx>
〉
= L1

〈
εε>
〉

L>1

ε ∼ N (0, αI)

Lawrence () Vector Valued ICML Workshops 13 / 75

Latent Process Covariance

〈
xx>
〉
= αL1L>1

Lawrence () Vector Valued ICML Workshops 13 / 75

Latent Process

x = L1ε

Lawrence () Vector Valued ICML Workshops 14 / 75

Latent Process

x = L1ε

ε ∼ N (0, αI)

Lawrence () Vector Valued ICML Workshops 14 / 75

Latent Process

x = L1ε

ε ∼ N (0, αI)

=⇒

Lawrence () Vector Valued ICML Workshops 14 / 75

Latent Process

x = L1ε

ε ∼ N (0, αI)

=⇒
x ∼ N

(
0, αL1L>1

)

Lawrence () Vector Valued ICML Workshops 14 / 75

Covariance for Latent Process II

Given
ε ∼ N (0, αI) =⇒ ε ∼ N

(
0, αL1L>1

)
.

Then
ε ∼ N (0,∆tαI) =⇒ ε ∼ N

(
0,∆tαL1L>1

)
.

where ∆t is the time interval between observations.

Lawrence () Vector Valued ICML Workshops 15 / 75

Covariance for Latent Process II

ε ∼ N (0, α∆tI) , x ∼ N
(

0, α∆tL1L>1
)

K = α∆tL1L>1

ki ,j = α∆tl>:,i l:,j

where l:,k is a vector from the kth row of L1: the first k elements are one,
the next T − k are zero.

ki ,j = α∆t min(i , j)

define ∆ti = ti so

ki ,j = αmin(ti , tj) = k(ti , tj)

Lawrence () Vector Valued ICML Workshops 16 / 75

Covariance for Latent Process II

ε ∼ N (0, α∆tI) , x ∼ N
(

0, α∆tL1L>1
)

K = α∆tL1L>1

ki ,j = α∆tl>:,i l:,j

where l:,k is a vector from the kth row of L1: the first k elements are one,
the next T − k are zero.

ki ,j = α∆t min(i , j)

define ∆ti = ti so

ki ,j = αmin(ti , tj) = k(ti , tj)

Lawrence () Vector Valued ICML Workshops 16 / 75

Covariance for Latent Process II

ε ∼ N (0, α∆tI) , x ∼ N
(

0, α∆tL1L>1
)

K = α∆tL1L>1

ki ,j = α∆tl>:,i l:,j

where l:,k is a vector from the kth row of L1: the first k elements are one,
the next T − k are zero.

ki ,j = α∆t min(i , j)

define ∆ti = ti so

ki ,j = αmin(ti , tj) = k(ti , tj)

Lawrence () Vector Valued ICML Workshops 16 / 75

Covariance for Latent Process II

ε ∼ N (0, α∆tI) , x ∼ N
(

0, α∆tL1L>1
)

K = α∆tL1L>1

ki ,j = α∆tl>:,i l:,j

where l:,k is a vector from the kth row of L1: the first k elements are one,
the next T − k are zero.

ki ,j = α∆t min(i , j)

define ∆ti = ti so

ki ,j = αmin(ti , tj) = k(ti , tj)

Lawrence () Vector Valued ICML Workshops 16 / 75

Covariance Functions
Where did this covariance matrix come from?

Markov Process

k
(
t, t ′
)

= αmin(t, t ′)

Covariance matrix is built
using the inputs to the
function t.

Lawrence () Vector Valued ICML Workshops 17 / 75

Covariance Functions
Where did this covariance matrix come from?

Markov Process

k
(
t, t ′
)

= αmin(t, t ′)

Covariance matrix is built
using the inputs to the
function t.

-3

-2

-1

0

1

2

3

0 0.5 1 1.5 2

Lawrence () Vector Valued ICML Workshops 17 / 75

Simple Kalman Filter I

We have state vector X = [x1 . . . xq] ∈ RT×q and if each state evolves
independently we have

p(X) =
∏q

i=1 p(x:,i) p(x:,i) = N (x:,i |0,K).

We want to obtain outputs through:

yi ,: = Wxi ,:

Lawrence () Vector Valued ICML Workshops 18 / 75

Stacking and Kronecker Products I

Represent with a ‘stacked’ system:

p(x) = N (x|0, I⊗K)

where the stacking is placing each column of X one on top of another
as

x =


x:,1

x:,2
...

x:,q



Lawrence () Vector Valued ICML Workshops 19 / 75

Kronecker Product

aK bK

cK dK
K

a b

c d
⊗ =

Lawrence () Vector Valued ICML Workshops 20 / 75

Kronecker Product

⊗ =

Lawrence () Vector Valued ICML Workshops 20 / 75

Stacking and Kronecker Products I

Represent with a ‘stacked’ system:

p(x) = N (x|0, I⊗K)

where the stacking is placing each column of X one on top of another
as

x =


x:,1

x:,2
...

x:,q



Lawrence () Vector Valued ICML Workshops 21 / 75

Column Stacking

⊗ =

Lawrence () Vector Valued ICML Workshops 22 / 75

Two Ways of Stacking

Can also stack as follows:

x =


x1,:

x2,:
...

xT ,:


p(x) = N (x|0,K⊗ I)

Lawrence () Vector Valued ICML Workshops 23 / 75

Row Stacking

⊗ =

Lawrence () Vector Valued ICML Workshops 24 / 75

For this stacking the marginal distribution over the latent variables is given
by the block diagonals.

Lawrence () Vector Valued ICML Workshops 25 / 75

For this stacking the marginal distribution over the latent variables is given
by the block diagonals.

Lawrence () Vector Valued ICML Workshops 25 / 75

For this stacking the marginal distribution over the latent variables is given
by the block diagonals.

Lawrence () Vector Valued ICML Workshops 25 / 75

For this stacking the marginal distribution over the latent variables is given
by the block diagonals.

Lawrence () Vector Valued ICML Workshops 25 / 75

For this stacking the marginal distribution over the latent variables is given
by the block diagonals.

Lawrence () Vector Valued ICML Workshops 25 / 75

Observed Process

If we relate the observations to the data as follows:

yi ,: = Wxi ,: + εi ,:

ε ∼ N
(
0, σ2I

)

Lawrence () Vector Valued ICML Workshops 26 / 75

Output Covariance

This leads to a covariance of the form

(I⊗W)(K⊗ I)(I⊗W>) + Iσ2

Using (A⊗ B)(C⊗D) = AC⊗ BD This leads to

K⊗WW> + Iσ2

or
y ∼ N

(
0,WW> ⊗K + Iσ2

)

Lawrence () Vector Valued ICML Workshops 27 / 75

Learning Covariance Parameters
Can we determine covariance parameters from the data?

N (y|0,K) =
1

(2π)
n
2 |K|

exp

(
−y>K−1y

2

)
The parameters are inside the covariance function

(matrix).

ki ,j = k(xi , xj ;θ)

Lawrence () Vector Valued ICML Workshops 28 / 75

Learning Covariance Parameters
Can we determine covariance parameters from the data?

N (y|0,K) =
1

(2π)
n
2 |K|

exp

(
−y>K−1y

2

)
The parameters are inside the covariance function

(matrix).

ki ,j = k(xi , xj ;θ)

Lawrence () Vector Valued ICML Workshops 28 / 75

Learning Covariance Parameters
Can we determine covariance parameters from the data?

logN (y|0,K) = −n
2
log 2π−1

2
log |K|−y>K−1y

2

The parameters are inside the covariance function
(matrix).

ki ,j = k(xi , xj ;θ)

Lawrence () Vector Valued ICML Workshops 28 / 75

Learning Covariance Parameters
Can we determine covariance parameters from the data?

E (θ) =
1

2
log |K| + y>K−1y

2

The parameters are inside the covariance function
(matrix).

ki ,j = k(xi , xj ;θ)

Lawrence () Vector Valued ICML Workshops 28 / 75

Eigendecomposition of Covariance

K = RΛ2R>

λ1

λ2

where Λ is a diagonal matrix and R>R = I.

Useful representation since |K| =
∣∣Λ2
∣∣ = |Λ|2.

Lawrence () Vector Valued ICML Workshops 29 / 75

Capacity control: log |K|

λ1 0

0 λ2

λ1

Λ =

Lawrence () Vector Valued ICML Workshops 30 / 75

Capacity control: log |K|

λ1 0

0 λ2

λ1

λ2

Λ =

Lawrence () Vector Valued ICML Workshops 30 / 75

Capacity control: log |K|

λ1 0

0 λ2

λ1

λ2

Λ =

Lawrence () Vector Valued ICML Workshops 30 / 75

Capacity control: log |K|

|Λ| = λ1λ2

λ1 0

0 λ2

λ1

λ2

Λ =

Lawrence () Vector Valued ICML Workshops 30 / 75

Capacity control: log |K|

|Λ| = λ1λ2

λ1 0

0 λ2

λ1

λ2

Λ =

Lawrence () Vector Valued ICML Workshops 30 / 75

Capacity control: log |K|

|Λ| = λ1λ2

λ1 0

0 λ2

λ1

λ2 |Λ|Λ =

Lawrence () Vector Valued ICML Workshops 30 / 75

Capacity control: log |K|

|Λ| = λ1λ2

λ1 0 0

0 λ2 0

0 0 λ3

λ1

λ2 |Λ|Λ =

Lawrence () Vector Valued ICML Workshops 30 / 75

Capacity control: log |K|

|Λ| = λ1λ2λ3

λ1 0 0

0 λ2 0

0 0 λ3

λ1

λ2

λ3

|Λ|Λ =

Lawrence () Vector Valued ICML Workshops 30 / 75

Capacity control: log |K|

|Λ| = λ1λ2

λ1 0

0 λ2

λ1

λ2 |Λ|Λ =

Lawrence () Vector Valued ICML Workshops 30 / 75

Capacity control: log |K|

|RΛ| = λ1λ2

w1,1 w1,2

w2,1 w2,2

λ1

λ2

|Λ|
RΛ =

Lawrence () Vector Valued ICML Workshops 30 / 75

Data Fit: y−1K−1y
2

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

y 2

y1

λ1

λ2

Lawrence () Vector Valued ICML Workshops 31 / 75

Data Fit: y−1K−1y
2

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

y 2

y1

λ1

λ2

Lawrence () Vector Valued ICML Workshops 31 / 75

Data Fit: y−1K−1y
2

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

y 2

y1

λ1
λ2

Lawrence () Vector Valued ICML Workshops 31 / 75

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

-2

-1

0

1

2

-2 -1 0 1 2

y
(x

)

x

-10

-5

0

5

10

15

20

10−1 100 101

length scale, `

E (θ) =
1

2
|K|+ y>K−1y

2

Lawrence () Vector Valued ICML Workshops 32 / 75

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

-2

-1

0

1

2

-2 -1 0 1 2

y
(x

)

x

-10

-5

0

5

10

15

20

10−1 100 101

length scale, `

E (θ) =
1

2
|K|+ y>K−1y

2

Lawrence () Vector Valued ICML Workshops 32 / 75

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

-2

-1

0

1

2

-2 -1 0 1 2

y
(x

)

x

-10

-5

0

5

10

15

20

10−1 100 101

length scale, `

E (θ) =
1

2
|K|+ y>K−1y

2

Lawrence () Vector Valued ICML Workshops 32 / 75

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

-2

-1

0

1

2

-2 -1 0 1 2

y
(x

)

x

-10

-5

0

5

10

15

20

10−1 100 101

length scale, `

E (θ) =
1

2
|K|+ y>K−1y

2

Lawrence () Vector Valued ICML Workshops 32 / 75

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

-2

-1

0

1

2

-2 -1 0 1 2

y
(x

)

x

-10

-5

0

5

10

15

20

10−1 100 101

length scale, `

E (θ) =
1

2
|K|+ y>K−1y

2

Lawrence () Vector Valued ICML Workshops 32 / 75

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

-2

-1

0

1

2

-2 -1 0 1 2

y
(x

)

x

-10

-5

0

5

10

15

20

10−1 100 101

length scale, `

E (θ) =
1

2
|K|+ y>K−1y

2

Lawrence () Vector Valued ICML Workshops 32 / 75

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

-2

-1

0

1

2

-2 -1 0 1 2

y
(x

)

x

-10

-5

0

5

10

15

20

10−1 100 101

length scale, `

E (θ) =
1

2
|K|+ y>K−1y

2

Lawrence () Vector Valued ICML Workshops 32 / 75

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

-2

-1

0

1

2

-2 -1 0 1 2

y
(x

)

x

-10

-5

0

5

10

15

20

10−1 100 101

length scale, `

E (θ) =
1

2
|K|+ y>K−1y

2

Lawrence () Vector Valued ICML Workshops 32 / 75

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

-2

-1

0

1

2

-2 -1 0 1 2

y
(x

)

x

-10

-5

0

5

10

15

20

10−1 100 101

length scale, `

E (θ) =
1

2
|K|+ y>K−1y

2

Lawrence () Vector Valued ICML Workshops 32 / 75

Gene Expression Example

Global expression estimation with l = 30

Global expression estimation with l = 15.6

Data from Della Gatta et al. (2008). Figure from Kalaitzis and Lawrence
(2011).

Lawrence () Vector Valued ICML Workshops 33 / 75

Efficient inference in matrix-variate Gaussian models
with iid observation noise

Oliver Stegle1
Max Planck Institutes
Tübingen, Germany

stegle@tuebingen.mpg.de

Christoph Lippert1
Max Planck Institutes
Tübingen, Germany

clippert@tuebingen.mpg.de

Joris Mooij
Institute for Computing and Information Sciences

Radboud University
Nijmegen, The Netherlands
j.mooij@cs.ru.nl

Neil Lawrence
Department of Computer Science

University of Sheffield
Sheffield, UK

N.Lawrence@sheffield.ac.uk

Karsten Borgwardt
Max Planck Institutes & Eberhard Karls Universität

Tübingen, Germany
karsten.borgwardt@tuebingen.mpg.de

Abstract

Inference in matrix-variate Gaussian models has major applications for multi-
output prediction and joint learning of row and column covariances from matrix-
variate data. Here, we discuss an approach for efficient inference in such models
that explicitly account for iid observation noise. Computational tractability can be
retained by exploiting the Kronecker product between row and column covariance
matrices. Using this framework, we show how to generalize the Graphical Lasso
in order to learn a sparse inverse covariance between features while accounting for
a low-rank confounding covariance between samples. We show practical utility on
applications to biology, where we model covariances with more than 100,000 di-
mensions. We find greater accuracy in recovering biological network structures
and are able to better reconstruct the confounders.

1 Introduction

Matrix-variate normal (MVN) models have important applications in various fields. These models
have been used as regularizer for multi-output prediction, jointly modeling the similarity between
tasks and samples [1]. In related work in Gaussian processes (GPs), generalizations of MVN distri-
butions have been used for inference of vector-valued functions [2, 3]. These models with Kronecker
factored covariance have applications in geostatistics [4], statistical testing on matrix-variate data [5]
and statistical genetics [6].

In prior work, different covariance functions for rows and columns have been combined in a flexible
manner. For example, Dutilleul and Zhang et al. [7, 1] have performed estimation of free-form
covariances with different norm penalties. In other applications for prediction [2] and dimension
reduction [8], combinations of free-form covariances with squared exponential covariances have
been used.

1These authors contributed equally to this work.

1

(Baldassarre
et al., 2012; Stegle et al., 2011)

Lawrence () Vector Valued ICML Workshops 34 / 75

Kernels for Vector Valued Outputs: A Review

Foundations and TrendsR© in
Machine Learning
Vol. 4, No. 3 (2011) 195–266
c© 2012 M. A. Álvarez, L. Rosasco and N. D. Lawrence
DOI: 10.1561/2200000036

Kernels for Vector-Valued
Functions: A Review

By Mauricio A. Álvarez,

Lorenzo Rosasco and Neil D. Lawrence

Contents

1 Introduction 197

2 Learning Scalar Outputs

with Kernel Methods 200

2.1 A Regularization Perspective 200

2.2 A Bayesian Perspective 202

2.3 A Connection Between Bayesian

and Regularization Points of View 205

3 Learning Multiple Outputs with

Kernel Methods 207

3.1 Multi-output Learning 207

3.2 Reproducing Kernel for Vector-Valued Functions 209

3.3 Gaussian Processes for Vector-Valued Functions 211

4 Separable Kernels and Sum of Separable Kernels 213

4.1 Kernels and Regularizers 214

4.2 Coregionalization Models 217

4.3 Extensions 228

Lawrence () Vector Valued ICML Workshops 35 / 75

Kronecker Structure GPs

This Kronecker structure leads to several published models.

(K(x, x′))d ,d ′ = k(x, x′)kT (d , d ′),

where k has x and kT has n as inputs.

Can think of multiple output covariance functions as covariances with
augmented input.

Alongside x we also input the d associated with the output of interest.

Lawrence () Vector Valued ICML Workshops 36 / 75

Separable Covariance Functions

Taking B = WW> we have a matrix expression across outputs.

K(x, x′) = k(x, x′)B,

where B is a p × p symmetric and positive semi-definite matrix.

B is called the coregionalization matrix.

We call this class of covariance functions separable due to their
product structure.

Lawrence () Vector Valued ICML Workshops 37 / 75

Sum of Separable Covariance Functions

In the same spirit a more general class of kernels is given by

K(x, x′) =

q∑
j=1

kj (x, x′)Bj .

This can also be written as

K(X,X) =

q∑
j=1

Bj ⊗ kj (X,X),

This is like several Kalman filter-type models added together, but
each one with a different set of latent functions.

We call this class of kernels sum of separable kernels (SoS kernels).

Lawrence () Vector Valued ICML Workshops 38 / 75

Geostatistics

Use of GPs in Geostatistics is called kriging.

These multi-output GPs pioneered in geostatistics: prediction over
vector-valued output data is known as cokriging.

The model in geostatistics is known as the linear model of
coregionalization (LMC, Journel and Huijbregts (1978); Goovaerts

(1997)).

Most machine learning multitask models can be placed in the context
of the LMC model.

Lawrence () Vector Valued ICML Workshops 39 / 75

Weighted sum of Latent Functions

In the linear model of coregionalization (LMC) outputs are expressed
as linear combinations of independent random functions.

In the LMC, each component fd is expressed as a linear sum

fd (x) =

q∑
j=1

wd ,j uj (x).

where the latent functions are independent and have covariance
functions kj (x, x′).

The processes {fj (x)}q
j=1 are independent for q 6= j ′.

Lawrence () Vector Valued ICML Workshops 40 / 75

Kalman Filter Special Case

The Kalman filter is an example of the LMC where ui (x)→ xi (t).

I.e. we’ve moved form time input to a more general input space.

In matrix notation:
1 Kalman filter

F = WX

2 LMC
F = WU

where the rows of these matrices F, X, U each contain q samples
from their corresponding functions at a different time (Kalman filter)
or spatial location (LMC).

Lawrence () Vector Valued ICML Workshops 41 / 75

Intrinsic Coregionalization Model

If one covariance used for latent functions (like in Kalman filter).

This is called the intrinsic coregionalization model (ICM, Goovaerts

(1997)).

The kernel matrix corresponding to a dataset X takes the form

K(X,X) = B⊗ k(X,X).

Lawrence () Vector Valued ICML Workshops 42 / 75

Autokrigeability

If outputs are noise-free, maximum likelihood is equivalent to
independent fits of B and k(x, x′) (Helterbrand and Cressie, 1994).

In geostatistics this is known as autokrigeability (Wackernagel, 2003).

In multitask learning its the cancellation of intertask transfer (Bonilla

et al., 2008).

Lawrence () Vector Valued ICML Workshops 43 / 75

Intrinsic Coregionalization Model

K(X,X) = ww> ⊗ k(X,X).

w =

[
1
5

]
B =

[
1 5
5 25

]

Lawrence () Vector Valued ICML Workshops 44 / 75

Intrinsic Coregionalization Model

K(X,X) = ww> ⊗ k(X,X).

w =

[
1
5

]
B =

[
1 5
5 25

]

Lawrence () Vector Valued ICML Workshops 44 / 75

Intrinsic Coregionalization Model

K(X,X) = ww> ⊗ k(X,X).

w =

[
1
5

]
B =

[
1 5
5 25

]

Lawrence () Vector Valued ICML Workshops 44 / 75

Intrinsic Coregionalization Model

K(X,X) = ww> ⊗ k(X,X).

w =

[
1
5

]
B =

[
1 5
5 25

]

Lawrence () Vector Valued ICML Workshops 44 / 75

Intrinsic Coregionalization Model

K(X,X) = ww> ⊗ k(X,X).

w =

[
1
5

]
B =

[
1 5
5 25

]

Lawrence () Vector Valued ICML Workshops 44 / 75

Intrinsic Coregionalization Model

K(X,X) = B⊗ k(X,X).

B =

[
1 0.5

0.5 1.5

]

Lawrence () Vector Valued ICML Workshops 45 / 75

Intrinsic Coregionalization Model

K(X,X) = B⊗ k(X,X).

B =

[
1 0.5

0.5 1.5

]

Lawrence () Vector Valued ICML Workshops 45 / 75

Intrinsic Coregionalization Model

K(X,X) = B⊗ k(X,X).

B =

[
1 0.5

0.5 1.5

]

Lawrence () Vector Valued ICML Workshops 45 / 75

Intrinsic Coregionalization Model

K(X,X) = B⊗ k(X,X).

B =

[
1 0.5

0.5 1.5

]

Lawrence () Vector Valued ICML Workshops 45 / 75

Intrinsic Coregionalization Model

K(X,X) = B⊗ k(X,X).

B =

[
1 0.5

0.5 1.5

]

Lawrence () Vector Valued ICML Workshops 45 / 75

LMC Samples

K(X,X) = B1 ⊗ k1(X,X) + B2 ⊗ k2(X,X)

B1 =

[
1.4 0.5
0.5 1.2

]
`1 = 1

B2 =

[
1 0.5

0.5 1.3

]
`2 = 0.2

Lawrence () Vector Valued ICML Workshops 46 / 75

LMC Samples

K(X,X) = B1 ⊗ k1(X,X) + B2 ⊗ k2(X,X)

B1 =

[
1.4 0.5
0.5 1.2

]
`1 = 1

B2 =

[
1 0.5

0.5 1.3

]
`2 = 0.2

Lawrence () Vector Valued ICML Workshops 46 / 75

LMC Samples

K(X,X) = B1 ⊗ k1(X,X) + B2 ⊗ k2(X,X)

B1 =

[
1.4 0.5
0.5 1.2

]
`1 = 1

B2 =

[
1 0.5

0.5 1.3

]
`2 = 0.2

Lawrence () Vector Valued ICML Workshops 46 / 75

LMC Samples

K(X,X) = B1 ⊗ k1(X,X) + B2 ⊗ k2(X,X)

B1 =

[
1.4 0.5
0.5 1.2

]
`1 = 1

B2 =

[
1 0.5

0.5 1.3

]
`2 = 0.2

Lawrence () Vector Valued ICML Workshops 46 / 75

LMC Samples

K(X,X) = B1 ⊗ k1(X,X) + B2 ⊗ k2(X,X)

B1 =

[
1.4 0.5
0.5 1.2

]
`1 = 1

B2 =

[
1 0.5

0.5 1.3

]
`2 = 0.2

Lawrence () Vector Valued ICML Workshops 46 / 75

LMC in Machine Learning and Statistics

Used in machine learning for GPs for multivariate regression and in
statistics for computer emulation of expensive multivariate computer
codes.

Imposes the correlation of the outputs explicitly through the set of
coregionalization matrices.

Setting B = Ip assumes outputs are conditionally independent given
the parameters θ. (Minka and Picard, 1997; Lawrence and Platt,
2004; Yu et al., 2005).

More recent approaches for multiple output modeling are different
versions of the linear model of coregionalization.

Lawrence () Vector Valued ICML Workshops 47 / 75

Semiparametric Latent Factor Model

Coregionalization matrices are rank 1 Teh et al. (2005). rewrite
equation (??) as

K(X,X) =

q∑
j=1

w:,j w
>
:,j ⊗ kj (X,X).

Like the Kalman filter, but each latent function has a different
covariance.

Authors suggest using an exponentiated quadratic characteristic
length-scale for each input dimension.

Lawrence () Vector Valued ICML Workshops 48 / 75

Semiparametric Latent Factor Model Samples

K(X,X) = w:,1w>:,1 ⊗ k1(X,X) + w:,2w>:,2 ⊗ k2(X,X)

w1 =

[
0.5
1

]
w2 =

[
1

0.5

]

Lawrence () Vector Valued ICML Workshops 49 / 75

Semiparametric Latent Factor Model Samples

K(X,X) = w:,1w>:,1 ⊗ k1(X,X) + w:,2w>:,2 ⊗ k2(X,X)

w1 =

[
0.5
1

]
w2 =

[
1

0.5

]

Lawrence () Vector Valued ICML Workshops 49 / 75

Semiparametric Latent Factor Model Samples

K(X,X) = w:,1w>:,1 ⊗ k1(X,X) + w:,2w>:,2 ⊗ k2(X,X)

w1 =

[
0.5
1

]
w2 =

[
1

0.5

]

Lawrence () Vector Valued ICML Workshops 49 / 75

Semiparametric Latent Factor Model Samples

K(X,X) = w:,1w>:,1 ⊗ k1(X,X) + w:,2w>:,2 ⊗ k2(X,X)

w1 =

[
0.5
1

]
w2 =

[
1

0.5

]

Lawrence () Vector Valued ICML Workshops 49 / 75

Semiparametric Latent Factor Model Samples

K(X,X) = w:,1w>:,1 ⊗ k1(X,X) + w:,2w>:,2 ⊗ k2(X,X)

w1 =

[
0.5
1

]
w2 =

[
1

0.5

]

Lawrence () Vector Valued ICML Workshops 49 / 75

Gaussian processes for Multi-task, Multi-output and
Multi-class

Bonilla et al. (2008) suggest ICM for multitask learning.

Use a PPCA form for B: similar to our Kalman filter example.

Refer to the autokrigeability effect as the cancellation of inter-task
transfer.

Also discuss the similarities between the multi-task GP and the ICM,
and its relationship to the SLFM and the LMC.

Lawrence () Vector Valued ICML Workshops 50 / 75

Multitask Classification

Mostly restricted to the case where the outputs are conditionally
independent given the hyperparameters φ (Minka and Picard, 1997;

Williams and Barber, 1998; Lawrence and Platt, 2004; Seeger and Jordan,

2004; Yu et al., 2005; Rasmussen and Williams, 2006).

Intrinsic coregionalization model has been used in the multiclass
scenario. Skolidis and Sanguinetti (2011) use the intrinsic
coregionalization model for classification, by introducing a probit
noise model as the likelihood.

Posterior distribution is no longer analytically tractable: approximate
inference is required.

Lawrence () Vector Valued ICML Workshops 51 / 75

Computer Emulation

A statistical model used as a surrogate for a computationally
expensive computer model.

Higdon et al. (2008) use the linear model of coregionalization to
model images representing the evolution of the implosion of steel
cylinders.

In Conti and O’Hagan (2009) use the ICM to model a vegetation
model: called the Sheffield Dynamic Global Vegetation Model
(Woodward et al., 1998).

Lawrence () Vector Valued ICML Workshops 52 / 75

Outline

1 Background

2 Convolution Processes

3 Motion Capture Example

Lawrence () Vector Valued ICML Workshops 53 / 75

Convolution Process

A convolution process is a moving-average construction that
guarantees a valid covariance function.

Consider a set of functions {fj (x)}p
j=1.

Each function can be expressed as

fj (x) =

∫
X

Gj (x− z)u(z)dz = Gj (x) ∗ u(x).

Influence of more than one latent function, {ui (z)}q
i=1 and inclusion

of an independent process wj (x)

yj (x) = fj (x) + wj (x) =

q∑
i=1

∫
X

Gj ,i (x− z)ui (z)dz + wj (x).

Lawrence () Vector Valued ICML Workshops 54 / 75

A pictorial representation

u(x)

u(x): latent function.

Lawrence () Vector Valued ICML Workshops 55 / 75

A pictorial representation

u(x)

G (x)
1

G (x)
2

u(x): latent function.

G(x): smoothing kernel.

Lawrence () Vector Valued ICML Workshops 55 / 75

A pictorial representation

u(x)

G (x)
1

G (x)
2

(f x)2

(f x)1

u(x): latent function.

G(x): smoothing kernel.

f(x): output function.

Lawrence () Vector Valued ICML Workshops 55 / 75

A pictorial representation

u(x)

G (x)
1

G (x)
2

(f x)2

(f x)1
(w x)1

(w x)2

u(x): latent function.

G(x): smoothing kernel.

f(x): output function.

w(x): independent process.

Lawrence () Vector Valued ICML Workshops 55 / 75

A pictorial representation

u(x)

G (x)
1

G (x)
2

(f x)2

(f x)1
(w x)1

(w x)2

(y x)1

(y x)2

u(x): latent function.

G(x): smoothing kernel.

f(x): output function.

w(x): independent process.

y(x): noisy output function.

Lawrence () Vector Valued ICML Workshops 55 / 75

Covariance of the output functions.

The covariance between yj (x) and yj ′(x′) is given as

cov
[
yj (x), yj ′(x′)

]
=cov

[
fj (x), fj ′(x′)

]
+ cov

[
wj (x),wj ′(x′)

]
δj ,j ′

where

cov
[
fj (x), fj ′(x′)

]
=

∫
X

Gj (x− z)

∫
X

Gj ′(x′ − z′)cov
[
u(z), u(z′)

]
dz′dz

Lawrence () Vector Valued ICML Workshops 56 / 75

Different forms of covariance for the output functions.

Input Gaussian process

cov
[
fj , fj ′

]
=

∫
X

Gj (x− z)

∫
X

Gj ′(x′ − z′)ku,u(z, z′)dz′dz

Input white noise process

cov
[
fj , fj ′

]
=

∫
X

Gj (x− z)Gj ′(x′ − z)dz

Covariance between output functions and latent functions

cov [fj , u] =

∫
X

Gj (x− z′)ku,u(z′, z)dz′

Lawrence () Vector Valued ICML Workshops 57 / 75

Dimensionality Reduction

Linear relationship between the data, X ∈ <n×p, and a reduced
dimensional representation, F ∈ <n×q, where q � p.

X = FW + ε,

ε ∼ N (0,Σ)

Integrate out F, optimize with respect to W.

For Gaussian prior, F ∼ N (0, I)
I and Σ = σ2I we have probabilistic PCA (Tipping and Bishop, 1999;

Roweis, 1998).
I and Σ constrained to be diagonal, we have factor analysis.

Lawrence () Vector Valued ICML Workshops 58 / 75

Dimensionality Reduction: Temporal Data

Deal with temporal data with a temporal latent prior.

Independent Gauss-Markov priors over each fi (t) leads to :
Rauch-Tung-Striebel (RTS) smoother (Kalman filter).

More generally consider a Gaussian process (GP) prior,

p (F|t) =

q∏
i=1

N
(
f:,i |0,Kf:,i ,f:,i

)
.

Lawrence () Vector Valued ICML Workshops 59 / 75

Joint Gaussian Process

Given the covariance functions for {fi (t)} we have an implied
covariance function across all {xi (t)}—(ML: semi-parametric latent
factor model (Teh et al., 2005), Geostatistics: linear model of
coregionalization).

Rauch-Tung-Striebel smoother has been preferred
I linear computational complexity in n.
I Advances in sparse approximations have made the general GP

framework practical. (Titsias, 2009; Snelson and Ghahramani, 2006;

Quiñonero Candela and Rasmussen, 2005).

Lawrence () Vector Valued ICML Workshops 60 / 75

Mechanical Analogy

Back to Mechanistic Models!

These models rely on the latent variables to provide the dynamic
information.

We now introduce a further dynamical system with a mechanistic
inspiration.

Physical Interpretation:

I the latent functions, fi (t) are q forces.
I We observe the displacement of p springs to the forces.,
I Interpret system as the force balance equation, XD = FS + ε.
I Forces act, e.g. through levers — a matrix of sensitivities, S ∈ <q×p.
I Diagonal matrix of spring constants, D ∈ <p×p.
I Original System: W = SD−1.

Lawrence () Vector Valued ICML Workshops 61 / 75

Extend Model

Add a damper and give the system mass.

FS = ẌM + ẊC + XD + ε.

Now have a second order mechanical system.

It will exhibit inertia and resonance.

There are many systems that can also be represented by differential
equations.

I When being forced by latent function(s), {fi (t)}q
i=1, we call this a

latent force model.

Lawrence () Vector Valued ICML Workshops 62 / 75

Marionette

Lawrence () Vector Valued ICML Workshops 63 / 75

Mass Spring Damper Analogy

d1

c1 m1
s1f (t)

x1(t)

s1

d2

c2 m2
s2f (t)

x2(t)

s2

f (t)

mass

spring

damper

observations

latent input

pulleys

Figure: Mass spring damper analogy, an unobserved force drives multiple
oscillators.

Lawrence () Vector Valued ICML Workshops 64 / 75

Mass Spring Damper Analogy

d1

c1 m1
s1f (t)

x1(t)

s1

d2

c2 m2
s2f (t)

x2(t)

s2

f (t)

mass

spring

damper

observations

latent input

pulleys

Figure: Mass spring damper analogy, an unobserved force drives multiple
oscillators.

Lawrence () Vector Valued ICML Workshops 64 / 75

Mass Spring Damper Analogy

d1

c1 m1
s1f (t)

x1(t)

s1

d2

c2 m2
s2f (t)

x2(t)

s2

f (t)

mass

spring

damper

observations

latent input

pulleys

Figure: Mass spring damper analogy, an unobserved force drives multiple
oscillators.

Lawrence () Vector Valued ICML Workshops 64 / 75

Mass Spring Damper Analogy

d1

c1 m1
s1f (t)

x1(t)

s1

d2

c2 m2
s2f (t)

x2(t)

s2

f (t)

mass

spring

damper

observations

latent input

pulleys

Figure: Mass spring damper analogy, an unobserved force drives multiple
oscillators.

Lawrence () Vector Valued ICML Workshops 64 / 75

Mass Spring Damper Analogy

d1

c1 m1
s1f (t)

x1(t)

s1

d2

c2 m2
s2f (t)

x2(t)

s2

f (t)

mass

spring

damper

observations

latent input

pulleys

Figure: Mass spring damper analogy, an unobserved force drives multiple
oscillators.

Lawrence () Vector Valued ICML Workshops 64 / 75

Gaussian Process priors and Latent Force Models
Driven Harmonic Oscillator

For Gaussian process we can compute the covariance matrices for the
output displacements.

For one displacement the model is

mk ẍk(t) + ck ẋk(t) + dkxk(t) = bk +

q∑
i=0

sik fi (t), (1)

where, mk is the kth diagonal element from M and similarly for ck

and dk . sik is the i , kth element of S.

Model the latent forces as q independent, GPs with exponentiated
quadratic covariances

kfi fl
(t, t ′) = exp

(
−(t − t ′)2

2`2
i

)
δil .

Lawrence () Vector Valued ICML Workshops 65 / 75

Covariance for ODE Model

Exponentiated Quadratic Covariance function for f (t)

xj (t) =
1

mjωj

q∑
i=1

sji exp(−αj t)

∫ t

0
fi (τ) exp(αjτ) sin(ωj (t − τ))dτ

Joint distribution
for x1 (t), x2 (t),
x3 (t) and f (t).
Damping ratios:

ζ1 ζ2 ζ3

0.125 2 1
f(t) y

1
(t) y

2
(t) y

3
(t)

f(
t)

y 1(t
)

y 2(t
)

y 3(t
)

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Lawrence () Vector Valued ICML Workshops 66 / 75

Covariance for ODE Model

Analogy

x =
∑

i

e>i fi fi ∼ N (0,Σi)→ x ∼ N

(
0,
∑

i

e>i Σi ei

)

Joint distribution
for x1 (t), x2 (t),
x3 (t) and f (t).
Damping ratios:

ζ1 ζ2 ζ3

0.125 2 1
f(t) y

1
(t) y

2
(t) y

3
(t)

f(
t)

y 1(t
)

y 2(t
)

y 3(t
)

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Lawrence () Vector Valued ICML Workshops 66 / 75

Covariance for ODE Model

Exponentiated Quadratic Covariance function for f (t)

xj (t) =
1

mjωj

q∑
i=1

sji exp(−αj t)

∫ t

0
fi (τ) exp(αjτ) sin(ωj (t − τ))dτ

Joint distribution
for x1 (t), x2 (t),
x3 (t) and f (t).
Damping ratios:

ζ1 ζ2 ζ3

0.125 2 1
f(t) y

1
(t) y

2
(t) y

3
(t)

f(
t)

y 1(t
)

y 2(t
)

y 3(t
)

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Lawrence () Vector Valued ICML Workshops 66 / 75

Joint Sampling of x (t) and f (t)

lfmSample

50 55 60 65 70
−2

−1.5

−1

−0.5

0

0.5

1

1.5

50 55 60 65 70
−1

−0.5

0

0.5

1

1.5

2

50 55 60 65 70
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

50 55 60 65 70
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure: Joint samples from the ODE covariance, black: f (t), red: x1 (t)
(underdamped), green: x2 (t) (overdamped), and blue: x3 (t) (critically
damped).

Lawrence () Vector Valued ICML Workshops 67 / 75

Joint Sampling of x (t) and f (t)

lfmSample

50 55 60 65 70
−2

−1.5

−1

−0.5

0

0.5

1

1.5

50 55 60 65 70
−1

−0.5

0

0.5

1

1.5

2

50 55 60 65 70
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

50 55 60 65 70
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure: Joint samples from the ODE covariance, black: f (t), red: x1 (t)
(underdamped), green: x2 (t) (overdamped), and blue: x3 (t) (critically
damped).

Lawrence () Vector Valued ICML Workshops 67 / 75

Joint Sampling of x (t) and f (t)

lfmSample

50 55 60 65 70
−2

−1.5

−1

−0.5

0

0.5

1

1.5

50 55 60 65 70
−1

−0.5

0

0.5

1

1.5

2

50 55 60 65 70
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

50 55 60 65 70
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure: Joint samples from the ODE covariance, black: f (t), red: x1 (t)
(underdamped), green: x2 (t) (overdamped), and blue: x3 (t) (critically
damped).

Lawrence () Vector Valued ICML Workshops 67 / 75

Joint Sampling of x (t) and f (t)

lfmSample

50 55 60 65 70
−2

−1.5

−1

−0.5

0

0.5

1

1.5

50 55 60 65 70
−1

−0.5

0

0.5

1

1.5

2

50 55 60 65 70
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

50 55 60 65 70
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure: Joint samples from the ODE covariance, black: f (t), red: x1 (t)
(underdamped), green: x2 (t) (overdamped), and blue: x3 (t) (critically
damped).

Lawrence () Vector Valued ICML Workshops 67 / 75

Covariance for ODE

Exponentiated Quadratic Covariance function for f (t)

xj (t) =
1

mjωj

q∑
i=1

sji exp(−αj t)

∫ t

0
fi (τ) exp(αjτ) sin(ωj (t − τ))dτ

Joint distribution
for x1 (t), x2 (t),
x3 (t) and f (t).

Damping ratios:
ζ1 ζ2 ζ3

0.125 2 1
f(t) y

1
(t) y

2
(t) y

3
(t)

f(
t)

y 1(t
)

y 2(t
)

y 3(t
)

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Lawrence () Vector Valued ICML Workshops 68 / 75

Outline

1 Background

2 Convolution Processes

3 Motion Capture Example

Lawrence () Vector Valued ICML Workshops 69 / 75

Example: Motion Capture

Mauricio Alvarez and David Luengo (Álvarez et al., 2009, 2011)

Motion capture data: used for animating human motion.

Multivariate time series of angles representing joint positions.

Objective: generalize from training data to realistic motions.

Use 2nd Order Latent Force Model with mass/spring/damper (resistor
inductor capacitor) at each joint.

Lawrence () Vector Valued ICML Workshops 70 / 75

Example: Motion Capture

Mauricio Alvarez and David Luengo (Álvarez et al., 2009, 2011)

Motion capture data: used for animating human motion.

Multivariate time series of angles representing joint positions.

Objective: generalize from training data to realistic motions.

Use 2nd Order Latent Force Model with mass/spring/damper (resistor
inductor capacitor) at each joint.

Lawrence () Vector Valued ICML Workshops 70 / 75

Example: Motion Capture

Mauricio Alvarez and David Luengo (Álvarez et al., 2009, 2011)

Motion capture data: used for animating human motion.

Multivariate time series of angles representing joint positions.

Objective: generalize from training data to realistic motions.

Use 2nd Order Latent Force Model with mass/spring/damper (resistor
inductor capacitor) at each joint.

Lawrence () Vector Valued ICML Workshops 70 / 75

Example: Motion Capture

Mauricio Alvarez and David Luengo (Álvarez et al., 2009, 2011)

Motion capture data: used for animating human motion.

Multivariate time series of angles representing joint positions.

Objective: generalize from training data to realistic motions.

Use 2nd Order Latent Force Model with mass/spring/damper (resistor
inductor capacitor) at each joint.

Lawrence () Vector Valued ICML Workshops 70 / 75

Prediction of Test Motion

Model left arm only.

3 balancing motions (18, 19, 20) from subject 49.

18 and 19 are similar, 20 contains more dramatic movements.

Train on 18 and 19 and testing on 20

Data was down-sampled by 32 (from 120 fps).

Reconstruct motion of left arm for 20 given other movements.

Compare with GP that predicts left arm angles given other body
angles.

Lawrence () Vector Valued ICML Workshops 71 / 75

Mocap Results

Table: Root mean squared (RMS) angle error for prediction of the left arm’s
configuration in the motion capture data. Prediction with the latent force model
outperforms the prediction with regression for all apart from the radius’s angle.

Latent Force Regression
Angle Error Error
Radius 4.11 4.02
Wrist 6.55 6.65

Hand X rotation 1.82 3.21
Hand Z rotation 2.76 6.14

Thumb X rotation 1.77 3.10
Thumb Z rotation 2.73 6.09

Lawrence () Vector Valued ICML Workshops 72 / 75

Mocap Results II

0 1 2 3 4 5 6 7 8 9
−300

−250

−200

−150

−100

−50

0

50

100

150

(a) Inferred Latent Force

0 1 2 3 4 5 6 7 8 9
−5

0

5

10

15

20

25

30

35

40

45

(b) Wrist

0 1 2 3 4 5 6 7 8 9
−30

−25

−20

−15

−10

−5

0

(c) Hand X Rotation

0 1 2 3 4 5 6 7 8 9
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

(d) Hand Z Rotation

0 1 2 3 4 5 6 7 8 9
−2

0

2

4

6

8

10

12

(e) Thumb X Rotation

0 1 2 3 4 5 6 7 8 9
−15

−10

−5

0

5

10

15

20

(f) Thumb Z Rotation

Figure: Predictions from LFM (solid line, grey error bars) and direct regression
(crosses with stick error bars).Lawrence () Vector Valued ICML Workshops 73 / 75

References I

M. A. Álvarez, D. Luengo, and N. D. Lawrence. Latent force models. In van Dyk and Welling (2009), pages 9–16. [PDF].

M. A. Álvarez, D. Luengo, and N. D. Lawrence. Linear latent force models using Gaussian processes. Technical report,
University of Sheffield, [PDF].

L. Baldassarre, L. Rosasco, A. Barla, and A. Verri. Multi-output learning via spectral filtering. Machine Learning, 87(3):
259–301, 2012. [DOI].

E. V. Bonilla, K. M. Chai, and C. K. I. Williams. Multi-task Gaussian process prediction. In J. C. Platt, D. Koller, Y. Singer, and
S. Roweis, editors, Advances in Neural Information Processing Systems, volume 20, Cambridge, MA, 2008. MIT Press.

S. Conti and A. O’Hagan. Bayesian emulation of complex multi-output and dynamic computer models. Journal of Statistical
Planning and Inference, 140(3):640–651, 2009. [DOI].

G. Della Gatta, M. Bansal, A. Ambesi-Impiombato, D. Antonini, C. Missero, and D. di Bernardo. Direct targets of the trp63
transcription factor revealed by a combination of gene expression profiling and reverse engineering. Genome Research, 18(6):
939–948, Jun 2008. [URL]. [DOI].

P. Goovaerts. Geostatistics For Natural Resources Evaluation. Oxford University Press, 1997. [Google Books] .

J. D. Helterbrand and N. A. C. Cressie. Universal cokriging under intrinsic coregionalization. Mathematical Geology, 26(2):
205–226, 1994.

D. M. Higdon, J. Gattiker, B. Williams, and M. Rightley. Computer model calibration using high dimensional output. Journal of
the American Statistical Association, 103(482):570–583, 2008.

A. G. Journel and C. J. Huijbregts. Mining Geostatistics. Academic Press, London, 1978. [Google Books] .

A. A. Kalaitzis and N. D. Lawrence. A simple approach to ranking differentially expressed gene expression time courses through
Gaussian process regression. BMC Bioinformatics, 12(180), 2011. [DOI].

N. D. Lawrence and J. C. Platt. Learning to learn with the informative vector machine. In R. Greiner and D. Schuurmans,
editors, Proceedings of the International Conference in Machine Learning, volume 21, pages 512–519. Omnipress, 2004.
[PDF].

T. P. Minka and R. W. Picard. Learning how to learn is learning with point sets. Available on-line., 1997. [URL]. Revised 1999,
available at http://www.stat.cmu.edu/~{}minka/.

Lawrence () Vector Valued ICML Workshops 74 / 75

http://jmlr.csail.mit.edu/proceedings/papers/v5/alvarez09a/alvarez09a.pdf
http://arxiv.org/pdf/1107.2699
http://dx.doi.org/10.1007/s10994-012-5282-y
http://dx.doi.org/doi:10.1016/j.jspi.2009.08.006
http://dx.doi.org/10.1101/gr.073601.107
http://dx.doi.org/10.1101/gr.073601.107
http://books.google.com/books?as_isbn=0-19-511538-4
http://books.google.com/books?as_isbn=0-12391-050-1
http://dx.doi.org/10.1186/1471-2105-12-180
ftp://ftp.dcs.shef.ac.uk/home/neil/mtivm.pdf
http://research.microsoft.com/en-us/um/people/minka/papers/point-sets.html
http://www.stat.cmu.edu/~{ }minka/

References II
J. Quiñonero Candela and C. E. Rasmussen. A unifying view of sparse approximate Gaussian process regression. Journal of

Machine Learning Research, 6:1939–1959, 2005.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA, 2006. [Google
Books] .

S. T. Roweis. EM algorithms for PCA and SPCA. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances in Neural
Information Processing Systems, volume 10, pages 626–632, Cambridge, MA, 1998. MIT Press.

M. Seeger and M. I. Jordan. Sparse Gaussian Process Classification With Multiple Classes. Technical Report 661, Department of
Statistics, University of California at Berkeley,

G. Skolidis and G. Sanguinetti. Bayesian multitask classification with Gaussian process priors. IEEE Transactions on Neural
Networks, 22(12):2011 – 2021, 2011.

E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Y. Weiss, B. Schölkopf, and J. C. Platt,
editors, Advances in Neural Information Processing Systems, volume 18, Cambridge, MA, 2006. MIT Press.

O. Stegle, C. Lippert, J. Mooij, N. Lawrence, and K. Borgwardt. Efficient inference in matrix-variate Gaussian models with i.i.d.
observation noise. In Neural Information Processing Systems, 2011.

Y. W. Teh, M. Seeger, and M. I. Jordan. Semiparametric latent factor models. In R. G. Cowell and Z. Ghahramani, editors,
Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, pages 333–340, Barbados, 6-8
January 2005. Society for Artificial Intelligence and Statistics.

M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. Journal of the Royal Statistical Society, B, 6(3):
611–622, 1999. [PDF]. [DOI].

M. K. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In van Dyk and Welling (2009), pages
567–574.

D. van Dyk and M. Welling, editors. Artificial Intelligence and Statistics, volume 5, Clearwater Beach, FL, 16-18 April 2009.
JMLR W&CP 5.

H. Wackernagel. Multivariate Geostatistics: An Introduction With Applications. Springer-Verlag, 3rd edition, 2003. [Google
Books] .

C. K. Williams and D. Barber. Bayesian Classification with Gaussian processes. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 20(12):1342–1351, 1998.

I. Woodward, M. R. Lomas, and R. A. Betts. Vegetation-climate feedbacks in a greenhouse world. Philosophical Transactions:
Biological Sciences, 353(1365):29–39, 1998.

K. Yu, V. Tresp, and A. Schwaighofer. Learning Gaussian processes from multiple tasks. In Proceedings of the 22nd
International Conference on Machine Learning (ICML 2005), pages 1012–1019, 2005.

Lawrence () Vector Valued ICML Workshops 75 / 75

http://books.google.com/books?as_isbn=0-262-18253-X
http://books.google.com/books?as_isbn=0-262-18253-X
http://www.robots.ox.ac.uk/~cvrg/hilary2006/ppca.pdf
http://dx.doi.org/doi:10.1111/1467-9868.00196
http://books.google.com/books?as_isbn=3-540-44142-5
http://books.google.com/books?as_isbn=3-540-44142-5

	Background
	Kalman Filter
	Parameter Optimization

	Convolution Processes
	Differential Equation Example
	Second Order ODE

	Motion Capture Example

