
Kernels for Vector-Valued Functions

Neil D. Lawrence
includes work with Mauricio Alvarez and Lorenzo Rosasco

ICML Workshop on Next Generation Kernels
30th June 2012

Lawrence () Vector Valued ICML Workshops 1 / 75



Outline

1 Background

2 Convolution Processes

3 Motion Capture Example

Lawrence () Vector Valued ICML Workshops 2 / 75



Latent Function Perspective

Introduce vector valued functions through latent function perspective.

Vector valued function, f (·) is linearly dependent on latent function,
u(·).

Gaussian process perspective:
I If the latent function is a Gaussian process.
I Observed function is also a Gaussian process.
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Probabilistic Perspective

Kernel function is covariance of probabilistic process (need not be

Gaussian!).

E [u(x)u(x′)] = k(x, x′)

For zero mean process (convenient) it is the second moment.

Lawrence () Vector Valued ICML Workshops 4 / 75



Probabilistic Perspective

Kernel function is covariance of probabilistic process (need not be

Gaussian!).

〈u(x)u(x′)〉 = k(x, x′)
For zero mean process (convenient) it is the second moment.

Lawrence () Vector Valued ICML Workshops 4 / 75



Probabilistic Perspective

Kernel function is covariance of probabilistic process (need not be
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f1(x) = w1u(x)
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Probabilistic Perspective

Kernel function is covariance of probabilistic process (need not be

Gaussian!). 〈
f(x)f(x′)>

〉
= k(x, x′)B

For zero mean process (convenient) it is the second moment.
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Coregionalization Matrix

In above example coregionalization matrix, B, is reduced rank.

If f(x) = Wu(x)

Where elements of u(x) are independent each with covariance k(x, x′).〈
f(x)f(x′)>

〉
= k(x, x′)B

B = WW>
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Simple Markov Chain

Assume 1-d latent state, a vector over time, x = [x1 . . . xT ].

Markov property,

xi =xi−1 + εi ,

εi ∼N (0, α)

=⇒ xi ∼N (xi−1, α)

Initial state,
x0 ∼ N (0, α0)

If x0 ∼ N (0, α) we have a Markov chain for the latent states.

Markov chain it is specified by an initial distribution (Gaussian) and a
transition distribution (Gaussian).
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Gauss Markov Chain
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Gauss Markov Chain
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Gauss Markov Chain
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Gauss Markov Chain
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Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x6 = −1.08, ε7 = 0.989

x7 = −1.08 + 0.989 = −0.0881

Lawrence () Vector Valued ICML Workshops 7 / 75



Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x7 = −0.0881, ε8 = −0.842

x8 = −0.0881− 0.842 = −0.93

Lawrence () Vector Valued ICML Workshops 7 / 75



Gauss Markov Chain
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Multivariate Gaussian Properties: Reminder

If
z ∼ N (µ,C)

and
x = Wz + b

then
x ∼ N

(
Wµ + b,WCW>

)
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Multivariate Gaussian Properties: Reminder

Simplified: If
z ∼ N

(
0, σ2I

)
and

x = Wz

then
x ∼ N

(
0, σ2WW>

)
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Matrix Representation of Latent Variables
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×=

x1 = ε1
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Matrix Representation of Latent Variables
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Matrix Representation of Latent Variables

x εL1 ×=
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Multivariate Process

Since x is linearly related to ε we know x is a Gaussian process.

Trick: we only need to compute the mean and covariance of x to
determine that Gaussian.
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Latent Process Mean

x = L1ε
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Latent Process Mean

〈x〉 = 〈L1ε〉
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Latent Process Mean
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Latent Process Mean

〈x〉 = L1 〈ε〉

ε ∼ N (0, αI)
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Latent Process Mean

〈x〉 = L10
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Latent Process Mean

〈x〉 = 0
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Latent Process Covariance

xx> = L1εε
>L>1

x> = ε>L>
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Latent Process Covariance

〈
xx>
〉
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Latent Process Covariance
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Latent Process Covariance

〈
xx>
〉
= L1

〈
εε>
〉

L>1

ε ∼ N (0, αI)
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Latent Process Covariance

〈
xx>
〉
= αL1L>1
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Latent Process

x = L1ε
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Latent Process

x = L1ε

ε ∼ N (0, αI)
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Latent Process

x = L1ε

ε ∼ N (0, αI)

=⇒
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Latent Process

x = L1ε

ε ∼ N (0, αI)

=⇒
x ∼ N

(
0, αL1L>1

)
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Covariance for Latent Process II

Given
ε ∼ N (0, αI) =⇒ ε ∼ N

(
0, αL1L>1

)
.

Then
ε ∼ N (0,∆tαI) =⇒ ε ∼ N

(
0,∆tαL1L>1

)
.

where ∆t is the time interval between observations.
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Covariance for Latent Process II

ε ∼ N (0, α∆tI) , x ∼ N
(

0, α∆tL1L>1
)

K = α∆tL1L>1

ki ,j = α∆tl>:,i l:,j

where l:,k is a vector from the kth row of L1: the first k elements are one,
the next T − k are zero.

ki ,j = α∆t min(i , j)

define ∆ti = ti so

ki ,j = αmin(ti , tj ) = k(ti , tj )
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Covariance Functions
Where did this covariance matrix come from?

Markov Process

k
(
t, t ′
)

= αmin(t, t ′)

Covariance matrix is built
using the inputs to the
function t.
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Covariance Functions
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Simple Kalman Filter I

We have state vector X = [x1 . . . xq] ∈ RT×q and if each state evolves
independently we have

p(X) =
∏q

i=1 p(x:,i ) p(x:,i ) = N (x:,i |0,K).

We want to obtain outputs through:

yi ,: = Wxi ,:
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Stacking and Kronecker Products I

Represent with a ‘stacked’ system:

p(x) = N (x|0, I⊗K)

where the stacking is placing each column of X one on top of another
as

x =


x:,1

x:,2
...

x:,q


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Kronecker Product

aK bK

cK dK
K

a b

c d
⊗ =
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Kronecker Product
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Column Stacking

⊗ =
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Two Ways of Stacking

Can also stack as follows:

x =


x1,:

x2,:
...

xT ,:


p(x) = N (x|0,K⊗ I)
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Row Stacking

⊗ =
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For this stacking the marginal distribution over the latent variables is given
by the block diagonals.
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For this stacking the marginal distribution over the latent variables is given
by the block diagonals.
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Observed Process

If we relate the observations to the data as follows:

yi ,: = Wxi ,: + εi ,:

ε ∼ N
(
0, σ2I

)
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Output Covariance

This leads to a covariance of the form

(I⊗W)(K⊗ I)(I⊗W>) + Iσ2

Using (A⊗ B)(C⊗D) = AC⊗ BD This leads to

K⊗WW> + Iσ2

or
y ∼ N

(
0,WW> ⊗K + Iσ2

)
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Learning Covariance Parameters
Can we determine covariance parameters from the data?

N (y|0,K) =
1

(2π)
n
2 |K|

exp

(
−y>K−1y

2

)
The parameters are inside the covariance function

(matrix).

ki ,j = k(xi , xj ;θ)
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Learning Covariance Parameters
Can we determine covariance parameters from the data?

logN (y|0,K) = −n
2
log 2π−1

2
log |K|−y>K−1y

2

The parameters are inside the covariance function
(matrix).

ki ,j = k(xi , xj ;θ)

Lawrence () Vector Valued ICML Workshops 28 / 75



Learning Covariance Parameters
Can we determine covariance parameters from the data?

E (θ) =
1

2
log |K| + y>K−1y

2

The parameters are inside the covariance function
(matrix).

ki ,j = k(xi , xj ;θ)
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Eigendecomposition of Covariance

K = RΛ2R>

λ1

λ2

where Λ is a diagonal matrix and R>R = I.

Useful representation since |K| =
∣∣Λ2
∣∣ = |Λ|2.
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Capacity control: log |K|

λ1 0

0 λ2

λ1

Λ =
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Capacity control: log |K|

|Λ| = λ1λ2λ3

λ1 0 0

0 λ2 0

0 0 λ3

λ1

λ2
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Capacity control: log |K|

|RΛ| = λ1λ2

w1,1 w1,2

w2,1 w2,2

λ1

λ2

|Λ|
RΛ =
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Data Fit: y−1K−1y
2
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Data Fit: y−1K−1y
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Learning Covariance Parameters
Can we determine length scales and noise levels from the data?
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Gene Expression Example

Global expression estimation with l = 30

Global expression estimation with l = 15.6

Data from Della Gatta et al. (2008). Figure from Kalaitzis and Lawrence
(2011).
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Abstract

Inference in matrix-variate Gaussian models has major applications for multi-
output prediction and joint learning of row and column covariances from matrix-
variate data. Here, we discuss an approach for efficient inference in such models
that explicitly account for iid observation noise. Computational tractability can be
retained by exploiting the Kronecker product between row and column covariance
matrices. Using this framework, we show how to generalize the Graphical Lasso
in order to learn a sparse inverse covariance between features while accounting for
a low-rank confounding covariance between samples. We show practical utility on
applications to biology, where we model covariances with more than 100,000 di-
mensions. We find greater accuracy in recovering biological network structures
and are able to better reconstruct the confounders.

1 Introduction

Matrix-variate normal (MVN) models have important applications in various fields. These models
have been used as regularizer for multi-output prediction, jointly modeling the similarity between
tasks and samples [1]. In related work in Gaussian processes (GPs), generalizations of MVN distri-
butions have been used for inference of vector-valued functions [2, 3]. These models with Kronecker
factored covariance have applications in geostatistics [4], statistical testing on matrix-variate data [5]
and statistical genetics [6].

In prior work, different covariance functions for rows and columns have been combined in a flexible
manner. For example, Dutilleul and Zhang et al. [7, 1] have performed estimation of free-form
covariances with different norm penalties. In other applications for prediction [2] and dimension
reduction [8], combinations of free-form covariances with squared exponential covariances have
been used.

1These authors contributed equally to this work.

1

(Baldassarre
et al., 2012; Stegle et al., 2011)
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Lorenzo Rosasco and Neil D. Lawrence

Contents

1 Introduction 197

2 Learning Scalar Outputs

with Kernel Methods 200

2.1 A Regularization Perspective 200

2.2 A Bayesian Perspective 202

2.3 A Connection Between Bayesian

and Regularization Points of View 205

3 Learning Multiple Outputs with

Kernel Methods 207

3.1 Multi-output Learning 207

3.2 Reproducing Kernel for Vector-Valued Functions 209

3.3 Gaussian Processes for Vector-Valued Functions 211

4 Separable Kernels and Sum of Separable Kernels 213

4.1 Kernels and Regularizers 214

4.2 Coregionalization Models 217

4.3 Extensions 228

Lawrence () Vector Valued ICML Workshops 35 / 75



Kronecker Structure GPs

This Kronecker structure leads to several published models.

(K(x, x′))d ,d ′ = k(x, x′)kT (d , d ′),

where k has x and kT has n as inputs.

Can think of multiple output covariance functions as covariances with
augmented input.

Alongside x we also input the d associated with the output of interest.
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Separable Covariance Functions

Taking B = WW> we have a matrix expression across outputs.

K(x, x′) = k(x, x′)B,

where B is a p × p symmetric and positive semi-definite matrix.

B is called the coregionalization matrix.

We call this class of covariance functions separable due to their
product structure.
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Sum of Separable Covariance Functions

In the same spirit a more general class of kernels is given by

K(x, x′) =

q∑
j=1

kj (x, x′)Bj .

This can also be written as

K(X,X) =

q∑
j=1

Bj ⊗ kj (X,X),

This is like several Kalman filter-type models added together, but
each one with a different set of latent functions.

We call this class of kernels sum of separable kernels (SoS kernels).
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Geostatistics

Use of GPs in Geostatistics is called kriging.

These multi-output GPs pioneered in geostatistics: prediction over
vector-valued output data is known as cokriging.

The model in geostatistics is known as the linear model of
coregionalization (LMC, Journel and Huijbregts (1978); Goovaerts

(1997)).

Most machine learning multitask models can be placed in the context
of the LMC model.
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Weighted sum of Latent Functions

In the linear model of coregionalization (LMC) outputs are expressed
as linear combinations of independent random functions.

In the LMC, each component fd is expressed as a linear sum

fd (x) =

q∑
j=1

wd ,j uj (x).

where the latent functions are independent and have covariance
functions kj (x, x′).

The processes {fj (x)}q
j=1 are independent for q 6= j ′.
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Kalman Filter Special Case

The Kalman filter is an example of the LMC where ui (x)→ xi (t).

I.e. we’ve moved form time input to a more general input space.

In matrix notation:
1 Kalman filter

F = WX

2 LMC
F = WU

where the rows of these matrices F, X, U each contain q samples
from their corresponding functions at a different time (Kalman filter)
or spatial location (LMC).
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Intrinsic Coregionalization Model

If one covariance used for latent functions (like in Kalman filter).

This is called the intrinsic coregionalization model (ICM, Goovaerts

(1997)).

The kernel matrix corresponding to a dataset X takes the form

K(X,X) = B⊗ k(X,X).
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Autokrigeability

If outputs are noise-free, maximum likelihood is equivalent to
independent fits of B and k(x, x′) (Helterbrand and Cressie, 1994).

In geostatistics this is known as autokrigeability (Wackernagel, 2003).

In multitask learning its the cancellation of intertask transfer (Bonilla

et al., 2008).
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Intrinsic Coregionalization Model

K(X,X) = ww> ⊗ k(X,X).

w =

[
1
5

]
B =

[
1 5
5 25

]
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Intrinsic Coregionalization Model

K(X,X) = B⊗ k(X,X).

B =

[
1 0.5

0.5 1.5

]
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LMC Samples

K(X,X) = B1 ⊗ k1(X,X) + B2 ⊗ k2(X,X)

B1 =

[
1.4 0.5
0.5 1.2

]
`1 = 1

B2 =

[
1 0.5

0.5 1.3

]
`2 = 0.2
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LMC in Machine Learning and Statistics

Used in machine learning for GPs for multivariate regression and in
statistics for computer emulation of expensive multivariate computer
codes.

Imposes the correlation of the outputs explicitly through the set of
coregionalization matrices.

Setting B = Ip assumes outputs are conditionally independent given
the parameters θ. (Minka and Picard, 1997; Lawrence and Platt,
2004; Yu et al., 2005).

More recent approaches for multiple output modeling are different
versions of the linear model of coregionalization.
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Semiparametric Latent Factor Model

Coregionalization matrices are rank 1 Teh et al. (2005). rewrite
equation (??) as

K(X,X) =

q∑
j=1

w:,j w
>
:,j ⊗ kj (X,X).

Like the Kalman filter, but each latent function has a different
covariance.

Authors suggest using an exponentiated quadratic characteristic
length-scale for each input dimension.
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Semiparametric Latent Factor Model Samples

K(X,X) = w:,1w>:,1 ⊗ k1(X,X) + w:,2w>:,2 ⊗ k2(X,X)

w1 =

[
0.5
1

]
w2 =

[
1

0.5

]
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Gaussian processes for Multi-task, Multi-output and
Multi-class

Bonilla et al. (2008) suggest ICM for multitask learning.

Use a PPCA form for B: similar to our Kalman filter example.

Refer to the autokrigeability effect as the cancellation of inter-task
transfer.

Also discuss the similarities between the multi-task GP and the ICM,
and its relationship to the SLFM and the LMC.
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Multitask Classification

Mostly restricted to the case where the outputs are conditionally
independent given the hyperparameters φ (Minka and Picard, 1997;

Williams and Barber, 1998; Lawrence and Platt, 2004; Seeger and Jordan,

2004; Yu et al., 2005; Rasmussen and Williams, 2006).

Intrinsic coregionalization model has been used in the multiclass
scenario. Skolidis and Sanguinetti (2011) use the intrinsic
coregionalization model for classification, by introducing a probit
noise model as the likelihood.

Posterior distribution is no longer analytically tractable: approximate
inference is required.
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Computer Emulation

A statistical model used as a surrogate for a computationally
expensive computer model.

Higdon et al. (2008) use the linear model of coregionalization to
model images representing the evolution of the implosion of steel
cylinders.

In Conti and O’Hagan (2009) use the ICM to model a vegetation
model: called the Sheffield Dynamic Global Vegetation Model
(Woodward et al., 1998).
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Outline

1 Background

2 Convolution Processes

3 Motion Capture Example
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Convolution Process

A convolution process is a moving-average construction that
guarantees a valid covariance function.

Consider a set of functions {fj (x)}p
j=1.

Each function can be expressed as

fj (x) =

∫
X

Gj (x− z)u(z)dz = Gj (x) ∗ u(x).

Influence of more than one latent function, {ui (z)}q
i=1 and inclusion

of an independent process wj (x)

yj (x) = fj (x) + wj (x) =

q∑
i=1

∫
X

Gj ,i (x− z)ui (z)dz + wj (x).
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A pictorial representation

u(x)

u(x): latent function.
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A pictorial representation

u(x)

G (x)
1

G (x)
2

u(x): latent function.

G(x): smoothing kernel.
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G (x)
2

(f x)2

(f x)1
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A pictorial representation

u(x)

G (x)
1

G (x)
2

(f x)2

(f x)1
(w x)1

(w x)2

u(x): latent function.

G(x): smoothing kernel.

f(x): output function.

w(x): independent process.
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A pictorial representation

u(x)

G (x)
1

G (x)
2

(f x)2

(f x)1
(w x)1

(w x)2

(y x)1

(y x)2

u(x): latent function.

G(x): smoothing kernel.

f(x): output function.

w(x): independent process.

y(x): noisy output function.
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Covariance of the output functions.

The covariance between yj (x) and yj ′(x′) is given as

cov
[
yj (x), yj ′(x′)

]
=cov

[
fj (x), fj ′(x′)

]
+ cov

[
wj (x),wj ′(x′)

]
δj ,j ′

where

cov
[
fj (x), fj ′(x′)

]
=

∫
X

Gj (x− z)

∫
X

Gj ′(x′ − z′)cov
[
u(z), u(z′)

]
dz′dz
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Different forms of covariance for the output functions.

Input Gaussian process

cov
[
fj , fj ′

]
=

∫
X

Gj (x− z)

∫
X

Gj ′(x′ − z′)ku,u(z, z′)dz′dz

Input white noise process

cov
[
fj , fj ′

]
=

∫
X

Gj (x− z)Gj ′(x′ − z)dz

Covariance between output functions and latent functions

cov [fj , u] =

∫
X

Gj (x− z′)ku,u(z′, z)dz′
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Dimensionality Reduction

Linear relationship between the data, X ∈ <n×p, and a reduced
dimensional representation, F ∈ <n×q, where q � p.

X = FW + ε,

ε ∼ N (0,Σ)

Integrate out F, optimize with respect to W.

For Gaussian prior, F ∼ N (0, I)
I and Σ = σ2I we have probabilistic PCA (Tipping and Bishop, 1999;

Roweis, 1998).
I and Σ constrained to be diagonal, we have factor analysis.
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Dimensionality Reduction: Temporal Data

Deal with temporal data with a temporal latent prior.

Independent Gauss-Markov priors over each fi (t) leads to :
Rauch-Tung-Striebel (RTS) smoother (Kalman filter).

More generally consider a Gaussian process (GP) prior,

p (F|t) =

q∏
i=1

N
(
f:,i |0,Kf:,i ,f:,i

)
.

Lawrence () Vector Valued ICML Workshops 59 / 75



Joint Gaussian Process

Given the covariance functions for {fi (t)} we have an implied
covariance function across all {xi (t)}—(ML: semi-parametric latent
factor model (Teh et al., 2005), Geostatistics: linear model of
coregionalization).

Rauch-Tung-Striebel smoother has been preferred
I linear computational complexity in n.
I Advances in sparse approximations have made the general GP

framework practical. (Titsias, 2009; Snelson and Ghahramani, 2006;

Quiñonero Candela and Rasmussen, 2005).
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Mechanical Analogy

Back to Mechanistic Models!

These models rely on the latent variables to provide the dynamic
information.

We now introduce a further dynamical system with a mechanistic
inspiration.

Physical Interpretation:

I the latent functions, fi (t) are q forces.
I We observe the displacement of p springs to the forces.,
I Interpret system as the force balance equation, XD = FS + ε.
I Forces act, e.g. through levers — a matrix of sensitivities, S ∈ <q×p.
I Diagonal matrix of spring constants, D ∈ <p×p.
I Original System: W = SD−1.
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Extend Model

Add a damper and give the system mass.

FS = ẌM + ẊC + XD + ε.

Now have a second order mechanical system.

It will exhibit inertia and resonance.

There are many systems that can also be represented by differential
equations.

I When being forced by latent function(s), {fi (t)}q
i=1, we call this a

latent force model.
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Marionette
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Mass Spring Damper Analogy

d1

c1 m1
s1f (t)

x1(t)

s1

d2

c2 m2
s2f (t)

x2(t)

s2

f (t)

mass

spring

damper

observations

latent input

pulleys

Figure: Mass spring damper analogy, an unobserved force drives multiple
oscillators.
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Gaussian Process priors and Latent Force Models
Driven Harmonic Oscillator

For Gaussian process we can compute the covariance matrices for the
output displacements.

For one displacement the model is

mk ẍk(t) + ck ẋk(t) + dkxk(t) = bk +

q∑
i=0

sik fi (t), (1)

where, mk is the kth diagonal element from M and similarly for ck

and dk . sik is the i , kth element of S.

Model the latent forces as q independent, GPs with exponentiated
quadratic covariances

kfi fl
(t, t ′) = exp

(
−(t − t ′)2

2`2
i

)
δil .
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Covariance for ODE Model

Exponentiated Quadratic Covariance function for f (t)

xj (t) =
1

mjωj

q∑
i=1

sji exp(−αj t)

∫ t

0
fi (τ) exp(αjτ) sin(ωj (t − τ))dτ

Joint distribution
for x1 (t), x2 (t),
x3 (t) and f (t).
Damping ratios:

ζ1 ζ2 ζ3

0.125 2 1
f(t) y

1
(t) y

2
(t) y

3
(t)

f(
t)

y 1(t
)

y 2(t
)

y 3(t
)

−0.4

−0.2

0

0.2

0.4

0.6

0.8
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Covariance for ODE Model

Analogy

x =
∑

i

e>i fi fi ∼ N (0,Σi )→ x ∼ N

(
0,
∑

i

e>i Σi ei

)

Joint distribution
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x3 (t) and f (t).
Damping ratios:

ζ1 ζ2 ζ3

0.125 2 1
f(t) y

1
(t) y

2
(t) y

3
(t)

f(
t)

y 1(t
)

y 2(t
)

y 3(t
)

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Lawrence () Vector Valued ICML Workshops 66 / 75



Covariance for ODE Model

Exponentiated Quadratic Covariance function for f (t)

xj (t) =
1

mjωj

q∑
i=1

sji exp(−αj t)

∫ t

0
fi (τ) exp(αjτ) sin(ωj (t − τ))dτ

Joint distribution
for x1 (t), x2 (t),
x3 (t) and f (t).
Damping ratios:

ζ1 ζ2 ζ3

0.125 2 1
f(t) y

1
(t) y

2
(t) y

3
(t)

f(
t)

y 1(t
)

y 2(t
)

y 3(t
)

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Lawrence () Vector Valued ICML Workshops 66 / 75



Joint Sampling of x (t) and f (t)

lfmSample
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Figure: Joint samples from the ODE covariance, black: f (t), red: x1 (t)
(underdamped), green: x2 (t) (overdamped), and blue: x3 (t) (critically
damped).
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Covariance for ODE

Exponentiated Quadratic Covariance function for f (t)

xj (t) =
1

mjωj

q∑
i=1

sji exp(−αj t)

∫ t

0
fi (τ) exp(αjτ) sin(ωj (t − τ))dτ

Joint distribution
for x1 (t), x2 (t),
x3 (t) and f (t).

Damping ratios:
ζ1 ζ2 ζ3
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Outline

1 Background

2 Convolution Processes

3 Motion Capture Example
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Example: Motion Capture

Mauricio Alvarez and David Luengo (Álvarez et al., 2009, 2011)

Motion capture data: used for animating human motion.

Multivariate time series of angles representing joint positions.

Objective: generalize from training data to realistic motions.

Use 2nd Order Latent Force Model with mass/spring/damper (resistor
inductor capacitor) at each joint.
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Prediction of Test Motion

Model left arm only.

3 balancing motions (18, 19, 20) from subject 49.

18 and 19 are similar, 20 contains more dramatic movements.

Train on 18 and 19 and testing on 20

Data was down-sampled by 32 (from 120 fps).

Reconstruct motion of left arm for 20 given other movements.

Compare with GP that predicts left arm angles given other body
angles.
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Mocap Results

Table: Root mean squared (RMS) angle error for prediction of the left arm’s
configuration in the motion capture data. Prediction with the latent force model
outperforms the prediction with regression for all apart from the radius’s angle.

Latent Force Regression
Angle Error Error
Radius 4.11 4.02
Wrist 6.55 6.65

Hand X rotation 1.82 3.21
Hand Z rotation 2.76 6.14

Thumb X rotation 1.77 3.10
Thumb Z rotation 2.73 6.09
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Mocap Results II
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Figure: Predictions from LFM (solid line, grey error bars) and direct regression
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