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Talk Overview

@ Feynman had experience of biology.
“There's Plenty of Room at the Bottom: An Invitation to Enter a
New Field of Physics” Feynman (1959).

@ This talk
“There's Still a lot of Room Here: An Invitation to Enter Another
Sub-field of Machine Learning” Lawrence (2008).

@ Systems biology: Interaction of Biological Components

o Differentiates from a Reductionist approach to biology that previously
dominated.
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component parts.
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Reductionist Thinking

@ Reductionism Garfinkel (1991) breaks down a system into its
component parts.

v

The Max Planck society is just a collection of reseach institutes.

A Max Planck institute is just a collection of clever people.
Conclusion: to understand the Max Planck Society we must just
understand clever people.

A human body is just a collection of biological cells.

A biological cell is just a collection of biochemical interactions.
Conclusion: To understand a human being we just need to understand
what each gene does.
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Systems Approach

@ There is little point in reducing a system as far as its component parts
(quarks and leptons ... strings (M-theory) ...) if the questions are at a
higher level.
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Systems Approach

@ There is little point in reducing a system as far as its component parts

(quarks and leptons ... strings (M-theory) ...) if the questions are at a
higher level.

@ Disease mechanisms may affect one gene, but finding a target for a
cure involves the whole pathway.

@ Study the system at the level in which we want to ask questions:

» e.g. Which proteins interact in the ERK/MAPK signalling
pathway?

This is a critical pathway in cell proliferation. Of strong interest in
cancer.
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@ Where does machine learning come in?
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Machine Learning and Systems Biology

@ Where does machine learning come in?
» Models of interaction are not fully characterised. Use inference and
learning to deal with unknowns.
@ Is this what we normally do?
» No — models are mechanistic in inspiration not black box.
» However, perhaps it's what we will do in the future!
@ My prediction: Machine learning in the future will have two major
foci.
> V. large data sets. e.g. prediction of relevant adverts.
» Small data set relative to complexity of the system.

* Not enough information to describe the model. Need to turn to
mechanistic models to help.
* Lessons from large data set will still apply as system may be very
complex!
@ A big focus for our research in Manchester: inference in mechanistic
models.
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Systems Biology

@ Systems biology provides an oppurtunity to analyse complex systems
by combining prior knowledge with data.
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Systems Biology

@ Systems biology provides an oppurtunity to analyse complex systems
by combining prior knowledge with data.

@ Integrate data with knowledge of the chemical kinetics of the system.
e This talk:

Review of transcription.

Chemical kinetics in a simple synthetic biology system.
Inference of hidden variables in single input motifs.
Model selection through Bayes factors (given time!).

vV v vy
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Transcriptional regulation of gene expression
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Transcriptional regulation of gene expression
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RNA Polymerase

Figure: RNA Polymerase transcribing RNA from DNA. Image from “"Molecule of

the Month"” at the protein data bank:
http://mgl.scripps.edu/people/goodsell/pdb/pdb98/pdb98_1.html
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@ Real biology involves interaction of several systems.
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The Repressilator

@ Real biology involves interaction of several systems.
@ The repressilator is the first synthetic biology oscilator.
@ Implemented in E. coli bacteria.

@ How do we model such a system?
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The Repressilator
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Figure: Repressilator Plasmid. (Elowitz and Leibler, 2000)
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Bacteria Plasmids

Bacterial DNA Plasmids

Figure: Schematic of a bacterium with plasmids (Image from wikimedia
commons).
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Repressilator Results

Time (min)

Fluorescence
(arbitrary units)
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Figure: Observations of GFP. Source http://en.wikipedia.org/wiki/Image:
Repressilator_observations_1.png
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© Chemical Background
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Stochastic Process and Mass Action Kinetics

Further reading: Wilkinson (2006, Chapters 1 and 6)

@ Mass action kinetics — reaction occurs when relevant molecules
collide.
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Stochastic Process and Mass Action Kinetics

Further reading: Wilkinson (2006, Chapters 1 and 6)

@ Mass action kinetics — reaction occurs when relevant molecules
collide.

@ Probability of any given reaction, i, occuring in a given instant
interval of time dt is given by h;dt + o (dt).

» Where h; is a rate law or hazard function. It is dependent on the
current state of the system and ¢; a stochastic rate constant.

@ Represent a reaction in the form
X1+ Xo — X3+ X,

where X7 and X; are the reactants and X3 and X; are the products.
Denote numbers of each species by x1, xo, x3 and x4. State of the
system given by vector x.
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Stochastic Mass Action Kinetics

@ Zeroth order:
0— X1

probability of this reaction in interval dt is h;dt = ¢;dt
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X1 — 0

probability of this rection in interval dt is h;dt = ¢;xydt

@ Second order:
X1+ Xo — Xj,

probability of this reaction in interval dt is h;dt = ¢ixyxodt.

Neil D. Lawrence (Ringberg Castle) ML Systems Biology



Stochastic Mass Action Kinetics

@ Zeroth order:
0— X1
probability of this reaction in interval dt is h;dt = ¢;dt
o First order (e.g. decay):
X1 — 0
probability of this rection in interval dt is h;dt = ¢;xydt
@ Second order:
X1+ Xo — Xj,
probability of this reaction in interval dt is h;dt = ¢ixyxodt.

@ For individual reaction, waiting time, 7;, is sampled from
P (T,') = h,' exp (—h,'T,').
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@ Typical system has multiple reactions at the same time.
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jSj=1"
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@ Each reaction can affect all other hazard functions, h; (x, ¢;).
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waiting time until the reaction would be given by an exponential.

In practice there are other reactions and associated hazards,
h= {h}}

S j=1
Each reaction can affect all other hazard functions, h; (x, ¢;).
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Combining Reactions

Typical system has multiple reactions at the same time.

The hazard is a “rate” parameter — if there were no other reactions
waiting time until the reaction would be given by an exponential.

In practice there are other reactions and associated hazards,
h= {h}}

S j=1
Each reaction can affect all other hazard functions, h; (x, ¢;).

Sample from the system (Gillespie's first reaction method):

(1) Samk)ﬂle time of next reaction from all reactions:
{T,'},-Zl, Ti ~ h,' exp(—h,-T,-) .
@ Find next reaction p = argmin;T;.
© Update state of system, x, according to rule for that reaction.
@ Recompute vector of hazards, h.
© Repeat
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Gillespie's Direct Method

@ Previous sampling scheme: M random numbers (1 for each reaction).
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Gillespie's Direct Method

@ Previous sampling scheme: M random numbers (1 for each reaction).
@ Exploit properties of exponential:
» 7; is the minimum value from {7;}", sampled from different
exponentials with rates {h,-}i'\il.
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Gillespie's Direct Method

@ Previous sampling scheme: M random numbers (1 for each reaction).

@ Exploit properties of exponential:

» 7; is the minimum value from {7;}", sampled from different
exponentials with rates {h,-}i'\il.

» This implies: 7; ~ hy exp (—ho7j) where hy = - h; and is known as
the combined reaction hazard.
> je. in each small time interval probability of any reaction is hodt.

@ The probability of it having arisen from the jth reaction is given by

hj
ho

cf superposition of Poisson processes.
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Sampling the System

Gillespie Direct Method
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Gillespie Direct Method
@ Compute the hazards, h.

@ Sample time of next reaction from 7, ~ hg exp (—ho7y)

© Determine which reaction it was: sample p from a multinomial with
probabilities given by Z—é

© Update the state of the system, x.

© Increment time t — t + 7.

@ Repeat until simulation time complete.
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Sampling the System

Gillespie Direct Method
@ Compute the hazards, h.

@ Sample time of next reaction from 7, ~ hg exp (—ho7y)

© Determine which reaction it was: sample p from a multinomial with
probabilities given by Z—é

© Update the state of the system, x.

© Increment time t — t + 7.

@ Repeat until simulation time complete.

e Thisis O (M).
@ Can do in O (log M) — use a dependency graph to determine when
things need calculation Gibson and Bruck (2000).

Neil D. Lawrence (Ringberg Castle) ML Systems Biology



Repressilator Simulation

Translation:

mlac — Lac + mlac

First order reaction of mMRNA from /ac gene to protein plus mRNA from
lac gene.
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Repressilator Simulation

mRNA decay:
mlac — 0

First order reaction of mRNA from /ac gene.
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Repressilator Simulation

Protein decay:
Lac— 0

First order reaction of Lac protein.
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Repressilator Simulation

Transcription:
lac + RNAP — mlac + RNAP + lac

Second order reaction of /ac gene and RNA polymerase to lac mRNA, lac
gene and RNA polymerase.
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Repressilator Simulation

Protein (TF) bound to promoter:

Cl+lac — Cl-lac

Second order reaction, TF protein (Cl) from another gene binds to /ac
promoter (represented by the gene). This prevents transcription.
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Repressilator Simulation

Protein unbinds from promoter:

Cl-lac — Cl + lac

First order reaction, TF protein and /ac promoter region unbind, allowing
transcription to take place.
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Other Implementation Details

@ The effect of each reaction is stored in a matrix S, the stoichiometry
matrix.

@ A row of this matrix is added to the state vector, x, to account for
effects from each reaction.
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Simulation Result
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Figure: Simulation of repressilator using Gillespie algorithm.
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@ Simulation from the system assumes we know structure
(stoichiometric matrix, S) and parameters (stochastic rate
parameters, c).
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@ Simulation from the system assumes we know structure
(stoichiometric matrix, S) and parameters (stochastic rate
parameters, c).

@ Structure may be known or assumed.
@ Specifying parameters is more complex.

> In chemistry in vitro measurements can be made.
» In biology this is more difficult and perhaps less valid.

@ Can we do learning? — this is where we come in!

» If x is observed directly in v. high time resolution: yes.
» In practice it is indirectly observed in lower time resolution.

@ Learning in stochastic systems is difficult as marginalisation of these
unknowns is required.
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A Deterministic Approximation

@ Approximate the stochastic system by dealing in deterministic
concentrations.
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A Deterministic Approximation

@ Approximate the stochastic system by dealing in deterministic
concentrations.

@ In chemistry concentrations involve large numbers, and the
approximation is good.

@ In biology this is less true.
@ For Mass Action Kinetics:

X1+ X0 — X3
X3 —0
leads to 41%]
— = kXXl - ke [Xi]

with [X;] representing concentration of species X;.
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Repressilator Simulation

Translation:

mlac — Lac + mlac

L
d [d?C] = —ks [Lac] — ks [Lac] [mtetR] + ks [mlac] + ke [Lac - tetR]

First order reaction of mMRNA from /ac gene to protein plus mRNA from
lac gene.
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Repressilator Simulation

mRNA decay:
mlac — 0

d [mlac]
dt
First order reaction of mRNA from /ac gene.

= k1 [RNAP] [lacll] —kz [mlac]
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Repressilator Simulation

Protein decay:
Lac — 0

d[L
[djc] = —ks [Lac] — kq [Lac] [mtetR] + ks [mlac] + ke [Lac - tetR]

First order reaction of Lac protein.
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Repressilator Simulation

Transcription:

lac + RNAP — mlac + RNAP + lac

d [mlac]
dt

Second order reaction of /ac gene and RNA polymerase to lac mRNA, Jac
gene and RNA polymerase.

= ki [RNAP] [lacl] — ko [mlac]
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Repressilator Simulation

Protein (TF) bound to promoter:

Cl+lac — Cl-lac

% = kg [Cl] [lac]—ki0 [Cl - lac]
% = —kz [Cl] —ks [Cl] [lac] + ko [mcl] + k1o [CI - lac]
d Eic] = —kg [Cl] [lac] 4 k10 [CI - lac]

Second order reaction, TF protein (Cl) from another gene binds to /ac
promoter (represented by the gene). This prevents transcription.
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Repressilator Simulation

Protein unbinds from promoter:

Cl-lac — Cl + lac

% = kg [Cl] [lac] — k1o [CI - lac]
% = —k7 [Cl] — ks [Cl] [lac] + ko [mcl] + ko [C] - lac]
d E;C] = —kg [CI] [lac] + ki [CI - lac]

First order reaction, TF protein and /ac promoter region unbind, allowing
transcription to take place.
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Simulated Repressilator

25

o0 500 1000 1500 2000 2500 3000

Figure: Simulation of repressilator based on ODEs from COPASI Hoops et al.
(2006).
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Fitting ODE Models

@ Find parameters that allow model to fit a given data set.

@ For given parameters and inital conditions solve the system and
compare to data.

@ Minimise the least squares match to the data with respect to
parameters and initial conditions.

@ Multimodal optimisation: tools available for fitting (COPASI Hoops
et al. (2006)).

@ Problems remain:

© How do we deal with a missing chemical species (e.g. TF
concentration)?
We'll look at this next and in Part Il.

@ What to do if certain parameters aren’t well identified?
The system outputs may be insensitive to some parameters.

@ If several hypothesised models exist, which should we choose?
We'll look briefly at this at the end if there's time.
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Outline

e Modelling Transcriptional Regulation
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ODE Model of Activation

@ Linear Activation Model (Barenco et al., 2006, Genome Biology)

dx; (1)

o -5t Sif (t) — Djx; (t)

@ Slight change in notation:
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ODE Model of Activation

@ Linear Activation Model (Barenco et al., 2006, Genome Biology)

dx; (1)

o -5t Sif (t) — Djx; (t)

@ Slight change in notation:

> Xx;j(t) — concentration of gene j's mRNA
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ODE Model of Activation

@ Linear Activation Model (Barenco et al., 2006, Genome Biology)

dx; (1)

o -5t Sif (t) — Djx; (t)

@ Slight change in notation:

> Xx;j(t) — concentration of gene j's mRNA
» f(t) — concentration of active transcription factor
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ODE Model of Activation

@ Linear Activation Model (Barenco et al., 2006, Genome Biology)

dx; (t)
S = B 5 (1) - Dy (1)
@ Slight change in notation:

> Xx;j(t) — concentration of gene j's mRNA
» f(t) — concentration of active transcription factor
» Model parameters: baseline B;, sensitivity S; and decay D;
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ODE Model of Activation

@ Linear Activation Model (Barenco et al., 2006, Genome Biology)

dx; (1)

o = B Sf(t) - Dix(t)

@ Slight change in notation:

v

X;(t) — concentration of gene j’'s mRNA

f(t) — concentration of active transcription factor

Model parameters: baseline B;, sensitivity S; and decay D;
Application: identifying co-regulated genes (targets)

v vyy
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ODE Model of Activation

@ Linear Activation Model (Barenco et al., 2006, Genome Biology)

dx; (1)

o = B Sf(t) - Dix(t)

@ Slight change in notation:

v

X;(t) — concentration of gene j’'s mRNA

f(t) — concentration of active transcription factor

Model parameters: baseline B;, sensitivity S; and decay D;
Application: identifying co-regulated genes (targets)

Problem: how do we fit the model when f(t) is not observed?

v vy VvYy
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Why use a model-based approach?

@ Model based approach to co-regulated targets ...

» clustering is often used but,
» co-regulated genes can differ greatly in their expression profiles
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Why use a model-based approach?

@ Model based approach to co-regulated targets ...

» clustering is often used but,
» co-regulated genes can differ greatly in their expression profiles
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Why use a model-based approach?

@ Model based approach to co-regulated targets ...

» clustering is often used but,
» co-regulated genes can differ greatly in their expression profiles
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Why use a model-based approach?

@ Model based approach to co-regulated targets ...

» clustering is often used but,
» co-regulated genes can differ greatly in their expression profiles

s 210764_t - CYR61 4 204748 t - PTGS2
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@ Clustering cannot be relied on to identify co-regulated genes
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Why use a model-based approach?

@ Model based approach to co-regulated targets ...

» clustering is often used but,
» co-regulated genes can differ greatly in their expression profiles

s 210764_t - CYR61 4 204748 t - PTGS2
10 s 10 a
2
’ [ [
l 15
15 { {
| I
i
0.5 ]
05|
By i
0 2 4 6 8 10 0 2 4 6 8 10

@ Clustering cannot be relied on to identify co-regulated genes

@ A model-based approach is required
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Cell Damage

@ Radiation damages molecules in the cell.
@ Most of this damage is quickly repaired — single strand breaks,
backbone break.
@ Double strand breaks are more serious — a complete disconnect along
the chromosome.
@ Cell cycle stages:
» Gy: Cell is not dividing.
» Gy Cell is preparing for meitosis, chromosomes have divided.
» S: Cell is undergoing meitosis (DNA synthesis).
@ Main problem is in G1. In G2 there are two copies of the

chromosome. In G1 only one copy.
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p53 “Guardian of the Cell”

Responsible for Repairing DNA damage
Activates DNA Repair proteins
Pauses the Cell Cycle (prevents replication of damage DNA)

Initiates apoptosis (cell death) in the case where damage can't be
repaired.

Large scale feeback loop with NF-xB.
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p53 DNA Damage Repair

Figure: pb3. Left unbound, Right bound to DNA. Images by David S. Goodsell
from http://www.rcsb.org/ (see the “Molecule of the Month” feature).
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Figure: Repair of DNA damage by p53. Image fromGoodsell (1999).




Some p53 Targets

DDB2 DNA Damage Specific DNA Binding Protein 2. (also
governed by C/ EBP-beta, E2F1, E2F3,...).

p21 Cycline-dependent kinase inhibitor 1A (CDKN1A). A
regulator of cell cycle progression. (also goverened by
SREBP-1a, Sp1, Sp3,... ).

hPA26/SESN1 sestrin 1 Cell Cycle arrest.
BIK BCL2-interacting killer. Induces cell death (apoptosis)

TNFRSF10b tumor necrosis factor receptor superfamily, member 10b. A
transducer of apoptosis signals.
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Modelling Assumption

@ Assume pb3 affects targets as a single input module network motif
(SIM).

TNFRSF10b

PA26

Figure: p53 SIM network motif as modelled by Barenco et al. 2006.

Neil D. Lawrence (Ringberg Castle) ML Systems Biology



Response of p53 to lonizing Radiation

@ Experiment by Barenco et al. 2006.

@ Human leukemia cell line (MOLT4) containing functional p53 and
harvested protein and RNA at regular intervals after irradiation.

@ The time course was performed in triplicate, and mRNA
concentrations measured using Affymetrix UL33A microarrays.
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Mathematical Model

@ Reorder differential equations

dx; (t)
dt

+ Djx; (t) = B; + ij(t)

e We have observation of x; (t).

@ An estimate of dl(('j{g—t) is obtained through fitting polynomials.

e Jointly estimate f (t) at observations of time points along with
{Bj. Dj, S}y
@ Use MCMC sampling or maximum likelihood for parameters.
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Response of p53
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Figure: Results from Barenco et al. (2006). Top is parameter estimates. Bottom

is inferred profile.
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Respose to p53 ...

5Gy IR (h) 0 2 4 6 8 10 12
ser15P-p53

Actin

Relative density

Time (h)

Figure: Results from Barenco et al. (2006). Activity profile of p53 was measured
by Western blot to determine the levels of ser-15 phosphorylated p53

o D
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Models of non-linear regulation
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Models of non-linear regulation

@ Non-linear Activation: Michaelis-Menten Kinetics

dx (t) _ B, Sif (t)
dt 7 4+ 1 (1)

— D,'X,' (t)

used by Rogers and Girolami (2006)
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Models of non-linear regulation

@ Non-linear Activation: Michaelis-Menten Kinetics

dx; (t) Sif (t)
=B+ ——75 —Dixi(t
dt * vi + () xi ()
used by Rogers and Girolami (2006)
@ Non-linear Repression
dx; (t) S;
dt '+’y,-+f(t) i (t)

used by Khanin et al., 2006, PNAS 103
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SOS Response

@ Post replication DNA system: allows DNA replication to bypass errors
in the DNA.

@ DNA damage may occur as a result of activity of antibiotics.

@ LexA is bound to the genome preventing transcription of the SOS
genes.

@ RecA protein is stimulated by single stranded DNA, inactivates the
LexA repessor.

@ This allows several of the LexA targets to transcribe.

@ The SOS pathway may be essential in antibiotic resistance Cirz et al.
(2005).

@ Aim is to target these proteins to produce drugs to increase efficacy
of antibiotics Lee et al. (2005).
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LexA Experimental Description

e Data from Courcelle et al. (2001)

@ UV irradiation of E. coli. in both wild-type cells and lexAl mutants,
which are unable to induce genes under LexA control.

@ Response measured with two color hybridization to cDNA arrays.
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Their Model

Given measurements of gene expression at N time points (o, t1, ..., ty—1),
the temporal profile of a gene /, x; (t), that solves the ODE in Eq. 1 can
be approximated by

=
N

Bi | Sie—éitl (Pt _ ¢Pity) 1

0,5t
Xi(t)=x7e " + =
(1) =x Di D; « i+ fj

(-
I
o

where E = Mg(tﬁl)) on each subinterval
(tj,tj+1),j=0,...,N—2. This is under the simplifying assumption
that f (t) is a piece-wise constant function on each subinterval (t;,t; 4 1).
One can come up with linear (or higher order) f (t) approximations
on each subinterval. This will introduce additional parameters,
which will be impossible to infer with any certainty given limited
amount of data.

Khanin et al. (2006)
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Their Results

A
00 02 04 06 08 10 12

08

Figure: Fig. 2 from Khanin et al. (2006): Reconstructed activity level of master
repressor LexA, following a UV dose of 40 J/m2.
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Their Results

Gene expression

Gene expression
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Figure: Fig. 3 from Khanin et al. (2006):

the LexA SIM.
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Actin and Ribosomes

Figure: E. coli cell. Illustration courtesy of David S. Goodsell
http://mgl.scripps.edu/people/goodsell/illustration/public.
Confined structure leads to attempts to characterise diffusion in confined spaces,
e.g. Schuss et al. (2007
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@ Signalling Pathway
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ERK Signalling Pathway

o Epidermal Growth Factor
40,000-100,000 EGFR per cell.

@ Over expressed in tumours —
some breast cancer cells
2 x 10%receptors per cell Herbst
(2004).

@ Over expression leads to an
intense signal generation and
activation of down stream
signalling pathways.

cytoplasm

transcnphon' nucleus
Figure: MAPK Pathway
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Multiple Mechanistic Models

Vyshemirsky and Girolami (2008).

@ Multiple mechanistic models describing a pathway.
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Multiple Mechanistic Models

Vyshemirsky and Girolami (2008).

@ Multiple mechanistic models describing a pathway.

Model 1
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Multiple Mechanistic Models

Vyshemirsky and Girolami (2008).

@ Multiple mechanistic models describing a pathway.

Model 1 Model 2
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Multiple Mechanistic Models

Vyshemirsky and Girolami (2008).

@ Multiple mechanistic models describing a pathway.

Model 1 Model 2 Model 3
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Differential Equations

Models are formally defined using systems of ordinary differential
equations:

d[ECF] _ _ | [EGF][EGFR]
dt

d[Rapl,] Keat12 [Rapl;] Viz [Rapl,]

2 = il_[EPAC] — 3 1TaP2l

dt Kmi2 + [Rapl}] [ ] Kis + [Rapl,]
AIMEK] _ _ Keoos [MEK][Raf] — 1 Kooz [MEK] (o o

dt - Kmo1 + [MEK] Kmoo + [MEK]

Model 1 Model 2

50 kinetic parameters | 55 kinetic parameters
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Bayes Factors

@ Which hypothesised structure is best supported by the data?

@ Use Bayes factors: gméig;, ratio of model marginal likelihoods.

e Difficulty is computing P (M1|D).

@ Turn to the thermodynamic integral for results.
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Thermodynamic Integral

Gelman and Meng (1998)

p(x|6, M)* p (6]M)

p(Olx, M,a) = Z,
d 1 d
@ log Z, = Z—aﬁza = <|ng(x|0)>p(9|x,M,a)

giving
1
log p (x| M) = /0 (108 p (X16)) g 1.7

Need samples from different temperatures.
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Posterior for Different «

Figure: Annnealing of likelihood. Top is prior bottom is posterior (here o = 1)
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Posterior for Different «

Figure: Annnealing of likelihood. Top is prior bottom is posterior (here o = 0.55 )
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Posterior for Different «

Figure: Annnealing of likelihood. Top is prior bottom is posterior (here o = 0.28 )
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Posterior for Different «

Figure: Annnealing of likelihood. Top is prior bottom is posterior (here & = 0.13)
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Posterior for Different «

Figure: Annnealing of likelihood. Top is prior bottom is posterior (here o = 0.05 )
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Posterior for Different «

Figure: Annnealing of likelihood. Top is prior bottom is posterior (here a = 0)
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Population Monte Carlo

o Further problems from highly multimodal posteriors — use population
Monte Carlo methods.

-

e —

Figure: Far Left: standard Monte Carlo gets stuck in different modes. Middle left:
exploration of space for low «. Middle right: intermediate a allows movement
between modes. Far left: information is exchanged between samples to allow full
exploration of posterior.
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Bayes Factors for ERK signalling: Result

1:1,000,000

Model2

B Model1
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Hypothesis Implications

@ Double branched model has much better support from the
experimental evidence: leads to a robust system.
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@ BRaf was found to be more active than Raf-1. This is confirmed by a
number of publications in biochemical journals.
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Hypothesis Implications

@ Double branched model has much better support from the
experimental evidence: leads to a robust system.

@ BRaf was found to be more active than Raf-1. This is confirmed by a
number of publications in biochemical journals.

@ siRNA Knock-Down experiments have confirmed dual-branch
hypothesis (Walter Kolch).
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o
© Conclusions
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Summary and Conclusions

@ Systems biology presents us with models and data.

@ Challenge for machine learning: introduce our inference techniques to
this domain.

@ Lots of work on methodological developments necessary still.

@ Next part: an approach to dealing with differential equations with
missing chemical species.

» Gaussian processes allow integration of Bayesian probabilistic inference
with differential equations.
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