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Motivation: Static pose rotating 360°

e Data consists of actual pose and features derived from silhoutte (data
artificially generated in Poser)

@ Visualization on the left from silhouette features. Visualization on the
right from pose features.
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Our Approach

@ Reduce dimensionality of the data.

» Non linear dimensionality reduction.
» Underlying assumption that data is really low dimensional — e.g. a
prototype with non-linear distortions.

@ Fusion of different modalities.

» Concatanate data observations
» Y = [y1...yn]" € RV*D (silhouette)
» Z=z1...2n]" € RV*D7 (pose).
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Fusion of the Data

@ Assume data sets have intrinsic low dimensionality, X = [x1,...,xy
where x, € 19, g < D, and q < D,.

]T

Yoi = £ (xn) + €Xis 2 = £7 (%) + €5

o For Gaussian process priors over f.¥ (-) and £ (-) this is a shared
latent space variant of the GP—LVM (Shon et al., 2006; Ek et al., 2007;
Navaratnam et al., 2007).
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Probabilistic CCA

< C-

N\

e If f.(-) are taken to be linear and
en~ N(0,C)

this model is probabilistic canonical correlates analysis (Bach and
Jordan, 2005).

@ For non-linear f; (-) with Gaussian process priors we have
GPLVM-CCA (Leen and Fyfe, 2006).
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O 0

Yoi =7 (x xy) +er zi=f? (xS xz) + €4

nr

@ The mappings are occurring from a latent space which is spIit into
three parts, XY = {xy}n . X {xz}n L and X5 = {xs}n_
@ Thel XY and X? take the role of C# and CY.

YFor linear mappings and g¥ = DY — 1 and g% = D% — 1 CCA is recovered.
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Non Linear CCA

o ()
c, g(ﬁ» »ﬁ(Z) c.

o Kernel-CCA (see e.g. Kuss and Graepel, 2003) implicitly assumes that
there is a smooth mapping from each of the data-spaces to a shared

latent space,
Xni = 8" (¥n) = &7 (2n).
@ We augment CCA to extract private spaces, X¥ and X?.
@ To do this we make further assumption about the non-consolidating
subspaces,
XI?I/. = hiy (Yn)a XnZi = hiZ (Z,,),
where hY (-) and h? (-) are smooth functions.
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Initialize the GP-LVM

@ Spectral methods used to initialize the GP-LVM (Lawrence, 2005).

@ Harmeling (2007) observed that high quality embeddings are backed up
by high GP-LVM log likelihoods.

o First step: apply kernel CCA to find shared sub-space.
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Canonical Correlates Analysis

¢ w, A

N\

C-

@ Find linear transformations Wy and W3z maximizing the correlation
between WyY and W;Z.

{Wy, Wz} = argmax{wy,wz}tr (W$Zysz)
sttt (WPEyyWy) =1 tr (WZE7W7) =1

the optima is found through an eigenvalue problem.
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Non Linear Canonical Correlates Analysis

C-

@ We apply CCA in the dominant principal subspace of each feature
space instead of directly in the feature space (Kuss and Graepel, 2003).

@ Applying CCA recovers two sets of bases Wy and W7 explaining the
correlated or shared variance between the two feature spaces.
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NCCA |

@ Need to describe private subspaces (X4,XY).

@ Look for directions of maximum data variance that are orthogonal to
the canonical correlates.

e Call the procedure non-consolidating components analysis (NCCA).

@ Seek the first direction v; of maximum variance orthogonal to W.
— T
vi = argmax,, v Kvy

subject to: vivy; =1 and vi W = 0.

@ The optimal v; is found via an eigenvalue problem,

(C—WW'K) vy = Apvy.
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NCCA Il

@ For successive directions further eigenvalue problems of the form
k—1
(K - (wa + Zv,-v,T> K) Vi = AkVk
i=1

need to be solved.

@ Embeddings then take form:

X = %(WyFy-l-WZFZ) (1)
XY =VyFy; X%=VzFz, (2)

where Fy and F7 represent the kernel PCA representation of each
observation space.
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Initialization of a GP-LVM

@ Purely spectral algorithm: the optimization problems are convex and
they lead to unique solutions.

@ Spectral methods are less useful in “inquisition” of the model.

@ The pre-image problem means that handling missing data can be
rather involved (Sanguinetti and Lawrence, 2006).

@ Build Gaussian process mappings from the latent to the data space.

@ This results in a GP-LVM model.

Carl Henrik Ek et al (MLMI 08) Ambiguity Modeling



Inference |

@ Given a silhouette (y.), we can find the corresponding x7 position.

@ The likelihood of different poses (z.) can then be visualized in the

: z
private space for the poses, xZ.

e Disambiguation (not dealt with here) can then be achieved through
e.g. temporal information.
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x-axes are the shared space for the two models and the y-axes are the
private space for the silhouettes (left) and the pose (right). Shading is
from the GP-LVM likelihood.
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@ Pose inference from silhouette using two different silhouettes from the
training data.

@ Left image: continuous leg ambiguity.

@ Right image: discrete leg ambiguity.
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@ A walking sequence from the HumanEva database (Sigal and Black,
2006).

» Four cycles in a circular walk.

» Use two for training and two for testing for the same subject.

» Each image is represented using a 100 dimensional integral HOG
descriptor (Zhu et al., 2006).

» Represent the pose space as the sum of a MVU kernel (Weinberger
et al., 2004) applied to the full pose space and a linear kernel applied on

the local motion.
> Represent the HOG features with an MVU kernel.

@ On HumanEva: one dimensional shared space explaining data
variance: 9% image space. 18% pose space.

@ To retain 95% of the total variance in each observation two
dimensions are needed for private spaces.
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Pose Specific Latent Space

Figure: The latent space for the pose.
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@ Computation time about 10 minutes on a Intel Core Duo with 1GB of
RAM.

@ Inference procedure using 20 nearest neighbor initializations per image
took a few seconds to compute.

@ Comparison with shared GPLVM.
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HumanEva Sequence Results
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@ Top row: original test set image. Second row: visualisation of
ambiguities. Bottom row: pose from mode closest to ground truth.
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HumanEva — Mode Exploration |
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HumanEva — Mode Exploration |
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HumanEva — Mode Exploration I
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HumanEva — Mode Exploration I
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Discussion

@ Careful fusion of multimodal data at training stage allows for elegant
disambiguation when only part of the data is available at test time.

@ Further work:

» Refinement with GPLVM algorithm.
» Disambiguation with temporal information.
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