
Semi-supervised Learning via Gaussian

Processes

Neil D. Lawrence
Department of Computer Science

University of Sheffield
Sheffield, S1 4DP, U.K.
neil@dcs.shef.ac.uk

Michael I. Jordan
Computer Science and Statistics

University of California
Berkeley, CA 94720, U.S.A.
jordan@cs.berkeley.edu

Abstract

We present a probabilistic approach to learning a Gaussian Process
classifier in the presence of unlabeled data. Our approach involves
a “null category noise model” (NCNM) inspired by ordered cate-
gorical noise models. The noise model reflects an assumption that
the data density is lower between the class-conditional densities.
We illustrate our approach on a toy problem and present compar-
ative results for the semi-supervised classification of handwritten
digits.

1 Introduction

The traditional machine learning classification problem involves a set of input vec-

tors X = [x1 . . .xN]
T

and associated labels y = [y1 . . . yN]
T

, yn ∈ {−1, 1}. The
goal is to find a mapping between the inputs and the labels that yields high predic-
tive accuracy. It is natural to consider whether such predictive performance can be
improved via “semi-supervised learning,” in which a combination of labeled data
and unlabeled data are available.

Probabilistic approaches to classification either estimate the class-conditional den-
sities or attempt to model p (yn|xn) directly. In the latter case, if we fail to make
any assumptions about the underlying distribution of input data, the unlabeled
data will not affect our predictions. Thus, most attempts to make use of unlabeled
data within a probabilistic framework focus on incorporating a model of p (xn): for
example, by treating it as a mixture,

∑

yn

p (xn|yn) p (yn), and inferring p (yn|xn)

(e.g., [5]), or by building kernels based on p (xn) (e.g., [8]). These approaches can be
unwieldy, however, in that the complexities of the input distribution are typically
of little interest when performing classification, so that much of the effort spent
modelling p (xn) may be wasted.

An alternative is to make weaker assumptions regarding p (xn) that are of particular
relevance to classification. In particular, the cluster assumption asserts that the
data density should be reduced in the vicinity of a decision boundary (e.g., [2]).
Such a qualitative assumption is readily implemented within the context of non-
probabilistic kernel-based classifiers. In the current paper we take up the challenge

Figure 1: The ordered categorical noise model. The plot shows p (yn|fn) for different
values of yn. Here we have assumed three categories.

of showing how it can be achieved within a (nonparametric) probabilistic framework.

Our approach involves a notion of a “null category region,” a region which acts
to exclude unlabeled data points. Such a region is analogous to the traditional
notion of a “margin” and indeed our approach is similar in spirit to the transductive
SVM [10], which seeks to maximize the margin by allocating labels to the unlabeled
data. A major difference, however, is that our approach maintains and updates the
process variance (not merely the process mean) and, as we will see, this variance
turns out to interact in a significant way with the null category concept.

The structure of the paper is as follows. We introduce the basic probabilistic frame-
work in Section 2 and discuss the effect of the null category in Section 3. Section 4
discusses posterior process updates and prediction. We present comparative exper-
imental results in Section 5 and present our conclusions in Section 6.

2 Probabilistic Model

In addition to the input vector xn and the label yn, our model includes a latent
process variable fn, such that the probability of class membership decomposes as
p (yn|xn) =

∫

p (yn|fn) p (fn|xn) dfn. We first focus on the noise model, p (yn|fn),
deferring the discussion of an appropriate process model, p (fn|xn), to later.

2.1 Ordered categorical models

We introduce a novel noise model which we have termed a null category noise model,
as it derives from the general class of ordered categorical models [1]. In the specific
context of binary classification, our focus in this paper, we consider an ordered
categorical model containing three categories1.

p (yn|fn) =

φ
(

−
(

fn + w
2

))

for yn = −1
φ

(

fn + w
2

)

− φ
(

fn − w
2

)

for yn = 0
φ

(

fn − w
2

)

for yn = 1
,

where φ (x) =
∫ x

−∞
N (z|0, 1) dz is the cumulative Gaussian distribution function

and w is a parameter giving the width of category yn = 0 (see Figure 1). We
can also express this model in an equivalent and simpler form by replacing the

1See also [9] who makes use of a similar noise model in a discussion of Bayesian inter-
pretations of the SVM.

Figure 2: Graphical representation of the null category model. The fully-shaded nodes
are always observed, whereas the lightly-shaded node is observed when zn = 0.

cumulative Gaussian distribution by a Heaviside step function H(·) and adding
independent Gaussian noise to the process model:

p (yn|fn) =

H
(

−
(

fn + 1

2

))

for yn = −1
H

(

fn + 1

2

)

− H
(

fn − 1

2

)

for yn = 0
H

(

fn − 1

2

)

for yn = 1
,

where we have standardized the width parameter to 1, by assuming that the overall
scale is also handled by the process model.

To use this model in an unlabeled setting we introduce a further variable, zn, which
is one if a data point is unlabeled and zero otherwise. We first impose

p (zn = 1|yn = 0) = 0; (1)

in other words, a data point can not be from the category yn = 0 and be unlabeled.
We assign probabilities of missing labels to the other classes p (zn = 1|yn = 1) = γ+

and p (zn = 1|yn = −1) = γ−. We see from the graphical representation in Figure 2
that zn is d-separated from xn. Thus when yn is observed, the posterior process is
updated by using p (yn|fn). On the other hand, when the data point is unlabeled
the posterior process must be updated by p (zn|fn) which is easily computed as:

p (zn = 1|fn) =
∑

yn

p (yn|fn) p (zn = 1|yn) .

The “effective likelihood function” for a single data point, L (fn), therefore takes
one of three forms:

L (fn) =

H
(

−
(

fn + 1

2

))

for yn = −1, zn = 0
γ−H

(

−
(

fn + 1

2

))

+ γ+H
(

fn − 1

2

)

for zn = 1
H

(

fn − 1

2

)

for yn = 1 zn = 0
.

The constraint imposed by (1) implies that an unlabeled data point never comes
from the class yn = 0. Since yn = 0 lies between the labeled classes this is equivalent
to a hard assumption that no data comes from the region around the decision
boundary. We can also soften this hard assumption if so desired by injection of
noise into the process model. If we also assume that our labeled data only comes
from the classes yn = 1 and yn = −1 we will never obtain any evidence for data
with yn = 0; for this reason we refer to this category as the null category and the
overall model as a null category noise model (NCNM).

3 Process Model and Effect of the Null Category

We work within the Gaussian process framework and assume

p (fn|xn) = N (fn|µ (xn) , ς (xn)) ,

where the mean µ (xn) and the variance ς (xn) are functions of the input space. A
natural consideration in this setting is the effect of our likelihood function on the

Figure 3: Two situations of interest. Diagrams show the prior distribution over fn (long
dashes) the effective likelihood function from the noise model when zn = 1 (short dashes)
and a schematic of the resulting posterior over fn (solid line). Left : The posterior is
bimodal and has a larger variance than the prior. Right : The posterior has one dominant
mode and a lower variance than the prior. In both cases the process is pushed away from
the null category.

distribution over fn from incorporating a new data point. First we note that if
yn ∈ {−1, 1} the effect of the likelihood will be similar to that incurred in binary
classification, in that the posterior will be a convolution of the step function and a
Gaussian distribution. This is comforting as when a data point is labeled the model
will act in a similar manner to a standard binary classification model. Consider now
the case when the data point is unlabeled. The effect will depend on the mean and
variance of p (fn|xn). If this Gaussian has little mass in the null category region,
the posterior will be similar to the prior. However, if the Gaussian has significant
mass in the null category region, the outcome may be loosely described in two ways:

1. If p (fn|xn) “spans the likelihood,” Figure 3 (Left), then the mass of the
posterior can be apportioned to either side of the null category region,
leading to a bimodal posterior. The variance of the posterior will be greater
than the variance of the prior, a consequence of the fact that the effective
likelihood function is not log-concave (as can be easily verified).

2. If p (fn|xn) is “rectified by the likelihood,” Figure 3 (Right), then the mass
of the posterior will be pushed in to one side of the null category and the
variance of the posterior will be smaller than the variance of the prior.

Note that for all situations when a portion of the mass of the prior distribution
falls within the null category region it is pushed out to one side or both sides. The
intuition behind the two situations is that in case 1, it is not clear what label the
data point has, however it is clear that it shouldn’t be where it currently is (in the
null category). The result is that the process variance increases. In case 2 the data
point is being assigned a label and the decision boundary is pushed to one side of
the point so that it is classified according to the assigned label.

4 Posterior Inference and Prediction

Broadly speaking the effects discussed above are independent of the process model:
the effective likelihood will always force the latent function away from the null
category. To implement our model, however, we must choose a process model and
an inference method. The nature of the noise model means that it is unlikely that we
will find a non-trivial process model for which inference (in terms of marginalizing

fn) will be tractable. We therefore turn to approximations which are inspired by
“assumed density filtering” (ADF) methods; see, e.g., [3]. The idea in ADF is to
approximate the (generally non-Gaussian) posterior with a Gaussian by matching
the moments between the approximation and the true posterior. ADF has also been
extended to allow each approximation to be revisited and improved as the posterior
distribution evolves [7].

Recall from Section 3 that the noise model is not log-concave. When the variance
of the process increases the best Gaussian approximation to our noise model can
have negative variance. This situation is discussed in [7], where various suggestions
are given to cope with the issue. In our implementation we followed the simplest
suggestion: we set a negative variance to zero.

One important advantage of the Gaussian process framework is that hyperparam-
eters in the covariance function (i.e., the kernel function), can be optimized by
type-II maximum likelihood. In practice, however, if the process variance is maxi-
mized in an unconstrained manner the effective width of the null category can be
driven to zero, yielding a model that is equivalent to a standard binary classification
noise model2. To prevent this from happening we regularize with an L1 penalty on
the process variances (this is equivalent to placing an exponential prior on those
parameters).

4.1 Prediction with the NCNM

Once the parameters of the process model have been learned, we wish to make
predictions about a new test-point x∗ via the marginal distribution p (y∗|x∗). For
the NCNM an issue arises here: this distribution will have a non-zero probability
of y∗ = 0, a label that does not exist in either our labeled or unlabeled data. This
is where the role of z becomes essential. The new point also has z∗ = 1 so in reality
the probability that a data point is from the positive class is given by

p (y∗|x∗, z∗) ∝ p (z∗|y∗) p (y∗|x∗) . (2)

The constraint that p (z∗|y∗ = 0) = 0 causes the predictions to be correctly nor-
malized. So for the distribution to be correctly normalized for a test data point we
must assume that we have observed z∗ = 1.

An interesting consequence is that observing x∗ will have an effect on the process
model. This is contrary to the standard Gaussian process setup (see, e.g., [11])
in which the predictive distribution depends only on the labeled training data and
the location of the test point x∗. In the NCNM the entire process model p (f∗|x∗)
should be updated after the observation of x∗. This is not a particular disadvantage
of our approach; rather, it is an inevitable consequence of any method that allows
unlabeled data to affect the location of the decision boundary—a consequence that
our framework makes explicit. In our experiments, however, we disregard such con-
siderations and make (possibly suboptimal) predictions of the class labels according
to (2).

5 Experiments

Sparse representations of the data set are essential for speeding up the process of
learning. We made use of the informative vector machine3 (IVM) approach [6] to

2Recall, as discussed in Section 1, that we fix the width of the null category to unity:
changes in the scale of the process model are equivalent to changing this width.

3The informative vector machine is an approximation to a full Gaussian Process which
is competitive with the support vector machine in terms of speed and accuracy.

−10 −5 0 5 10
−10

−5

0

5

10

−10 −5 0 5 10
−10

−5

0

5

10

Figure 4: Results from the toy problem. There are 400 points, which are labeled with
probability 0.1. Labelled data-points are shown as circles and crosses. Data-points in the
active set are shown as large dots. All other data-points are shown as small dots. Left :
Learning on the labeled data only with the IVM algorithm. All labeled points are used in
the active set. Right : Learning on the labeled and unlabeled data with the NCNM. There
are 100 points in the active set. In both plots decision boundaries are shown as a solid
line; dotted lines represent contours within 0.5 of the decision boundary (for the NCNM
this is the edge of the null category).

greedily select an active set according to information-theoretic criteria. The IVM
also enables efficient learning of kernel hyperparameters, and we made use of this
feature in all of our experiments. In all our experiments we used a kernel of the
form

knm = θ2 exp
(

−θ1 (xn − xm)
T

(xn − xm)
)

+ θ3δnm,

where δnm is the Kronecker delta function. The IVM algorithm selects an active
set, and the parameters of the kernel were learned by performing type-II maximum
likelihood over the active set. Since active set selection causes the marginalized
likelihood to fluctuate it cannot be used to monitor convergence, we therefore simply
iterated fifteen times between active set selection and kernel parameter optimisation.
The parameters of the noise model, {γ+, γ−} can also be optimized, but note that
if we constrain γ+ = γ− = γ then the likelihood is maximized by setting γ to the
proportion of the training set that is unlabeled.

We first considered an illustrative toy problem to demonstrate the capabilities of our
model. We generated two-dimensional data in which two class-conditional densities
interlock. There were 400 points in the original data set. Each point was labeled
with probability 0.1, leading to 37 labeled points. First a standard IVM classifier
was trained on the labeled data only (Figure 4, Left). We then used the null
category approach to train a classifier that incorporates the unlabeled data. As
shown in Figure 4 (Right), the resulting decision boundary finds a region of low
data density and more accurately reflects the underlying data distribution.

5.1 High-dimensional example

To explore the capabilities of the model when the data set is of a much higher
dimensionality we considered the USPS data set4 of handwritten digits. The task
chosen was to separate the digit 3 from 5. To investigate performance across a range
of different operating conditions, we varied the proportion of unlabeled data between

4The data set contains 658 examples of 5s and 556 examples of 3s.

10
−2

10
−1

0.8

0.9

1

prob. of label present

ar
ea

 u
nd

er
 R

O
C

 c
ur

ve

Figure 5: Area under the ROC curve plotted against probability of a point being labeled.
Mean and standard errors are shown for the IVM (solid line), the NCNM (dotted line),
the SVM (dash-dot line) and the transductive SVM (dashed line).

0.2 and 1.25 × 10−2. We compared four classifiers: a standard IVM trained on the
labeled data only, a support vector machine (SVM) trained on the labeled data only,
the NCNM trained on the combined labeled-unlabeled data, and an implementation
of the transductive SVM trained on the combined labeled-unlabeled data. The SVM
and transductive SVM used the SVMlight software [4]. For the SVM, the kernel
inverse width hyperparameter θ1 was set to the value learned by the IVM. For the
transductive SVM it was set to the higher of the two values learned by the IVM
and the NCNM5. For the SVM-based models we set θ2 = 1 and θ3 = 0; the margin
error cost, C, was left at the SVMlight default setting.

The quality of the resulting classifiers was evaluated by computing the area under
the ROC curve for a previously unseen test data set. Each run was completed ten
times with different random seeds. The results are summarized in Figure 5.

The results show that below a label probability of 2.5 × 10−2 both the SVM and
transductive SVM outperform the NCNM. In this region the estimate θ1 provided
by the NCNM was sometimes very low leading to occasional very poor results
(note the large error bar). Above 2.5 × 10−2 a clear improvement is obtained for
the NCNM over the other models. It is of interest to contrast this result with an
analogous experiment on discriminating twos vs. threes in [8], where p (xn) was used
to derive a kernel. No improvement was found in this case, which [8] attributed to
the difficulties of modelling p (xn) in high dimensions. These difficulties appear to
be diminished for the NCNM, presumably because it never explicitly models p (xn).

We would not want to read too much into the comparison between the transductive
SVM and the NCNM since an exhaustive exploration of the regularisation param-
eter C was not undertaken. Similar comments also apply to the regularisation of
the process variances for the NCNM. However, these preliminary results appear
encouraging for the NCNM. Code for recreating all our experiments is available at
http://www.dcs.shef.ac.uk/~neil/ncnm.

5Initially we set the value to that learned by the NCNM, but performance was improved
by selecting it to be the higher of the two.

6 Discussion

We have presented an approach to learning a classifier in the presence of unlabeled
data which incorporates the natural assumption that the data density between
classes should be low. Our approach implements this qualitative assumption within
a probabilistic framework without explicit, expensive and possibly counterproduc-
tive modeling of the class-conditional densities.

Our approach is similar in spirit to the transductive SVM, but with a major differ-
ence that in the SVM the process variance is discarded. In the NCNM, the process
variance is a key part of data point selection; in particular, Figure 3 illustrated how
inclusion of some data points actually increases the posterior process variance. Dis-
carding process variance has advantages and disadvantages—an advantage is that
it leads to an optimisation problem that is naturally sparse, while a disadvantage is
that it prevents optimisation of kernel parameters via type-II maximum likelihood.

In Section 4.1 we discussed how test data points affect the location of our decision
boundary. An important desideratum would be that the location of the decision
boundary should converge as the amount of test data goes to infinity. One direction
for further research would be to investigate whether or not this is the case.

Acknowledgments

This work was supported under EPSRC Grant No. GR/R84801/01 and a grant
from the National Science Foundation.

References

[1] A. Agresti. Categorical Data Analysis. John Wiley and Sons, 2002.

[2] O. Chapelle, J. Weston, and B. Schölkopf. Cluster kernels for semi-supervised learn-
ing. In Advances in Neural Information Processing Systems, Cambridge, MA, 2002.
MIT Press.

[3] L. Csató. Gaussian Processes — Iterative Sparse Approximations. PhD thesis, Aston
University, 2002.

[4] T. Joachims. Making large-scale SVM learning practical. In Advances in Kernel
Methods: Support Vector Learning, Cambridge, MA, 1998. MIT Press.

[5] N. D. Lawrence and B. Schölkopf. Estimating a kernel Fisher discriminant in the
presence of label noise. In Proceedings of the International Conference in Machine
Learning, San Francisco, CA, 2001. Morgan Kaufmann.

[6] N. D. Lawrence, M. Seeger, and R. Herbrich. Fast sparse Gaussian process meth-
ods: The informative vector machine. In Advances in Neural Information Processing
Systems, Cambridge, MA, 2003. MIT Press.

[7] T. P. Minka. A family of algorithms for approximate Bayesian inference. PhD thesis,
Massachusetts Institute of Technology, 2001.

[8] M. Seeger. Covariance kernels from Bayesian generative models. In Advances in
Neural Information Processing Systems, Cambridge, MA, 2002. MIT Press.

[9] P. Sollich. Probabilistic interpretation and Bayesian methods for support vector ma-
chines. In Proceedings 1999 International Conference on Artificial Neural Networks,
ICANN’99, pages 91–96, 1999.

[10] V. N. Vapnik. Statistical Learning Theory. John Wiley and Sons, New York, 1998.

[11] C. K. I. Williams. Prediction with Gaussian processes: From linear regression to
linear prediction and beyond. In Learning in Graphical Models, Cambridge, MA,
1999. MIT Press.

