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A Hybrid Approach
Introduce aspects of systems biology to computational models

I We advocate an approach between systems and
computational biology.

I Introduce aspects of systems biology to the computational
approach.

I There is a computational penalty, but it may be worth paying.
I Ideally there should be a smooth transition from pure

computational (PCA, clustering, SVM classification) to
systems (non-linear (stochastic) differential equations).



Standard Approach
Clustering of Gene Expression Profiles

I Assume that coregulated genes will cluster in the same groups.

I Perform clustering, and look for clusters containing target
genes.

I These are candidates, look for confirmation in the literature
etc.



Mathematical Model

I Differential equation model of system.

dmj (t)

dt
= bj + sjp (t) − djmj (t)

djmj (t) +
dmj (t)

dt
= bj + sjp (t)

rate of mRNA transcription, baseline transcription rate,
transcription factor activity, mRNA decay

I We have observations of mj (t) from gene expression.
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Mathematical Model
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p53 target prediction<p>Hidden Variable Dynamic Modelling is a new approach to microarray analysis that quantitatively predicts the regulation of gene activ-ity.</p>

Abstract

Full exploitation of microarray data requires hidden information that cannot be extracted using
current analysis methodologies. We present a new approach, hidden variable dynamic modeling
(HVDM), which derives the hidden profile of a transcription factor from time series microarray
data, and generates a ranked list of predicted targets. We applied HVDM to the p53 network,
validating predictions experimentally using small interfering RNA. HVDM can be applied in many
systems biology contexts to predict regulation of gene activity quantitatively.

Background
In order to understand how gene networks function, it is nec-
essary to identify their components and to quantitatively
describe how they relate to one another [1-3]. Subsequent
prediction of gene network behavior requires identification of
important parameters and variables, and estimation or meas-
urement of their values during a response [4-6].

Experimental approaches can be applied to identify network
components. For example, protein binding arrays and chro-
mosome immunoprecipitation can be applied to identify
transcription factor (TF)-binding sites and therefore infer TF
targets [7-10]. However, these approaches give a static view of
the system. Binding sites identified in vitro may not be avail-
able in vivo, and different regulators may be active in differ-
ent cellular systems. Furthermore, purely experimental
approaches cannot predict in a quantitative manner, and with
statistical confidence, the dynamics of network activity with-

out making an impractical number of experimental observa-
tions [11].

Insight into the dynamic relationships present in a transcrip-
tional response can be gained by running time series of
microarrays [3,11,12]. Currently, analysis of this type of
datum chiefly relies on clustering or correlation methods. The
assumption is that groups of genes with similar expression
profiles over time are likely to be regulated by the same TF.
Although clustering approaches have been applied with some
success, they are limited and inaccurate. Genes with different
profiles may still be regulated by the same TF, and many
genes included in clusters may be regulated by other factors.
Clustering approaches typically do not generate confidence
statistics about the validity of individual predictions, and
therefore they can neither rank candidates nor distinguish
between true and false targets.
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Example: Transcriptional Regulation

I First Order Differential Equation

dmj (t)

dt
= bj + sjp (t) − djmj (t)

I We can use a probabilistic process model for p(t).

I This implies a probabilistic process over p(t) and all its
targets: m1(t),m2(t), ... etc.

I This incorporates the assumptions in the differential equation.

I This gives us a probabilistic model for transcriptional
regulation.
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Joint Sampling of f (t) and x (t)

I simSample
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Figure: Joint samples from the ODE covariance, black: p (t), red:
m1 (t) (high decay/sensitivity), green: m2 (t) (medium
decay/sensitivity) and blue: m3 (t) (low decay/sensitivity).
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Artificial Example: Inferring p(t)
Inferring TF activity from artificially sampled genes.
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Cascaded Differential Equations

Model-based method for transcription factor
target identification with limited data
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Neil D. Lawrencec,1, and Magnus Rattrayc,1
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We present a computational method for identifying potential tar-
gets of a transcription factor (TF) using wild-type gene expression
time series data. For each putative target gene we fit a simple dif-
ferential equation model of transcriptional regulation, and the
model likelihood serves as a score to rank targets. The expression
profile of the TF is modeled as a sample from a Gaussian process
prior distribution that is integrated out using a nonparametric
Bayesian procedure. This results in a parsimonious model with re-
latively few parameters that can be applied to short time series da-
tasets without noticeable overfitting. We assess our method using
genome-wide chromatin immunoprecipitation (ChIP-chip) and loss-
of-function mutant expression data for two TFs, Twist, and Mef2,
controlling mesoderm development in Drosophila. Lists of top-
ranked genes identified by our method are significantly enriched
for genes close to bound regions identified in the ChIP-chip data
and for genes that are differentially expressed in loss-of-function
mutants. Targets of Twist display diverse expression profiles, and in
this case a model-based approach performs significantly better
than scoring based on correlation with TF expression. Our ap-
proach is found to be comparable or superior to ranking based on
mutant differential expression scores. Also, we show how integrat-
ing complementary wild-type spatial expression data can further
improve target ranking performance.

Bayesian inference ∣ Gaussian process inference ∣ gene regulation ∣
gene regulatory network ∣ systems biology

Transcription factors are key nodes in the gene regulatory net-
works that determine the function and fate of cells. An impor-

tant first step in uncovering a gene regulatory network is the
identification of target genes regulated by a specific transcription
factor (TF). A common approach to this problem is to experi-
mentally locate physical binding of TF proteins to the DNA
sequence in vivo using a genome-wide chromatin immunopreci-
pitation (ChIP) experiment (1, 2). However, recent studies sug-
gest that many observed binding events are neutral and do not
regulate transcription, while regulatory binding events often oc-
cur at enhancers that are not proximal to the target gene that they
control (3, 4). Therefore, the task of identifying transcriptional
targets requires the integration of ChIP binding predictions with
evidence from expression data to help associate binding events
with target gene regulation. If there is access to expression data
from a mutant in which the TF has been knocked out or overex-
pressed, then differential expression of genes between wild type
and mutant is indicative of a potential regulatory interaction (5,
6). Available spatial expression data for the TF and the putative
target can also provide support for a hypothesized regulatory link.

A problem with the above approach is that the creation of mu-
tant strains is challenging or impossible for many TFs of interest.
Even when available, mutants may provide very limited informa-
tion because of redundancy or due to the confounding of signal
from indirect regulatory feedback (7). For these reasons it is use-
ful to seek other sources of evidence to complement ChIP bind-
ing predictions. In this contribution we demonstrate how a
dynamical model of wild-type transcriptional regulation can be

used for genome-wide scoring of putative target genes. All that
is required to apply our method is wild-type time series data col-
lected over a period where TF activity is changing. Our approach
allows for complementary evidence from expression data to be
integrated with ChIP binding data for a specific TF without carry-
ing out TF perturbations.

To score putative targets we use the data likelihood under a
simple cascaded differential equation model of transcriptional
regulation. The regulation model we apply is “open” in the sense
that we do not explicitly model regulation of the TF itself. To deal
with this technical issue we use a recently developed nonpara-
metric probabilistic inference methodology to effectively deal
with open differential equation systems (8). We model the TF
concentration as a function drawn from a Gaussian process prior
distribution (9, 10). This functional prior can either be placed on
the TF mRNA, for TFs primarily under transcriptional regula-
tion, or the TF protein, for TFs activated posttranslationally.
In the application considered here the TFs are transcriptionally
regulated, and we take the former approach. We use Bayesian
marginalization (also known as Bayesian model averaging) to
integrate out these functional degrees of freedom. This greatly
reduces the number of parameters required to model the data,
making a likelihood-based approach feasible even for short
time series.

There are many existing approaches to inferring gene regula-
tory networks from time series expression data, including dy-
namic Bayesian networks, information theoretic approaches,
and differential equation approaches (reviewed in ref. 11). These
methods typically require many more data from a greater diver-
sity of experimental conditions than are available from the short
unperturbed wild-type time series that we consider. Indeed, most
real gene expression time course data are short relative to the
simulated data used to assess computational methods for network
inference (12). However, our goal is more limited in scope since
we are primarily interested in providing additional support for
hypothesized targets of a specific TF. Again, most approaches
to this problem are designed for data containing large numbers
of diverse conditions, as exemplified by the DREAM 2 (Dialogue
for Reverse Engineering Assessments and Methods 2) target
identification challenge 1 (13). Others have addressed this target
identification problem using time series data with a regulation
model (14, 15). However, these approaches either require a
known target set for training (14) or they require measured TF
protein data (15). In addition to these differences in the assumed
prior knowledge and available data, it is also difficult to validate
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Cascaded Differential Equations

(Honkela et al., 2010)

I Transcription factor protein also has governing mRNA.

I This mRNA can be measured.

I In signalling systems this measurement can be misleading
because it is activated (phosphorylated) transcription factor
that counts.

I In development phosphorylation plays less of a role.



Twist Results

I Use mRNA of Twist as driving input.

I For each gene build a cascade model that forces Twist to be
the only TF.

I Compare fit of this model to a baseline (e.g. similar model
but sensitivity zero).

I Rank according to the likelihood above the baseline.

I Compare with correlation, knockouts and time series network
identification (TSNI) (Della Gatta et al., 2008).



Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Evaluation methods

I Evaluate the ranking methods by taking a number of
top-ranked targets and record the number of
“positives” (Zinzen et al., 2009):

I targets with ChIP-chip binding sites within 2 kb of gene
I (targets differentially expressed in TF knock-outs)

I Compare against
I Ranking by correlation of expression profiles
I Ranking by q-value of differential expression in knock-outs

I Optionally focus on genes with annotated expression in tissues
of interest



Results
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Summary

I Cascade models allow genomewide analysis of potential
targets given only expression data.

I Once a set of potential candidate targets have been identified,
they can be modelled in a more complex manner.

I We don’t have ground truth, but evidence indicates that the
approach can perform as well as knockouts.
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Discussion and Future Work

I Integration of probabilistic inference with mechanistic models.

I Software available through bioconductor (TIGRE Package)
http://bioconductor.org/packages/2.6/bioc/html/

tigre.html.

I Applications in modeling gene expression.
I Ongoing/other work:

I Non linear response and non linear differential equations.
I Improving computational complexity.
I Stochastic differential equations.
I Cascade model introduces model of translation.

http://bioconductor.org/packages/2.6/bioc/html/tigre.html
http://bioconductor.org/packages/2.6/bioc/html/tigre.html
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