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A Hybrid Approach

Introduce aspects of systems biology to computational models

» We advocate an approach between systems and
computational biology.
» Introduce aspects of systems biology to the computational
approach.
» There is a computational penalty, but it may be worth paying.
> ldeally there should be a smooth transition from pure
computational (PCA, clustering, SVM classification) to
systems (non-linear (stochastic) differential equations).



Standard Approach

Clustering of Gene Expression Profiles

> Assume that coregulated genes will cluster in the same groups.

> Perform clustering, and look for clusters containing target
genes.

» These are candidates, look for confirmation in the literature
etc.



Mathematical Model

» Differential equation model of system.
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Mathematical Model

» Clustering model is equivalent to assuming d;, b;, and s; are
v. large.

dm; (t)

dt
dimj (t) = bj + s;p (1)

= bj +5p(t) — djm; (t)

rate of mRNA transcription, baseline transcription rate,
transcription factor activity, mRNA decay

» We have observations of mj (t) from gene expression.
» Reorder differential equation and ignore gradient term.
» This suggests genes are scaled and offset versions of the TF.

» By normalizing data and clustering we hope to find those TFs.



Mathematical Model
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Example: Transcriptional Regulation

» First Order Differential Equation

dm; (t)
dt

= bj+5p (t) — djm; (1)

» We can use a probabilistic process model for p(t).

» This implies a probabilistic process over p(t) and all its
targets: my(t), m(t), ... etc.
» This incorporates the assumptions in the differential equation.

» This gives us a probabilistic model for transcriptional
regulation.



Joint Sampling of f (t) and x (t)

> simSample
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Figure: Joint samples from the ODE covariance, black: p(t), red:
myq (t) (high decay/sensitivity), green: ms (t) (medium
decay/sensitivity) and blue: ms (t) (low decay/sensitivity).
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Cascaded Differential Equations
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target identification with limited data
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We present a computational method for identifying potential tar-  used for genome-wide scoring of putative target gen
gets of a transcription factor (TF) using wild-type gene expression  is required to apply our method is wild-type time seri
time series data. For each putative target gene we fit a simple dif-  lected over a period where TF activity is changing. Ou
ferential equation model of transcriptional regulation, and the allows for complementary evidence from expression




Cascaded Differential Equations

(Honkela et al., 2010)

v

Transcription factor protein also has governing mRNA.
This mRNA can be measured.
In signalling systems this measurement can be misleading

because it is activated (phosphorylated) transcription factor
that counts.

v

v

v

In development phosphorylation plays less of a role.



Twist Results

> Use mRNA of Twist as driving input.

» For each gene build a cascade model that forces Twist to be
the only TF.

» Compare fit of this model to a baseline (e.g. similar model
but sensitivity zero).

» Rank according to the likelihood above the baseline.

» Compare with correlation, knockouts and time series network
identification (TSNI) (Della Gatta et al., 2008).



Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Evaluation methods

» Evaluate the ranking methods by taking a number of
top-ranked targets and record the number of
“positives” (Zinzen et al., 2009):

» targets with ChlIP-chip binding sites within 2 kb of gene
> (targets differentially expressed in TF knock-outs)
» Compare against
» Ranking by correlation of expression profiles
» Ranking by g-value of differential expression in knock-outs
» Optionally focus on genes with annotated expression in tissues
of interest
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» Cascade models allow genomewide analysis of potential
targets given only expression data.

> Once a set of potential candidate targets have been identified,
they can be modelled in a more complex manner.

» We don't have ground truth, but evidence indicates that the
approach can perform as well as knockouts.
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Discussion and Future Work

Integration of probabilistic inference with mechanistic models.
Software available through bioconductor (TIGRE Package)
http://bioconductor.org/packages/2.6/bioc/html/
tigre.html.

v

v

v

Applications in modeling gene expression.

Ongoing/other work:
» Non linear response and non linear differential equations.
» Improving computational complexity.
» Stochastic differential equations.
» Cascade model introduces model of translation.

v


http://bioconductor.org/packages/2.6/bioc/html/tigre.html
http://bioconductor.org/packages/2.6/bioc/html/tigre.html
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