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Can a Biologist Fix a Radio? Lazebnik (2002)

The Case for Systems Biology

“It is difficult to find a black cat in a dark room,
especially if there is no cat.”

» Biological systems are immensely complicated.
» Lazebnik argues the need for models that are quantitative.
» Such models should be predictive of biological behaviour.
» Such models need to be combined with biological data.
» Systems biology:
» Build mechanistic models (based on biochemical knowledge) of
the system.
» Identify modules, submodules, and parameterize the models.



Coregulation of Gene Expression

The Case for Computational Biology

» Gene Expression to Transcriptional Regulation.
» A "data exploration” problem (computational
biology /bioinformatics):
» Use gene expression data to speculate on coregulated genes.
» Traditionally use clustering of gene expression profiles.
» Contrast with (computational) systems biology approach:
Detailed mechanistic model of the system is created.
Fit parameters of the model to data.

Problematic for large data (genome wide).
Need to deal with unobserved biochemical species (TFs).
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A Hybrid Approach

Introduce aspects of systems biology to computational models

» We advocate an approach between systems and
computational biology.

» Introduce aspects of systems biology to the computational
approach.

>

>

There is a computational penalty, but it may be worth paying.
Ideally there should be a smooth transition from pure
computational (PCA, clustering, SVM classification) to
systems (non-linear (stochastic) differential equations).

This work is one part of that transition.



Radiation Damage in the Cell

» Radiation can damage the DNA.

» Most of this damage is quickly repaired—single strand breaks,
backbone break.

» Double strand breaks are more serious—a complete disconnect
along the chromosome.

» Cell cycle stages:

» Gi: Cell is not dividing.
» Gy Cell is preparing for meitosis, chromosomes have divided.
» S: Cell is undergoing meitosis (DNA synthesis).

» Main problem is in G1. In G2 there are two copies of the
chromosome. In G1 only one copy.



p53 “Guardian of the Cell”

Responsible for Repairing DNA damage
Activates DNA Repair proteins
Pauses the Cell Cycle (prevents replication of damage DNA)
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Initiates apoptosis (cell death) in the case where damage can't
be repaired.

v

Large scale feeback loop with NF-xB.
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Figure: p53. Left unbound, Right bound to DNA. Images by David S.

Goodsell from http://www.rcsb.org/ (see the'Molecule of the Month”

feature).


http://www.rcsb.org/

Figure: Repair of DNA damage by p53. Image from Goodsell (1999).



Some p53 Targets

DDB2 DNA Damage Specific DNA Binding Protein 2. (also
governed by C/ EBP-beta, E2F1, E2F3,...).

p21 Cycline-dependent kinase inhibitor 1A (CDKN1A). A
regulator of cell cycle progression. (also goverened by
SREBP-1a, Spl, Sp3,... ).
hPA26/SESN1 sestrin 1 Cell Cycle arrest.
BIK BCL2-interacting killer. Induces cell death
(apoptosis)
TNFRSF10b tumor necrosis factor receptor superfamily, member
10b. A transducer of apoptosis signals.



Modelling Assumption

» Assume pb3 affects targets as a single input module network
motif (SIM).

Figure: p53 SIM network motif as modelled by Barenco et al. 2006.



Standard Approach

Clustering of Gene Expression Profiles

» Assume that coregulated genes will cluster in the same groups.

» Perform clustering, and look for clusters containing target
genes.

» These are candidates, look for confirmation in the literature
etc.



Mathematical Model

» Differential equation model of system.

dx; (t)
dt
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Differential equation model of system.

(8 _ gy S (1) - D (1)

dx; (t
Dix; (t) + X(Ji—t() = Bj+ 51 (1)

rate of mRNA transcription, baseline transcription rate,
transcription factor activity, mRNA decay

We have observations of x; (t) from gene expression. .
Reorder differential equation.

An estimate of d—xc# is obtained through fitting polynomials.
Jointly estimate f (t) at observations of time points along
with {ij D;, SJ}Jg:1

Fit parameters by maximum likelihood or MCMC sampling.
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Mathematical Model
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Clustering model is equivalent to assuming D;, B;, and §; are
v. large.

dx; (t)
o = B+ ()—-Dx(t)

DJ'XJ' (t) ~ Bj + ij(t)

rate of mRNA transcription, baseline transcription rate,
transcription factor activity, mRNA decay

We have observations of x; (t) from gene expression.
Reorder differential equation and ignore gradient term.
This suggests genes are scaled and offset versions of the TF.

By normalizing data and clustering we hope to find those TFs.



Response of p53
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Figure: Results from Barenco et al. (2006). Top is parameter estimates.
Bottom is inferred profile.



Respose to p53 ...
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Figure: Results from Barenco et al. (2006). Activity profile of p53 was
measured by Western blot to determine the levels of ser-15
phosphorylated p53 (serl5P-p53).
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Probabilistic Model for f(t)

» We introduce a probabilistic model for 7(t).

» It is known as a Gaussian process, but we can think of it as a
multivariate Gaussian (also known as a multivariate normal)
distribution.

» The distribution has a mean vector, m and a covariance
matrix, K.

» We will consider the mean to be zero: m = 0.

» The covariance matrix will be structured to give correlation
between samples.

» We will sample 25 points from the Gaussian distribution.

» Samples are governed by a 25 x 25 correlation matrix.



Gaussian Distribution Sample
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(a) A 25 dimensional correlated ran- (b) colormap showing correlations
dom variable (values ploted against between dimensions
index)

Figure: A sample from a 25 dimensional Gaussian distribution.
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Covariance Function

The covariance matrix

» Covariance matrix shows correlation between points f,, and f,
if nis near to m.

» Less correlation if n is distant from m.

» Our ordering of points means that the function appears
smooth.

» In practice covariance matrix is computed as a function of
time—index is equivalent to time.

» Different covariance functions give different characteristics.

» Because the models are probabilistic we can sample different
characteristics.



Covariance Functions

Where did this covariance matrix come from?

RBF Kernel Function

AN _||t_tl‘|2
k(t,t) —aexp< T

» Covariance matrix is built
using the inputs to the
function t.

» For the example above it
was based on Euclidean
distance.

» The covariance function is
also know as a kernel.




Covariance Samples

demCovFuncSample

Figure: RBF kernel with £ =1072, a =1



Covariance Samples
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Figure: RBF kernel with / =1, a =1
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demCovFuncSample

RBF kernel with £ =0.3, o =4

Figure:



Covariance Samples

demCovFuncSample

Figure: Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance
function =1, a =4
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Example: Transcriptional Regulation

First Order Differential Equation

v

—dxégt) = Bj+ 57 (1) — Djx; ()

» It turns out that our Gaussian process assumption for f(t),
implies x(t) is also a Gaussian process.

» The new Gaussian process is over f(t) and all its targets:
x1(t), x2(t), ... etc.

» Our new covariance matrix gives correlations between all these
functions.

» This gives us a probabilistic model for transcriptional
regulation.



Covariance for Transcription Model

RBF covariance function for f (t)

. t
xi (t) = % + Sjexp (—D,-t)/0 f (u)exp (Dju)du.

» Joint distribution
for ;1 (t)t X2 Et) ﬁ)\\\ \
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Joint Sampling of f (t) and x (t)

> simSample

1 2 3 4 5

Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 (t)(high decay/sensitivity) and green: x (t) (medium
decay/sensitivity). and blue: x3 (t) (low decay/sensitivity).
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Joint Sampling of f (t) and x (t)

» simSample
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Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 (t)(high decay/sensitivity) and green: x (t) (medium
decay/sensitivity). and blue: x5 (t) (low decay/sensitivity).



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

8 4

6

4l

A

% 5 10 15 10 15
True “gene profiles” and noisy Inferred transcription factor

observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

8 4

6

4l

A

% 5 10 15 10 15
True “gene profiles” and noisy Inferred transcription factor

observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

8 4

6

4l

A

% 5 10 15 10 15
True “gene profiles” and noisy Inferred transcription factor

observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

00 5 10 15 _20 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

00 5 10 15 _20 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

00 5 10 15 _20 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

GO 5 10 15 _20 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



Artificial Example: Inferring f(t)

Inferring TF activity from artificially sampled genes.

% 5 10 15 2% 5 10 15

True “gene profiles” and noisy Inferred transcription factor
observations. activity.



p53 Results with GP

Pei Gao

Inferred ps3 protein gene TNFRSF20b mRNA gene DDB2 MRNA
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Ranking with ERK Signalling

» Target Ranking for Elk-1.

» Elk-1 is phosphorylated by ERK from the EGF signalling
pathway.

» Predict concentration of Elk-1 from known targets.
» Rank other targets of Elk-1.



Elk-1 (MLP covariance

Jennifer Withers
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Elk-1 target selection

Fitted model used to rank potential targets of Elk-1

Predicted target gene Predicted non-target gene

18

0 1 2 3 4 5 6 7 8 ’ 0 1 2 3 4 5 6 7 8
time (h) time (h)



Cascade Differential Equations



Cascaded Differential Equations

Antti Honkela

» Transcription factor protein also has governing mRNA.
» This mRNA can be measured.

» In signalling systems this measurement can be misleading
because it is activated (phosphorylated) transcription factor
that counts.

» In development phosphorylation plays less of a role.



Drosophila Mesoderm Development

Collaboration with Furlong Lab in EMBL Heidelberg.
» Mesoderm development in Drosophila melanogaster (fruit fly).

» Mesoderm forms in triplobastic animals (along with ectoderm
and endoderm). Mesoderm develops into muscles, and
circulatory system.

» The transcription factor Twist initiates Drosophila mesoderm
development, resulting in the formation of heart, somatic
muscle, and other cell types.

» Wildtype microarray experiments publicly available.

» Can we use the cascade model to predict viable targets of
Twist?



Cascaded Differential Equations

Antti Honkela

We take the production rate of active transcription factor to be

given by
d’;gt) oy (t) - 0F (1)
d(t) g . o o
dr Bj + Sif (t) — Djx; (t)

The solution for f(t), setting transient terms to zero, is

f(t) = oexp(—dt) /Oty(u) exp (0u)du .



Covariance for Translation/Transcription Model

RBF covariance function for y (t)

f(t)y = aexp(—ét)/oty(u)exp(éu)du

) t
xi(t) = %—l—S,-exp(—D;t)/0 f (u)exp(Dju)du.

» Joint distribution

for x1 (t), x2 (t), w)\\ \ |
f(t) and y (). ﬁ)\ \ \

» Here:
[5O[S [0 [ 5] NN\
[1] 5[5 ]05]05| 20

"

o w0 w0



Joint Sampling of y (t), f (t), and x (t)

» disimSample
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Figure: Joint samples from the ODE covariance, blue: y (t) (mRNA
of TF), black: f (t) (TF concentration), red: x; (t)(high decay
target) and green: x; (t) (low decay target)



Joint Sampling of y (t), f (t), and x (t)

» disimSample
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Figure: Joint samples from the ODE covariance, blue: y (t) (mRNA
of TF), black: f (t) (TF concentration), red: x; (t)(high decay
target) and green: x; (t) (low decay target)



Joint Sampling of y (t), f (t), and x (t)

» disimSample
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Figure: Joint samples from the ODE covariance, blue: y (t) (mRNA
of TF), black: f (t) (TF concentration), red: x; (t)(high decay
target) and green: x; (t) (low decay target)



Joint Sampling of y (t), f (t), and x (t)

» disimSample
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Figure: Joint samples from the ODE covariance, blue: y (t) (mRNA
of TF), black: f (t) (TF concentration), red: x; (t)(high decay
target) and green: x; (t) (low decay target)



Joint Sampling of y (t), f (t), and x (t)

» disimSample
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Figure: Joint samples from the ODE covariance, blue: y (t) (mRNA
of TF), black: f (t) (TF concentration), red: x; (t)(high decay
target) and green: x; (t) (low decay target)



Joint Sampling of y (t), f (t), and x (t)

» disimSample
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Figure: Joint samples from the ODE covariance, blue: y (t) (mRNA
of TF), black: f (t) (TF concentration), red: x; (t)(high decay
target) and green: x; (t) (low decay target)



Joint Sampling of y (t), f (t), and x (t)

» disimSample
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Figure: Joint samples from the ODE covariance, blue: y (t) (mRNA
of TF), black: f (t) (TF concentration), red: x; (t)(high decay
target) and green: x; (t) (low decay target)



Joint Sampling of y (t), f (t), and x (t)

» disimSample

1 2 3 4 5

Figure: Joint samples from the ODE covariance, blue: y (t) (mRNA
of TF), black: f (t) (TF concentration), red: x; (t)(high decay
target) and green: x; (t) (low decay target)



Twist Results

» Use mRNA of Twist as driving input.

» For each gene build a cascade model that forces Twist to be
the only TF.

» Compare fit of this model to a baseline (e.g. similar model
but sensitivity zero).

» Rank according to the likelihood above the baseline.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0002526.



Results for Twi using the Cascade model

x107° Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0003486.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0011206.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn00309055.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0031907.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0035257.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0039286.



Results of Ranking

In-situ validation: twi
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Figure: Percentage enrichment for top N targets for relevant terms in
Drosophila in situs.



Results of Ranking

ChIP validation: twi (10 kb)
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Figure: Percentage enrichment for top N targets for ChIP-chip confirmed
targets.



» Cascade models allow genomewide analysis of potential
targets given only expression data.

» Once a set of potential candidate targets have been identified,
they can be modelled in a more complex manner.

» We don't have ground truth, but evidence indicates that the
approach can perform as well as knockouts.



Discussion and Future Work



Discussion and Future Work

» Integration of probabilistic inference with mechanistic models.
» Applications in modeling gene expression.
» Cascade model introduces model of translation.
» Ongoing/other work:
» Non linear response and non linear differential equations.

» Scaling up to larger systems.
» Stochastic differential equations.
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Nonlinear Response



Nonlinear Response Models

Consider the following modification to the model,

dx; (1)

o = Bt e (f(t) - Dix(t),

where g (+) is a non-linear function. The differential equation can
still be solved,

i (£) = +s/ D/t~ (F (u)) du



MAP-Laplace Approximation

Based on Laplace’s method,

p(f|x)= N(?,A—l) x exp <—% (f—?)TA(f—?))

where f = argmaxp(f | x) and A= -~V Vlogp(f|y) l¢_¢ is the
Hessian of the negative posterior at that point. To obtain fand A,

we define the following function ¢ (f) as:

log p(fx) oc ¥(F) = log p(x | f) + log p (f)



MAP-Laplace Approximation

Assigning a GP prior distribution to f(t), it then follows that
1 1 n
logp(f) = —=f K™ — - log|K| — - log2
ogp(f)=—3 5 log [K| — 7 log 2m

where K is the covariance matrix of f(t). Hence,

Vi (f) = V log p(x|f) — K71f
VVi(f) = VV log p(x|f) — K™t = -W — K™!



Estimation of (f)

Newton's method is applied to find the maximum of (f) as

£ = f — (VYo ()1 V(f)
= (W + K1)~ (WF — Vlog p(x|f))
In addition, A = —VV(#) = W + K~ where W is the negative

Hessian matrix. Hence, the Laplace approximation to the posterior
is a Gaussian with mean f and covariance matrix A~la

p(f %) = N(F,A™Y) = N(f, (W +K)™)



Model Parameter Estimation

The marginal likelihood is useful for estimating the model
parameters 6 and covariance parameters /

p(xi6,6) = [ p(xIf.0)p(fl0) of = [ exp (v ()
Using Taylor expansion of (f),
2 L1 1
log p(x|0, @) = log p (x|f,0,¢) - Ef K™ f — 3 log [I + KW]|
The parameters n = {6, ¢} can be then estimated by using

Ologp (xln) _ dlogp(xin) | 0log p (x|n) OF
on = on explicit of on




Michaelis-Menten Kinetics

Pei Gao

» The Michaelis-Menten activation model uses the following
non-linearity

ef (1)
g (f(t)) = + @’

where we are using a GP f (t) to model the log of the TF
activity.
) infrred ps3 proei i Ifered 3 protin
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Valdiation of Laplace Approximation

0 2 4 6 8 10 12
Figure: Laplace approximation error bars along with samples from the
true posterior distribution.



SOS Response

» DNA damage may occur as a result of activity of antibiotics.

» LexA is bound to the genome preventing transcription of the

SOS genes.

» RecA protein is stimulated by single stranded DNA,
inactivates the LexA repessor.

» This allows several of the LexA targets to transcribe.

» The SOS pathway may be essential in antibiotic resistance
Cirz et al. (2005).

» Aim is to target these proteins to produce drugs to increase
efficacy of antibiotics Lee et al. (2005).



LexA Experimental Description

» Data from Courcelle et al. (2001)

» UV irradiation of E. coli. in both wild-type cells and lexAl
mutants, which are unable to induce genes under LexA
control.

» Response measured with two color hybridization to cDNA
arrays.



Their Model

Given measurements of gene expression at N time points
(to, t1,-..,tny—1), the temporal profile of a gene i, x; (t), that
solves the ODE in Eq. 1 can be approximated by

2
N

B; 1 1
0,0t i —5it Diti+1 _ Dit;
xi(t) =x;e %"+ — 4+ Sje” 't — e Tt —eti) ——
I() i Di ! Dij:O( )’Yl+f_’/
where f; = w on each subinterval

(tj,tj+1),j=0,...,N—2. This is under the simplifying
assumption that f (t) is a piece-wise constant function on each
subinterval (tj, t; + 1).



Khanin et al. (2006) Results Reminder
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Figure: Fig. 2 from Khanin et al. (2006): Reconstructed activity level of
master repressor LexA, following a UV dose of 40 J/m2.



Their Results
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Figure: Fig. 3 from Khanin et al. (2006): Reconstructed profiles for four
genes in the LexA SIM.



Repression Model

Pei Gao

» We can use the same model of repression,

1

g (f(t) = 5+ ef®

In the case of repression we have to include the transient term,

B; t
5 (0) = e+ Z e s [P g(f (w)au
J



Results for the repressor LexA

Inferred LexA Activity

recN mRNA

Pei Gao
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Figure: Our results using an MLP kernel. To apear at ECCB08 Gao et al.

(2008).



Use Samples to Represent Posterior

Michalis Titsias

» Sample in Gaussian processes

p (f[x) o< p (x|f) p ()

» Likelihood relates GP to data through
pt, B ‘ —D;(t—u)
xj(6) = aje Pt 4 2t [ e P Dg(f (u))du
J 0

» We use control points for fast sampling.



MCMC for Non Linear Response

The Metropolis-Hastings algorithm
» Initialize £(©)

» Form a Markov chain. Use a proposal distribution
Q(F(H1)|£(t)) and accept with the M-H step

p(x|f(t+1))p(f(t+1)) Q(f(t)|f(t+1))
min | 1
p(x|F®)p(F(B)  Q(F(t+1)|f(1))

» f can be very high dimensional (hundreds of points)
» How do we choose the proposal Q(f(t+1)|f(t))?

» Can we use the GP prior p(f) as the proposal?



Sampling using control points

» Separate the points in f into two groups:

» few control points f.
» and the large majority of the remaining points f, = f \ f.

» Sample the control points f. using a proposal g <f£t+1)|f£t)>

» Sample the remaining points f, using the conditional GP prior
(t+1),g(t+1)
P (fp Ife )

» The whole proposal is
Q <f(t+1)|f(t)> —p <f£t+1)|f£t+1)> q (f£t+1)|f£_t)>

» lIts like sampling from the prior p(f) but imposing random
walk behaviour through the control points



Sampling using control points: Regression-Examples

Sample 121 points using 10 control points
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Sampling using control points: Regression-Examples
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Sampling using control points: Regression-Examples

Sample 121 points using 10 control points




Sampling using control points: Regression-Examples
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Sampling using control points: Regression-Examples

Sample 121 points using 10 control points
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Sampling using control points: Regression-Examples

Sample 121 points using 10 control points
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Sampling using control points

Few samples drawn during MCMC




Results on SOS System

» Again consider the Michaelis-Menten kinetic equation
dx;(t) 1
2 = B: —  — D:x:(t
it I ey, 20

We have 14 genes (5 kinetic parameters each)
Gene expressions are available for T = 6 time slots
TF (f) is discretized using 121 points

MCMC details:

» 6 control points are used (placed in a equally spaced grid)

» Running time was 5 hours for 2 million sampling iterations plus
burn in

» Acceptance rate for f after burn in was between 15% — 25%

vV v v Yy



Results in E.coli data: Predicted gene expressions
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Results in E.coli data: Predicted gene expressions
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Results in E.coli data: Predicted gene expressions

yebG Gene yjiw Gene




Results in E.coli data: Protein concentration

Inferred protein




Results in E.coli data: Kinetic parameters
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Results in E.co

[i data: Genes with low

sensitivity value
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Results in E.coli data: Confidence intervals for the kinetic

parameters

Basal rates Decay rates

.

.

w
. ]
w I
. ]

.
. ]

.
| ]

o
. ]

- o m. I h == = = b o

INF ANl lexA T6cA fecN VA fuvB SDMC SUA UMUC UMD (VB vebG Vi W

Sensitivities Gamma parameters

¢
gl 000
5

2—4

;




p53 System Again

» One transcription factor (p53) that acts as an activator. We
consider the Michaelis-Menten kinetic equation

Og(t) - o eplf(1)
dt I Texp(f(t)) + v

— Djx;(t)

» We have 5 genes
» Gene expressions are available for T = 7 times and there are 3
replicas of the time series data
» TF (f) is discretized using 121 points
» MCMC details:
» 7 control points are used (placed in a equally spaced grid)
» Running time 4/5 hours for 2 million sampling iterations plus

burn in
» Acceptance rate for f after burn in was between 15% — 25%



Data used by Barenco et al. (2006): Predicted gene

expressions for the 1st replica

DDB2 Gene - first Replica

BIK Gene - first Replica

TNFRSF10b Gene - first Replica
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Data used by Barenco et al. (2006): Protein concentrations

Inferred p53 protein Inferred ps3 protein Inferred ps3 protein

2 4 6 8 10 12

Linear model (Barenco et al. predictions are shown as crosses)

Inferred protein Inferred protein Inferred protein
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Nonlinear (Michaelis-Menten kinetic equation)



p53 Data Kinetic parameters

Basal rates Decay rates

s 4

4 4

N 4
Bk ooz 526 sesni TNFRSFL05 Ciptip21 Bk

b2esesni | TNFRSFioh | Cipupal

Sensitivities Gamma parameters

wﬂmL%ﬁﬁm

Our results (grey) compared with Barenco et al. (2006) (black).
Note that Barenco et al. use a linear model
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