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Can a Biologist Fix a Radio? Lazebnik (2002)
The Case for Systems Biology

“It is difficult to find a black cat in a dark room,
especially if there is no cat.”

I Biological systems are immensely complicated.
I Lazebnik argues the need for models that are quantitative.

I Such models should be predictive of biological behaviour.
I Such models need to be combined with biological data.

I Systems biology:
I Build mechanistic models (based on biochemical knowledge) of

the system.
I Identify modules, submodules, and parameterize the models.
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Coregulation of Gene Expression
The Case for Computational Biology

I Gene Expression to Transcriptional Regulation.
I A “data exploration” problem (computational

biology/bioinformatics):
I Use gene expression data to speculate on coregulated genes.
I Traditionally use clustering of gene expression profiles.

I Contrast with (computational) systems biology approach:
I Detailed mechanistic model of the system is created.
I Fit parameters of the model to data.
I Problematic for large data (genome wide).
I Need to deal with unobserved biochemical species (TFs).



General Approach
Broadly Speaking: Two approaches to modeling

data modeling mechanistic modeling

let the data “speak” impose physical laws

computational models systems models

adaptive models differential equations

PCA, clustering SDE, ODE models

Figure: Computational biology vs systems biology.
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A Hybrid Approach
Introduce aspects of systems biology to computational models

I We advocate an approach between systems and
computational biology.

I Introduce aspects of systems biology to the computational
approach.

I There is a computational penalty, but it may be worth paying.
I Ideally there should be a smooth transition from pure

computational (PCA, clustering, SVM classification) to
systems (non-linear (stochastic) differential equations).

I This work is one part of that transition.



Radiation Damage in the Cell

I Radiation can damages molecules including DNA.

I Most DNA damage is quickly repaired—single strand breaks,
backbone break.

I Double strand breaks are more serious—a complete disconnect
along the chromosome.

I Cell cycle stages:

I G1: Cell is not dividing.
I G2: Cell is preparing for meitosis, chromosomes have divided.
I S: Cell is undergoing meitosis (DNA synthesis).

I Main problem is in G1. In G2 there are two copies of the
chromosome. In G1 only one copy.



p53 “Guardian of the Cell”

I Responsible for Repairing DNA damage

I Activates DNA Repair proteins

I Pauses the Cell Cycle (prevents replication of damage DNA)

I Initiates apoptosis (cell death) in the case where damage can’t
be repaired.

I Large scale feeback loop with NF-κB.



p53 DNA Damage Repair

Figure: p53. Left unbound, Right bound to DNA. Images by David S.
Goodsell from http://www.rcsb.org/ (see the“Molecule of the Month”
feature).

http://www.rcsb.org/


p53

Figure: Repair of DNA damage by p53. Image from Goodsell (1999).



Some p53 Targets

DDB2 DNA Damage Specific DNA Binding Protein 2. (also
governed by C/ EBP-beta, E2F1, E2F3,...).

p21 Cycline-dependent kinase inhibitor 1A (CDKN1A). A
regulator of cell cycle progression. (also goverened by
SREBP-1a, Sp1, Sp3,... ).

hPA26/SESN1 sestrin 1 Cell Cycle arrest.

BIK BCL2-interacting killer. Induces cell death
(apoptosis)

TNFRSF10b tumor necrosis factor receptor superfamily, member
10b. A transducer of apoptosis signals.



Modelling Assumption

I Assume p53 affects targets as a single input module network
motif (SIM).

p53

p21

DDB2

PA26

BIK

TNFRSF10b

Figure: p53 SIM network motif as modelled by Barenco et al. 2006.



Standard Approach
Clustering of Gene Expression Profiles

I Assume that coregulated genes will cluster in the same groups.

I Perform clustering, and look for clusters containing target
genes.

I These are candidates, look for confirmation in the literature
etc.



Mathematical Model

I Differential equation model of system.

dxj (t)

dt
= Bj + Sj f (t)− Djxj (t)

Djxj (t) +
dxj (t)

dt
= Bj + Sj f (t)

rate of mRNA transcription, baseline transcription rate,
transcription factor activity, mRNA decay

I We have observations of xj (t) from gene expression. .

I Reorder differential equation.

I An estimate of
dxj (t)

dt is obtained through fitting polynomials.

I Jointly estimate f (t) at observations of time points along
with {Bj ,Dj ,Sj}gj=1.

I Fit parameters by maximum likelihood or MCMC sampling.
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I Clustering model is equivalent to assuming Dj , Bj , and Sj are
v. large.
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I Reorder differential equation and ignore gradient term.

I This suggests genes are scaled and offset versions of the TF.

I By normalizing data and clustering we hope to find those TFs.
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Response of p53

Figure: Results from Barenco et al. (2006). Top is parameter estimates.
Bottom is inferred profile.



Respose to p53 ...

Figure: Results from Barenco et al. (2006). Activity profile of p53 was
measured by Western blot to determine the levels of ser-15
phosphorylated p53 (ser15P-p53).
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Probabilistic Model for f (t)

I We introduce a probabilistic model for f (t).

I It is known as a Gaussian process, but we can think of it as a
multivariate Gaussian (also known as a multivariate normal)
distribution.

I The distribution has a mean vector, m and a covariance
matrix, K.

I We will consider the mean to be zero: m = 0.

I The covariance matrix will be structured to give correlation
between samples.

I We will sample 25 points from the Gaussian distribution.

I Samples are governed by a 25× 25 correlation matrix.



Gaussian Distribution Sample
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(b) colormap showing correlations
between dimensions

Figure: A sample from a 25 dimensional Gaussian distribution.



Covariance Function

The covariance matrix

I Covariance matrix shows correlation between points fm and fn
if n is near to m.

I Less correlation if n is distant from m.

I Our ordering of points means that the function appears
smooth.

I In practice covariance matrix is computed as a function of
time—index is equivalent to time.

I Different covariance functions give different characteristics.

I Because the models are probabilistic we can sample different
characteristics.
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Covariance Functions
Where did this covariance matrix come from?

RBF Kernel Function

k
(
t, t ′
)

= α exp

(
−||t − t ′||2

2`2

)

I Covariance matrix is built
using the inputs to the
function t.

I For the example above it
was based on Euclidean
distance.

I The covariance function is
also know as a kernel.
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with ` = 10−
1
2 , α = 1
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Covariance Samples
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Figure: RBF kernel with ` = 0.3, α = 4



Covariance Samples
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Figure: Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance
function ` = 1, α = 4



Example: Transcriptional Regulation

I First Order Differential Equation

dxj (t)

dt
= Bj + Sj f (t)− Djxj (t)

I It turns out that our Gaussian process assumption for f (t),
implies x(t) is also a Gaussian process.

I The new Gaussian process is over f (t) and all its targets:
x1(t), x2(t), ... etc.

I Our new covariance matrix gives correlations between all these
functions.

I This gives us a probabilistic model for transcriptional
regulation.
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Covariance for Transcription Model

RBF covariance function for f (t)

xi (t) =
Bi

Di
+ Si exp (−Di t)

∫ t

0
f (u) exp (Diu) du.

I Joint distribution
for x1 (t), x2 (t),
x3 (t), and f (t).

I Here:
D1 S1 D2 S2 D3 S3
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Joint Sampling of f (t) and x (t)

I simSample
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Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 (t) (high decay/sensitivity), green: x2 (t) (medium
decay/sensitivity) and blue: x3 (t) (low decay/sensitivity).



Joint Sampling of f (t) and x (t)

I simSample

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 (t) (high decay/sensitivity), green: x2 (t) (medium
decay/sensitivity) and blue: x3 (t) (low decay/sensitivity).



Joint Sampling of f (t) and x (t)

I simSample

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 (t) (high decay/sensitivity), green: x2 (t) (medium
decay/sensitivity) and blue: x3 (t) (low decay/sensitivity).



Joint Sampling of f (t) and x (t)

I simSample

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 (t) (high decay/sensitivity), green: x2 (t) (medium
decay/sensitivity) and blue: x3 (t) (low decay/sensitivity).



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



Artificial Example: Inferring f (t)
Inferring TF activity from artificially sampled genes.

0 5 10 15
0

2

4

6

8

True “gene profiles” and noisy
observations.

0 5 10 15
−2

−1

0

1

2

3

4

Inferred transcription factor
activity.



p53 Results with GP

Pei Gao
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Ranking with ERK Signalling

I Target Ranking for Elk-1.

I Elk-1 is phosphorylated by ERK from the EGF signalling
pathway.

I Predict concentration of Elk-1 from known targets.

I Rank other targets of Elk-1.



Elk-1 (MLP covariance)

Jennifer Withers
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Elk-1 target selection

Fitted model used to rank potential targets of Elk-1
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Cascaded Differential Equations

Antti Honkela

I Transcription factor protein also has governing mRNA.

I This mRNA can be measured.

I In signalling systems this measurement can be misleading
because it is activated (phosphorylated) transcription factor
that counts.

I In development phosphorylation plays less of a role.



Drosophila Mesoderm Development

Collaboration with Furlong Lab in EMBL Heidelberg.

I Mesoderm development in Drosophila melanogaster (fruit fly).

I Mesoderm forms in triplobastic animals (along with ectoderm
and endoderm). Mesoderm develops into muscles, and
circulatory system.

I The transcription factor Twist initiates Drosophila mesoderm
development, resulting in the formation of heart, somatic
muscle, and other cell types.

I Wildtype microarray experiments publicly available.

I Can we use the cascade model to predict viable targets of
Twist?



Cascaded Differential Equations

Antti Honkela

We take the production rate of active transcription factor to be
given by

df (t)

dt
= σy (t)− δf (t)

dxj (t)

dt
= Bj + Sj f (t)− Djxj (t)

The solution for f (t), setting transient terms to zero, is

f (t) = σ exp (−δt)

∫ t

0
y(u) exp (δu) du .



Covariance for Translation/Transcription Model

RBF covariance function for y (t)

f (t) = σ exp (−δt)

Z t

0

y(u) exp (δu) du

xi (t) =
Bi

Di
+ Si exp (−Di t)

Z t

0

f (u) exp (Diu) du.

I Joint distribution
for x1 (t), x2 (t),
f (t) and y (t).

I Here:
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Joint Sampling of y (t), f (t), and x (t)

I disimSample
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Figure: Joint samples from the ODE covariance, blue: y (t) (mRNA
of TF), black: f (t) (TF concentration), red: x1 (t) (high decay
target) and green: x2 (t) (low decay target)
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Twist Results

I Use mRNA of Twist as driving input.

I For each gene build a cascade model that forces Twist to be
the only TF.

I Compare fit of this model to a baseline (e.g. similar model
but sensitivity zero).

I Rank according to the likelihood above the baseline.

I Compare with correlation, knockouts and time series network
identification (TSNI) (Della Gatta et al., 2008).



Results for Twi using the Cascade model
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Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn0003486.



Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn0011206.



Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn00309055.



Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn0031907.



Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn0035257.



Results for Twi using the Cascade model
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Results of Ranking
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Figure: Percentage enrichment for top N targets for relevant terms in
Drosophila in situs.



Results of Ranking
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Summary

I Cascade models allow genomewide analysis of potential
targets given only expression data.

I Once a set of potential candidate targets have been identified,
they can be modelled in a more complex manner.

I We don’t have ground truth, but evidence indicates that the
approach can perform as well as knockouts.
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Discussion and Future Work

I Integration of probabilistic inference with mechanistic models.

I Applications in modeling gene expression.

I Cascade model introduces model of translation.
I Ongoing/other work:

I Non linear response and non linear differential equations.
I Scaling up to larger systems.
I Stochastic differential equations.
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Outline

Nonlinear Response



Nonlinear Response Models

Consider the following modification to the model,

dxj (t)

dt
= Bj + Sjg (f (t))− Djxj (t) ,

where g (·) is a non-linear function. The differential equation can
still be solved,

xj (t) =
Bj

Dj
+ Sj

∫ t

0
e−Dj (t−u)gj (f (u)) du



MAP-Laplace Approximation

Based on Laplace’s method,

p (f | x) = N
(
f̂,A−1

)
∝ exp

(
−1

2

(
f − f̂

)T
A
(
f − f̂

))
where f̂ = argmaxp(f | x) and A = −∇∇ log p (f | y) |f=f̂ is the

Hessian of the negative posterior at that point. To obtain f̂ and A,

we define the following function ψ (f) as:

log p(f|x) ∝ ψ(f) = log p (x | f) + log p (f)



MAP-Laplace Approximation

Assigning a GP prior distribution to f (t), it then follows that

log p (f) = −1

2
fTK−1f − 1

2
log |K| − n

2
log 2π

where K is the covariance matrix of f (t). Hence,

∇ψ(f) = ∇ log p(x|f)−K−1f

∇∇ψ(f) = ∇∇ log p(x|f)−K−1 = −W −K−1



Estimation of ψ(f)

Newton’s method is applied to find the maximum of ψ(f) as

fnew = f − (∇∇ψ(f))−1∇ψ(f)

= (W + K−1)−1 (Wf −∇ log p(x|f))

In addition, A = −∇∇ψ(f̂ ) = W + K−1 where W is the negative
Hessian matrix. Hence, the Laplace approximation to the posterior
is a Gaussian with mean f̂ and covariance matrix A−1as

p(f | x) ' N (̂f,A−1) = N(f̂, (W + K−1)−1)



Model Parameter Estimation

The marginal likelihood is useful for estimating the model
parameters θ and covariance parameters l

p (x|θ,φ) =

∫
p (x|f,θ) p (f|φ) df =

∫
exp (ψ (f)) df

Using Taylor expansion of ψ(f),

log p(x|θ,φ) = log p
(
x|̂f,θ,φ

)
− 1

2
fTK−1f − 1

2
log |I + KW|

The parameters η = {θ,φ} can be then estimated by using

∂ log p (x|η)

∂η
=
∂ log p (x|η)

∂η
|explicit +

∂ log p (x|η)

∂ f̂

∂ f̂

∂η



Michaelis-Menten Kinetics

Pei Gao

I The Michaelis-Menten activation model uses the following
non-linearity

gj (f (t)) =
ef (t)

γj + ef (t)
,

where we are using a GP f (t) to model the log of the TF
activity.
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Valdiation of Laplace Approximation
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Figure: Laplace approximation error bars along with samples from the
true posterior distribution.



SOS Response

I DNA damage may occur as a result of activity of antibiotics.

I LexA is bound to the genome preventing transcription of the
SOS genes.

I RecA protein is stimulated by single stranded DNA,
inactivates the LexA repessor.

I This allows several of the LexA targets to transcribe.

I The SOS pathway may be essential in antibiotic resistance
Cirz et al. (2005).

I Aim is to target these proteins to produce drugs to increase
efficacy of antibiotics Lee et al. (2005).



LexA Experimental Description

I Data from Courcelle et al. (2001)

I UV irradiation of E. coli. in both wild-type cells and lexA1
mutants, which are unable to induce genes under LexA
control.

I Response measured with two color hybridization to cDNA
arrays.



Their Model

Given measurements of gene expression at N time points
(t0, t1, . . . , tN−1), the temporal profile of a gene i , xi (t), that
solves the ODE in Eq. 1 can be approximated by

xi (t) = x0
i e−δi t +

Bi

Di
+ Sie

−δi t
1

Di

N−2∑
j=0

(
eDi tj +1 − eDi tj

) 1

γi + f̄j

where f̄j =
(f (tj)+f (tj +1))

2 on each subinterval
(tj , tj + 1) , j = 0, . . . ,N − 2. This is under the simplifying
assumption that f (t) is a piece-wise constant function on each
subinterval (tj , tj + 1).



Khanin et al. (2006) Results Reminder

Figure: Fig. 2 from Khanin et al. (2006): Reconstructed activity level of
master repressor LexA, following a UV dose of 40 J/m2.



Their Results

Figure: Fig. 3 from Khanin et al. (2006): Reconstructed profiles for four
genes in the LexA SIM.



Repression Model

Pei Gao

I We can use the same model of repression,

gj (f (t)) =
1

γj + ef (t)

In the case of repression we have to include the transient term,

xj (t) = αje
−Dj t +

Bj

Dj
+ Sj

∫ t

0
e−Dj (t−u)gj(f (u))du



Results for the repressor LexA

Pei Gao
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Use Samples to Represent Posterior

Michalis Titsias

I Sample in Gaussian processes

p (f|x) ∝ p (x|f) p (f)

I Likelihood relates GP to data through

xj (t) = αje
−Dj t +

Bj

Dj
+ Sj

∫ t

0
e−Dj (t−u)gj(f (u))du

I We use control points for fast sampling.



MCMC for Non Linear Response

The Metropolis-Hastings algorithm

I Initialize f(0)

I Form a Markov chain. Use a proposal distribution
Q(f(t+1)|f(t)) and accept with the M-H step

min

(
1,

p(x|f(t+1))p(f(t+1))

p(x|f(t))p(f(t))

Q(f(t)|f(t+1))

Q(f(t+1)|f(t))

)
I f can be very high dimensional (hundreds of points)

I How do we choose the proposal Q(f(t+1)|f(t))?

I Can we use the GP prior p(f) as the proposal?



Sampling using control points

I Separate the points in f into two groups:

I few control points fc
I and the large majority of the remaining points fρ = f \ fc

I Sample the control points fc using a proposal q
(
f

(t+1)
c |f(t)

c

)
I Sample the remaining points fρ using the conditional GP prior

p
(
f

(t+1)
ρ |f(t+1)

c

)
I The whole proposal is

Q
(
f(t+1)|f(t)

)
= p

(
f(t+1)
ρ |f(t+1)

c

)
q
(
f

(t+1)
c |f(t)

c

)
I Its like sampling from the prior p(f) but imposing random

walk behaviour through the control points



Sampling using control points: Regression-Examples

Sample 121 points using 10 control points
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Sampling using control points: Regression-Examples

Sample 121 points using 10 control points
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Sampling using control points: Regression-Examples

Sample 121 points using 10 control points
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Sampling using control points: Regression-Examples

Sample 121 points using 10 control points
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Sampling using control points: Regression-Examples

Sample 121 points using 10 control points
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Sampling using control points: Regression-Examples

Sample 121 points using 10 control points
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Sampling using control points

Few samples drawn during MCMC
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Results on SOS System

I Again consider the Michaelis-Menten kinetic equation

dxj(t)

dt
= Bj + Sj

1

exp(f (t)) + γj
− Djxj(t)

I We have 14 genes (5 kinetic parameters each)

I Gene expressions are available for T = 6 time slots

I TF (f) is discretized using 121 points

I MCMC details:

I 6 control points are used (placed in a equally spaced grid)
I Running time was 5 hours for 2 million sampling iterations plus

burn in
I Acceptance rate for f after burn in was between 15%− 25%



Results in E.coli data: Predicted gene expressions
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Results in E.coli data: Predicted gene expressions
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Results in E.coli data: Predicted gene expressions
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Results in E.coli data: Protein concentration
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Results in E.coli data: Kinetic parameters
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Results in E.coli data: Genes with low sensitivity value
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Results in E.coli data: Confidence intervals for the kinetic
parameters
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p53 System Again

I One transcription factor (p53) that acts as an activator. We
consider the Michaelis-Menten kinetic equation

dxj(t)

dt
= Bj + Sj

exp(f (t))

exp(f (t)) + γj
− Djxj(t)

I We have 5 genes

I Gene expressions are available for T = 7 times and there are 3
replicas of the time series data

I TF (f) is discretized using 121 points

I MCMC details:

I 7 control points are used (placed in a equally spaced grid)
I Running time 4/5 hours for 2 million sampling iterations plus

burn in
I Acceptance rate for f after burn in was between 15%− 25%



Data used by Barenco et al. (2006): Predicted gene
expressions for the 1st replica
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Data used by Barenco et al. (2006): Protein concentrations

0 2 4 6 8 10 12
0

0.5

1

1.5

2
Inferred p53 protein

0 2 4 6 8 10 12
−0.5

0

0.5

1

1.5

2
Inferred p53 protein

0 2 4 6 8 10 12
−0.5

0

0.5

1

1.5

2

2.5

3
Inferred p53 protein

Linear model (Barenco et al. predictions are shown as crosses)
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Nonlinear (Michaelis-Menten kinetic equation)



p53 Data Kinetic parameters
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Our results (grey) compared with Barenco et al. (2006) (black).
Note that Barenco et al. use a linear model
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