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Can a Biologist Fix a Radio? Lazebnik (2002)

The Case for Systems Biology

“It is difficult to find a black cat in a dark room,
especially if there is no cat.”

» Biological systems are immensely complicated.
» Lazebnik argues the need for models that are quantitative.
» Such models should be predictive of biological behaviour.
» Such models need to be combined with biological data.
» Systems biology:
» Build mechanistic models (based on biochemical knowledge) of
the system.
» Identify modules, submodules, and parameterize the models.



Coregulation of Gene Expression

The Case for Computational Biology

» Gene Expression to Transcriptional Regulation.
» A “data exploration” problem (computational
biology /bioinformatics):

» Use gene expression data to speculate on coregulated genes.

» Traditionally use clustering of gene expression profiles.
» Contrast with (computational) systems biology approach:

» Detailed mechanistic model of the system is created.

Fit parameters of the model to data.

>
» Problematic for large data (genome wide).
> Need to deal with unobserved biochemical species (TFs).
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A Hybrid Approach

Introduce aspects of systems biology to computational models

» We advocate an approach between systems and
computational biology.

» Introduce aspects of systems biology to the computational
approach.
» There is a computational penalty, but it may be worth paying.
> ldeally there should be a smooth transition from pure
computational (PCA, clustering, SVM classification) to
systems (non-linear (stochastic) differential equations).
» This work is one part of that transition.



Radiation Damage in the Cell

» Radiation can damages molecules including DNA.

» Most DNA damage is quickly repaired—single strand breaks,
backbone break.

» Double strand breaks are more serious—a complete disconnect
along the chromosome.

> Cell cycle stages:

» Gy: Cell is not dividing.
» Gy: Cell is preparing for meitosis, chromosomes have divided.
» S: Cell is undergoing meitosis (DNA synthesis).

» Main problem is in G1. In Gy there are two copies of the
chromosome. In G; only one copy.



p53 “Guardian of the Cell”

v

Responsible for Repairing DNA damage

v

Activates DNA Repair proteins

v

Pauses the Cell Cycle (prevents replication of damage DNA)

v

Initiates apoptosis (cell death) in the case where damage can't
be repaired.

v

Large scale feeback loop with NF-xB.



p53 DNA Damage Repair

Figure: p53. Left unbound, Right bound to DNA. Images by David S.
Goodsell from http://www.rcsb.org/ (see the'Molecule of the Month”
feature).


http://www.rcsb.org/

Figure: Repair of DNA damage by p53. Image from Goodsell (1999).



Some p53 Targets

DDB2 DNA Damage Specific DNA Binding Protein 2. (also
governed by C/ EBP-beta, E2F1, E2F3,...).

p21 Cycline-dependent kinase inhibitor 1A (CDKN1A). A
regulator of cell cycle progression. (also governed by
SREBP-1a, Spl, Sp3,... ).
hPA26/SESNI sestrin 1 Cell Cycle arrest.
BIK BCL2-interacting killer. Induces cell death
(apoptosis)
TNFRSF10b tumor necrosis factor receptor superfamily, member
10b. A transducer of apoptosis signals.



Modelling Assumption

> Assume pb3 affects targets as a single input module network
motif (SIM).

Figure: p53 SIM network motif as modelled by Barenco et al. 2006.



Standard Approach

Clustering of Gene Expression Profiles

> Assume that coregulated genes will cluster in the same groups.

> Perform clustering, and look for clusters containing target
genes.

» These are candidates, look for confirmation in the literature
etc.



Mathematical Model

Method

Ranked prediction of p53 targets using hidden variable dynamic
modeling
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Mathematical Model

» Differential equation model of system.

dm; (t
cjt( ) - bj + sip (t) — djm; (t)
dm; (t
im; () + S5 gy 4o (0

rate of mRNA transcription, baseline transcription rate,
transcription factor activity, mRNA decay

» We have observations of mj (t) from gene expression.
» Reorder differential equation.
> An estimate of % is obtained through fitting polynomials.
» Jointly estimate p () at observations of time points along
i o\
with {bjadjasj}j:y
» Fit parameters by maximum likelihood or MCMC sampling.
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Mathematical Model

» Clustering model is equivalent to assuming d;, b;, and s; are
v. large.

dm; (t)

dt
dimj (t) = bj + s;p (1)

= bj +5p(t) — djm; (t)

rate of mRNA transcription, baseline transcription rate,
transcription factor activity, mRNA decay

» We have observations of mj (t) from gene expression.
» Reorder differential equation and ignore gradient term.
» This suggests genes are scaled and offset versions of the TF.

» By normalizing data and clustering we hope to find those TFs.



Response of p53
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Figure: Results from Barenco et al. (2006). Top is parameter estimates.
Bottom is inferred profile.



Response to p53 ...
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Figure: Results from Barenco et al. (2006). Activity profile of p53 was
measured by Western blot to determine the levels of ser-15
phosphorylated p53 (serl5P-p53).



Bayesian Inference for Functions

> Bayesian inference is a framework for dealing with uncertainty.

» From a modeling perspective, value of active TF over time,
p(t), is a latent variable.

> Latent variables are endemic, for example “Spot the Ball".



Spot the Ball

Image from http://www.bluesmuse.com


http://www.bluesmuse.com

Marionette Analogy
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Marionette Analogy
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Dimensionality Reduction: Temporal Data

| |

t

Figure: PCA: Pure sampling from a Gaussian does not retain temporal
effects.



Dimensionality Reduction: Temporal Data

Figure: Kalman filter (Rauch-Tung-Striebel smoother) is
Markov-Gaussian (non smooth).



Dimensionality Reduction: Temporal Data

Figure: General Gaussian processes allow for priors over smooth functions.
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p53 Results with GP

Vol. 24 ECCB 2008, pages i70~i75
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Gaussian process modelling of latent chemical species:
applications to inferring transcription factor activities

Pei Gao', Antti Honkela?, Magnus Rattray' and Neil D. Lawrence™*

1School of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manchester, M13 9PL and
2Adaptive Informatics Research Centre, Helsinki University of Technology, PO Box 5400, FI-02015 TKK, Finland

ABSTRACT A challenging problem for p imation in ODE models
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p53 Results with GP

(Gao et al., 2008)

Inferred p53 protein gene TNFRSF20b mRNA gene DDB2 mMRNA
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Ranking with ERK Signalling

v

Target Ranking for Elk-1.

Elk-1 is phosphorylated by ERK from the EGF signalling
pathway.

v

v

Predict concentration of Elk-1 from known targets.
Rank other targets of Elk-1.

v
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Elk-1 target selection

Fitted model used to rank potential targets of Elk-1

Predicted target gene Predicted non-target gene

0 1 2 3 4 5 6 7 8 i 0 1 2 3 4 5 6 7 8
time (h) time (h)



Cascade Differential Equations



Cascaded Differential Equations

Model-based method for transcription factor
target identification with limited data

Antti Honkela>', Charles Girardot®, E. Hilary Gustafson®, Ya-Hsin Liu®, Eileen E. M. Furlong®,
Neil D. Lawrence*', and Magnus Rattray“'

*Department of Information and Computer Science, Aalto University School of Science and Technology, Helsinki, Finland; "Genome Biology U
European Molecular Biology Laboratory, Heidelberg, Germany; and ‘School of Computer Science, University of Manchester, Manchester, Unite

Edited by David Baker, University of Washington, Seattle, WA, and approved March 3, 2010 (received for review December 10, 2009)

We present a computational method for identifying potential tar-  used for genome-wide scoring of putative target gen
gets of a transcription factor (TF) using wild-type gene expression  is required to apply our method is wild-type time seri
time series data. For each putative target gene we fit a simple dif-  lected over a period where TF activity is changing. Ou
ferential equation model of transcriptional regulation, and the allows for complementary evidence from expression




Cascaded Differential Equations

(Honkela et al., 2010)

v

Transcription factor protein also has governing mRNA.
This mRNA can be measured.
In signalling systems this measurement can be misleading

because it is activated (phosphorylated) transcription factor
that counts.

v

v

v

In development phosphorylation plays less of a role.



Twist Results

> Use mRNA of Twist as driving input.

» For each gene build a cascade model that forces Twist to be
the only TF.

» Compare fit of this model to a baseline (e.g. similar model
but sensitivity zero).

» Rank according to the likelihood above the baseline.

» Compare with correlation, knockouts and time series network
identification (TSNI) (Della Gatta et al., 2008).



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0002526.



Results for Twi using the Cascade model

x107° Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0003486.



Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn0011206.



Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn00309055.



Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn0031907.



Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn0035257.



Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn0039286.



Evaluation methods

» Evaluate the ranking methods by taking a number of
top-ranked targets and record the number of
“positives” (Zinzen et al., 2009):

» targets with ChlIP-chip binding sites within 2 kb of gene
> (targets differentially expressed in TF knock-outs)
» Compare against
» Ranking by correlation of expression profiles
» Ranking by g-value of differential expression in knock-outs
» Optionally focus on genes with annotated expression in tissues
of interest
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» Cascade models allow genomewide analysis of potential
targets given only expression data.

> Once a set of potential candidate targets have been identified,
they can be modelled in a more complex manner.

» We don't have ground truth, but evidence indicates that the
approach can perform as well as knockouts.



Discussion and Future Work



Discussion and Future Work

Integration of probabilistic inference with mechanistic models.
Software available through bioconductor (TIGRE Package)
http://bioconductor.org/packages/2.6/bioc/html/
tigre.html.

v

v

v

Applications in modeling gene expression.

Ongoing/other work:
» Non linear response and non linear differential equations.
» Improving computational complexity.
» Stochastic differential equations.
» Cascade model introduces model of translation.

v


http://bioconductor.org/packages/2.6/bioc/html/tigre.html
http://bioconductor.org/packages/2.6/bioc/html/tigre.html
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