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Online Resources

All source code and slides are available online

I This talk available from my home page (see talks link on side).
I MATLAB examples in the ’oxford’ toolbox (vrs 0.13).

F http://www.cs.man.ac.uk/~neill/oxford/.

I And the ’gpsim’ toolbox (vrs 0.1).

F http://www.cs.man.ac.uk/~neill/gpsim/.

I MATLAB commands used for examples given in typewriter font.
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Introduction to Gaussian Processes

TFAs can be seen as latent chemical species.

In Magnus’ talk we saw how they can be modelled with Kalman filters.

Gaussian processes (GPs) are probabilistic models for functions.
[O’Hagan, 1978, 1992, Rasmussen and Williams, 2006]

GPs allow inference about functions in the presence of uncertainty.
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Defining a Distribution over Functions

Gaussian Process

I What is meant by a distribution over functions?
I Functions are infinite dimensional objects:

F Defining a distribution over functions seems non-sensical.

Gaussian Distribution

I Start with a standard Gaussian distribution.
I Consider the distribution over a fixed number of instantiations of the

function.
I A multi-variate Gaussian distribution is defined by a mean and a

covariance matrix.
I We consider the special case where the mean is zero,

N (f|0,K) =
1

(2π)
N
2 |K|

1
2

exp

(
− fTK−1f

2

)
.
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Covariance Functions

RBF Kernel Function

k (xm, xn) = α exp

(
−||xm − xn||2

2l2

)

Covariance matrix is built
using the inputs to the
function xn.

I For the example above
it was based on
Euclidean distance.

I The covariance
function is also know
as a kernel.
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with γ = 10, α = 1
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with l = 1, α = 1
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with l = 0.3, α = 4
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Covariance Samples

demCovFuncSample
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Figure: linear kernel with α = 16
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Covariance Samples

demCovFuncSample
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Figure: MLP kernel with α = 8, w = 100 and b = 100
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Covariance Samples
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Figure: MLP kernel with α = 8, b = 0 and w = 100
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Covariance Samples

demCovFuncSample
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Figure: bias kernel with α = 1 and
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Covariance Samples
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Figure: summed combination of: RBF kernel, α = 1, l = 0.3; bias kernel,
α =1; and white noise kernel, β = 100
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Gaussian Process Regression

demRegression
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Figure: Examples include WiFi localization, C14 callibration curve.

Neil Lawrence and Magnus Rattray () Gaussian Processes 7th November 2007 8 / 24



Gaussian Process Regression

demRegression

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Examples include WiFi localization, C14 callibration curve.

Neil Lawrence and Magnus Rattray () Gaussian Processes 7th November 2007 8 / 24



Gaussian Process Regression

demRegression

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Examples include WiFi localization, C14 callibration curve.

Neil Lawrence and Magnus Rattray () Gaussian Processes 7th November 2007 8 / 24



Gaussian Process Regression

demRegression

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Examples include WiFi localization, C14 callibration curve.

Neil Lawrence and Magnus Rattray () Gaussian Processes 7th November 2007 8 / 24



Gaussian Process Regression

demRegression

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Examples include WiFi localization, C14 callibration curve.

Neil Lawrence and Magnus Rattray () Gaussian Processes 7th November 2007 8 / 24



Gaussian Process Regression

demRegression

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Examples include WiFi localization, C14 callibration curve.

Neil Lawrence and Magnus Rattray () Gaussian Processes 7th November 2007 8 / 24



Gaussian Process Regression

demRegression

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Examples include WiFi localization, C14 callibration curve.

Neil Lawrence and Magnus Rattray () Gaussian Processes 7th November 2007 8 / 24



Gaussian Process Regression

demRegression

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Examples include WiFi localization, C14 callibration curve.

Neil Lawrence and Magnus Rattray () Gaussian Processes 7th November 2007 8 / 24



Application

A missing chemical species (e.g. transcription factor).

Aim: infer its value with Gaussian processes.

Differential Equation model

I Simple linear model differential equation model recently used by
Barenco et al. [2006].

I We repeat their experiments with Gaussian processes.
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Simple Linear Model

Linear model of regulation

dyi (t)

dt
= Bi + Si f (t)− Diyi (t)

where:
yi (t) — expression of the ith gene at time t.
f (t) — concentration of the transcription factor at time t.

Di — gene’s decay rate.
Bi — basal transcription rate.
Si — sensitivity to the transcription factor.
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Equation Solution

Solve via Laplace Transforms

I Solution to the equation:

yi (t) =
Bi

Di
+ Si exp (−Di t)

∫ t

0

f (u) exp (Diu) du.

If f (t) is a zero mean Gaussian process then yi (t) is also a Gaussian
process with mean Bi

Di
.
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Two Properties of GPs

The integral of a GP is also a GP,

f (t) ∼ N (0,Kff )

and

g (t) =

∫ t

0
f (u) du

then
g (t) ∼ N (0,Kgg ) ,

where

kgg

(
t, t ′) =

∫ t

0

∫ t′

0
kff

(
u, u′) dudu′
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Two Properties of GPs

Product with deterministic function, if we have

f (t) ∼ N (0,Kff ) ,

and
g (t) = f (t) h (t)

where h (t) is a deterministic function then,

g (t) ∼ N (0,Kgg ) ,

where
kgg

(
t, t ′) = h (t) kff

(
t, t ′) h

(
t ′)
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Covariance for Transcription Model

RBF Kernel function for f (t)

yi (t) =
Bi

Di
+ Si exp (−Di t)

∫ t

0
f (u) exp (Diu) du.

Joint distribution
for y1 (t), y2 (t)
and f (t).

I Here:

D1 S1 D2 S2
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y
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Joint Sampling of y (t) and f (t) from Covariance

gpsimTest
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Figure: Left: joint samples from the transcription covariance, blue: f (t),
cyan: y1 (t) and red : y2 (t). Right: numerical solution for f (t) of the
differential equation from y1 (t) and y2 (t) (blue and cyan). True f (t)
included for comparison.

Neil Lawrence and Magnus Rattray () Gaussian Processes 7th November 2007 15 / 24



Joint Sampling of y (t) and f (t) from Covariance

gpsimTest

0 10 20 30 40 50
1

1.5

2

2.5

3

0 10 20 30 40 50
1

1.5

2

2.5

3

Figure: Left: joint samples from the transcription covariance, blue: f (t),
cyan: y1 (t) and red : y2 (t). Right: numerical solution for f (t) of the
differential equation from y1 (t) and y2 (t) (blue and cyan). True f (t)
included for comparison.

Neil Lawrence and Magnus Rattray () Gaussian Processes 7th November 2007 15 / 24



Joint Sampling of y (t) and f (t) from Covariance

gpsimTest

0 10 20 30 40 50
0

0.5

1

1.5

2

0 10 20 30 40 50
0

0.5

1

1.5

2

Figure: Left: joint samples from the transcription covariance, blue: f (t),
cyan: y1 (t) and red : y2 (t). Right: numerical solution for f (t) of the
differential equation from y1 (t) and y2 (t) (blue and cyan). True f (t)
included for comparison.

Neil Lawrence and Magnus Rattray () Gaussian Processes 7th November 2007 15 / 24



Results — Drosophila
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Figure: mRNA expression levels for target genes. (a) pannier, (b) hibris, (c)
CG12744, (d) CG10516 (e) CG31368 .
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Results — Drosophila
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Figure: Inferred Transcription Factor Activities
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Results — Transcription Rates

Estimation of Equation Parameters demBarenco1
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Figure: Basal transcription rates. Our results (black) compared with
Barenco et al. [2006] (white).
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Results — Transcription Rates

Estimation of Equation Parameters demBarenco1
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Figure: Sensitivities. Our results (black) compared with Barenco et al.
[2006] (white).
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Results — Transcription Rates

Estimation of Equation Parameters demBarenco1
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Figure: Decays. Our results (black) compared with Barenco et al. [2006] (white).
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Results — Protein Concentration

Prediction with error bars of protein concentration:
p (f|y1, y2, y3, y4, y5)
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Figure: (a) RBF covariance function (b) MLP covariance function. Also
included are results from Barenco et al. [2006] as crosses.
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Results — Log Space

GP predictions in log space.
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Figure: (a) RBF covariance function (b) MLP covariance function. Also
included are results from Barenco et al. [2006] as crosses.
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Results — log (1 + exp (x)) Constrained

GP predictions in log space.
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Figure: (a) RBF covariance function (b) MLP covariance function. Also
included are results from Barenco et al. [2006] as crosses.
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Results — Sigmoid

GP predictions in log space.
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Figure: (a) RBF covariance function (b) MLP covariance function. Also
included are results from Barenco et al. [2006] as crosses.
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Transcription Model Summary

Progress so far and Future work

I Elegant solution of a problem with indirect observations.
I Already extended to non-linear response equations (using Laplace

approximation).
I Extending to systems with multiple transcription factors (Pei Gao).
I Validating with Markov chain Monte-Carlo (Michalis Titsias).
I Sensitivities which change over time (Antti Honkela)
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