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Online Resources

@ All source code and slides are available online

> This talk available from my home page (see talks link on side).
» MATLAB examples in the 'oxford’ toolbox (vrs 0.13).

* http://www.cs.man.ac.uk/"neill/oxford/.
» And the 'gpsim’ toolbox (vrs 0.1).
* http://www.cs.man.ac.uk/"neill/gpsim/.

» MATLAB commands used for examples given in typewriter font.

Neil Lawrence and Magnus Rattray () Gaussian Processes


http://www.cs.man.ac.uk/~neill/oxford/
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Introduction to Gaussian Processes
@ TFAs can be seen as latent chemical species.

@ In Magnus' talk we saw how they can be modelled with Kalman filters
@ Gaussian processes (GPs) are probabilistic models for functions.
[O'Hagan, 1978, 1992, Rasmussen and Williams, 2006]

@ GPs allow inference about functions in the presence of uncertainty.
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Defining a Distribution over Functions

@ Gaussian Process

» What is meant by a distribution over functions?
» Functions are infinite dimensional objects:

* Defining a distribution over functions seems non-sensical.

@ Gaussian Distribution

» Start with a standard Gaussian distribution.

» Consider the distribution over a fixed number of instantiations of the
function.

» A multi-variate Gaussian distribution is defined by a mean and a
covariance matrix.

» We consider the special case where the mean is zero,

1 FIK-1f
N (f|0,K) = —x—— exp <——> .
(27)? |K|? 2
[} = = = = DA
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Covariance Functions

@ RBF Kernel Function

@ Covariance matrix is built
using the inputs to the
function x,,.

» For the example above
it was based on
Euclidean distance.

» The covariance
function is also know
as a kernel.
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Covariance Samples

@ demCovFuncSample
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Figure: RBF kernel with v =10, a =1
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Covariance Samples

@ demCovFuncSample
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Figure: RBF kernel with /=1, a=1
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Covariance Samples
@ demCovFuncSample
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Figure:
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Covariance Samples

@ demCovFuncSample

Figure: linear kernel with o = 16
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Covariance Samples
@ demCovFuncSample
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Covariance Samples

@ demCovFuncSample

Figure:
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Covariance Samples

@ demCovFuncSample
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Covariance Samples

@ demCovFuncSample

o

0.5

summed combination of: RBF kernel, a = 1, | = 0.3; bias kernel,

Figure:
«a =1; and white noise kernel, 3 = 100
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Gaussian Process Regression

@ demRegression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression

@ demRegression
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Gaussian Process Regression

@ demRegression
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Gaussian Process Regression

@ demRegression
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Gaussian Process Regression

@ demRegression
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Gaussian Process Regression

@ demRegression
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Gaussian Process Regression

@ demRegression

Neil Lawrence and Magnus Rattray () Gaussian Processes



Gaussian Process Regression

@ demRegression
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Application

@ A missing chemical species (e.g. transcription factor).
@ Aim: infer its value with Gaussian processes.
@ Differential Equation model

» Simple linear model differential equation model recently used by
Barenco et al. [2006].
» We repeat their experiments with Gaussian processes.
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Simple Linear Model

@ Linear model of regulation

dy; (t
D) _ g, 4 56 (1) - D (1)
dt
@ where:
yi(t) — expression of the ith gene at time t.
f(t) — concentration of the transcription factor at time t.
D; — gene's decay rate.
B; — basal transcription rate.
S; — sensitivity to the transcription factor.
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Neil Lawrence and Magnus Rattray () Gaussian Processes 7th November 2007 10 / 24



Equation Solution

@ Solve via Laplace Transforms

» Solution to the equation:

) t
yi(t) = % +5; exp(—D,-t)/ f(u)exp (Dju) du.
i 0

If f(t) is a zero mean Gaussian process then y; (t) is also a Gaussian

i Bi
process with mean D -
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Two Properties of GPs

The integral of a GP is also a GP,

f(t) ~ N(O, Kff)

and .
g(0)= [ f(wdu
0
then
g(t) ~ N(0,Kg),
where

t pt
Kgg (t, t') = /0 /0 ke (u, u') dudu’
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Two Properties of GPs
Product with deterministic function, if we have
and

f(t) ~ N(Oa Kff)7

where h(t) is a deterministic function then,

g (t) =1 (t)h(t)
where

g(t) ~ N(0,Kg),
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Covariance for Transcription Model
e RBF Kernel function for f (t)
. — Bi .
D; '

t

yi (t) = — + Siexp D,-t)/ f (u)exp (D;u) du
0

@ Joint distribution

for y1 (1), y2 (1)

and f (t).

» Here

(D[S [D ]S |

f(t)\\ "

N
Ya(t)
5[5 ]05]05|
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Joint Sampling of y (t) and f (t) from Covariance

@ gpsimTest
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Figure: Left: joint samples from the transcription covariance, blue: f (t),
cyan: y; (t) and red: y» (t). Right: numerical solution for f (t) of the
differential equation from y; (t) and y» (t) (blue and cyan). True f (t)
included for comparison.
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Joint Sampling of y (t) and f (t) from Covariance

@ gpsimTest
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Figure: Left: joint samples from the transcription covariance, blue: f (t),
cyan: y; (t) and red: y» (t). Right: numerical solution for f (t) of the
differential equation from y; (t) and y» (t) (blue and cyan). True f (t)
included for comparison.
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Joint Sampling of y (t) and f (t) from Covariance

@ gpsimTest
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Figure: Left: joint samples from the transcription covariance, blue: f (t),
cyan: y; (t) and red: y» (t). Right: numerical solution for f (t) of the
differential equation from y; (t) and y» (t) (blue and cyan). True f (t)
included for comparison.

o =) = = = DA

Neil Lawrence and Magnus Rattray () Gaussian Processes 7th November 2007 15 / 24



o P .
g J , .
8 ’(’ ,-", G 105
) . g
| / ,. X
I/ .-
4 3 N e 95
g 4} B
oL e |
= = - ErRE T ET e % 3
1 a
)

11111111

CG12744, (d) CG10516 (e) CG31368 .

Neil Lawrence and Magnus Rattray ()
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Results — Drosophila
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Results — Transcription Rates

@ Estimation of Equation Parameters demBarenco1l
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Figure: Basal transcription rates. Our results (black) compared with
Barenco et al. [2006] (white).
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Results — Transcription Rates

@ Estimation of Equation Parameters demBarencol
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Figure: Sensitivities. Our results (black) compared with Barenco et al.
[2006] (white).
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Results — Transcription Rates

@ Estimation of Equation Parameters demBarenco1l
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Figure: Decays. Our results (black) compared with Barenco et al. [2006] (white).
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Results — Protein Concentration

P (f|y1’ Y2,Y3,Y4, Y5)

@ Prediction with error bars of protein concentration:
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Figure: (a) RBF covariance function (b) MLP covariance function. Also
included are results from Barenco et al. [2006] as crosses.
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Results — Log Space

@ GP predictions in log space.
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Figure: (a) RBF covariance function (b) MLP covariance function. Also
included are results from Barenco et al. [2006] as crosses.
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Results — log (1 + exp (x)) Constrained

@ GP predictions in log space.
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Figure: (a) RBF covariance function (b) MLP covariance function. Also
included are results from Barenco et al. [2006] as crosses.
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Results — Sigmoid

@ GP predictions in log space.

Figure: (a) RBF covariance function (b) MLP covariance function. Also
included are results from Barenco et al. [2006] as crosses.
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Transcription Model Summary

@ Progress so far and Future work

» Elegant solution of a problem with indirect observations.

> Already extended to non-linear response equations (using Laplace
approximation).

» Extending to systems with multiple transcription factors (Pei Gao).

» Validating with Markov chain Monte-Carlo (Michalis Titsias).

» Sensitivities which change over time (Antti Honkela)
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