
Gaussian Processes and Probabilistic Models for
Dimensionality Reduction

Neil D. Lawrence
Departments of Neuro- and Computer Science, University of

Sheffield, U.K.

Schloss Dagstuhl

25th August 2011



Outline

Notation

Probabilistic Dimensionality Reduction

Maximum Entropy Unfolding

GP-LVM

Conclusions



Outline

Notation

Probabilistic Dimensionality Reduction

Maximum Entropy Unfolding

GP-LVM

Conclusions



Notation

q— dimension of latent/embedded space
p— dimension of data space
n— number of data points

centred data, Y = [y1,:, . . . , yn,:]
> = [y:,1, . . . , y:,p] ∈ <n×p

latent variables, X = [x1,:, . . . , xn,:]
> = [x:,1, . . . , x:,q] ∈ <n×q

mapping matrix, W ∈ <p×q

ai ,: is a vector from the ith row of a given matrix A
a:,j is a vector from the jth row of a given matrix A



Reading Notation

X and Y are design matrices
I Covariance given by n−1Y>Y.
I Inner product matrix given by YY>.



Spectral Dimensionality Reduction in Machine Learning

I Spectral approach to dimensionality reduction.
1. Convert data to a matrix of dimension n × n.
2. Visualize data with eigenvectors of matrix.

I Examples:
I Isomap (Tenenbaum et al., 2000),
I locally linear embeddings (LLE, Roweis and Saul, 2000),
I Laplacian eigenmaps (LE, Belkin and Niyogi, 2003) and
I maximum variance unfolding (MVU, Weinberger et al., 2004).
I Also kernel PCA (Schölkopf et al., 1998; Ham et al., 2004).



Classical Multidimensional Scaling Perspective

I Classical multidimensional scaling (CMDS)
1. Compute an n × n squared distance matrix, D.
2. Form the centered “similarity matrix” HKH = − 1

2HDH.
3. Visualize through q principal eigenvectors (as latent matrix X).

I This algorithm matches squared distances computed in X to
those computed in Y through an L1 error.

I Our Argument:
I Main innovation in ML work: how to compute the squared

distance matrix D.



Isomap

I MDS finds geometric configuration preserving distances.
I MDS applied to Manifold distance.
I Geodesic Distance = Manifold Distance.
I Cannot compute geodesic distance without knowing manifold.
I Idea: compute distance via shortest path between point-pairs

Tenenbaum et al. (2000).



Isomap

I Isomap: define neighbors and compute distances between
neighbors.

I Geodesic distance approximated by shortest path through
adjacency matrix.

Figure: A: true geodesic distance. B: Approximate distance on graph. C:
comparison of true and approximate distances. Image from Tenenbaum
et al. (2000).



Isomap Neighborhood

I Compute nearest k neighbors for each point.
I Construct a graph linking data points through neighbors.

Figure: Distance on graph is a proxy for geodesic distance.
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I Need to determine correct number of neighbors.
I Manifold distortions mean neighbors in latent space may not

be neighbors in data space.

Figure: Quality of approximation depends on quality of graph.
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Spectral Approaches

I Standard classical MDS gives a linear embedding in the
Euclidean space implied by D.

I This implies a linear transformation between X and Y (if
squared distances are computed directly in Y).

I Spectral approaches in machine learning give a nonlinear
relationship between the data and the distances.

I This is done by not computing D directly in the space of Y.
I This is very clear for kernel PCA, where D is computed in a

feature space derived from Y.
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Kernel PCA

I Kernel PCA squared distance is defined through a kernel:

di ,j = k(yi ,:, yi ,:)− 2k(yi ,:, yj ,:)− k(yj ,:, yj ,:) (1)

I k(·, ·) is a Mercer kernel (Ham et al., 2004).
I Kernel PCA (KPCA) recovers an xi ,: and a mapping from Y to
X space.

I The mapping is induced through the choice of the Mercer
kernel.
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Classical MDS and KPCA

I CMDS procedure performs eigenvalue problem on

B = HKH.

I This matches the KPCA algorithm (Schölkopf et al., 1998)1.
I However, for the commonly used exponentiated quadratic

kernel,
k(yi ,:, yj ,:) = exp(−γ ‖yi ,: − yj ,:‖22),

KPCA actually expands the feature space (Weinberger et al.,
2004).

1Kernel PCA also has an interpretation as a particular form of metric
multidimensional scaling, see Williams (2001) for details.
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Maximum Variance Unfolding

Learn a “Kernel” for Dimensionality Reduction
I In maximum variance unfolding (MVU) (Weinberger et al.,

2004): learn a “kernel matrix” that will allow for dimensionality
reduction.

I Preserve only local proximity relationships in the data.
I Take a set of neighbors.
I Construct a kernel matrix where only distances between

neighbors match data distances.
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Maximum Variance Unfolding

I Optimize elements of K by maximizing2 tr (K).

d1,5

d1,4

d1,2
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4

I Subject to squared distance constraints between neighbors

di ,j = ki ,i − 2ki ,j + kj ,j

2The trace is the total variance of the data in feature space



Maximum Entropy Unfolding

Our Contribution
I Maximize entropy instead of variance (Jaynes, 1986): MEU

(Lawrence, 2011, 2010).

I Entropy and variance are closely related.
I Maximum entropy leads to a probabilistic model.
I Each spectral approach approximates MEU in some way.
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Maximum Entropy Unfolding

I Find distribution with maximum entropy subject to constraints
on moments.
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I MEU constraints are on expected distances between neighbors.

di ,j =
〈
y>i ,:yi ,:
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Maximum Entropy Unfolding

I Find distribution with maximum entropy subject to constraints
on moments.

d1,5

d1,4

d1,2

d1,3

5

1

2

3
4

I MEU constraints are on expected distances between neighbors.

di ,j = ki ,i − 2ki ,j + kj ,j

which can be written in terms of the covariance.



Gaussian Random Field

I The maximum entropy probability distribution is a Gaussian
random field

p(Y) =
p∏

j=1

1

|K|
1
2 (2π)

n
2

exp
(
−1
2
y>:,jK

−1y:,j

)
,

I Covariance matrix is

K = (L+ γI)−1

.
I Where L is the Laplacian matrix associated with the

neighborhood graph.
I Off diagonal elements of the Laplacian are Lagrange

multipliers from moment constraints.
I On diagonal elements given by negative sum of off-diagonal

(L1 = 0).



Data Feature Independence

I The GRF specifying independence across data features.
I Most applications of Gaussian models are applied

independently across data points.
I Notable exceptions include Zhu et al. (2003); Lawrence (2004,

2005); Kemp and Tenenbaum (2008).

I Maximum likelihood in this model is equivalent maximizing
entropy under distance constraints.



Blessing of Dimensionality

p(Y) =
p∏

j=1

1

|K|
1
2 (2π)

n
2

exp
(
−1
2
y>:,jK

−1y:,j

)
,

I Maximum likelihood is consistent: (see e.g. Wasserman, 2003,
pg 126)

I As we increase data points parameters become better
determined.

I Not in this model.
I As we increase data features parameters become better

determined.

I This turns the large p small n problem on its head.
I There is a “Blessing of Dimensionality” in this model.
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Locally Linear Embedding

I The Laplacian should be constrained positive definite.

I This constraint can be imposed by factorizing it as

L = MM>

I To ensure it is a Laplacian, we need to constrain M>1 = 0
giving L1 = 0.

I i.e. mi,i = −
∑

j∈N (i) mj,i
I Set mj,i = 0 if j /∈ N (i).
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I Locally linear embeddings (Roweis and Saul, 2000) are then a
specific case of MEU where

1. The diagonal sums, mi,i , are further constrained to unity.
2. Model parameters found by maximizing pseudolikelihood of the

data.
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Point One

I For unit diagonals we have M = I−W.

I Here the off diagonal sparsity pattern of W matches M.
I Thus

(I−W)>1 = 0.

I LLE proscribes that the smallest eigenvectors of

(I−W)(I−W)> = MM> = L

(like Laplacian Eigenmaps).
I Equivalent to CMDS on the GRF described by L.
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Second Point

I Pseudolikelihood approximation (see e.g. Koller and Friedman,
2009, pg 970): product of the conditional densities:

p(Y) ≈
n∏

i=1

p(yi ,:|Y\i ),

Y\i represents data other than the ith point.

I True likelihood is proportional to this but requires
renormalization.

I In pseudolikelihood normalization is ignored.
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Conditionals

I Factors in the GRF are the conditionals,

p(yi ,:|Y\i ) =

(
m2

i ,i

2π

) p
2

exp

−m2
i ,i

2

∥∥∥∥∥∥yi ,: −
∑

j∈N (i)

wj ,i

mi ,i
yj ,:

∥∥∥∥∥∥
2

2

 .

I Maximizing each conditional is equivalent to optimizing LLE
objective.

I Constraint that LLE weights sum to one arises naturally
because wj ,i/mi ,i and mi ,i =

∑
j∈N (i) wj ,i .

I In LLE a further constraint is imposed mi ,i = 1.
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LLE Approximates MEU

I LLE is an approximation to maximum likelihood.

I Laplacian has factorized form.
I Pseudolikelihood also allows for relatively quick parameter

estimation.
I ignoring the partition function removes the need to invert to

recover the covariance matrix.
I LLE can be applied to larger data sets than MEU or MVU.

Note: The sparsity pattern in the Laplacian for LLE will not match
that used in the Laplacian for the other algorithms due to the
factorized representation.
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LLE and PCA

I LLE is motivated by considering local linear embeddings of the
data.

I Interestingly, as we increase the neighborhood size to
K = n − 1 we do not recover PCA.

I But PCA is the “optimal” linear embedding!!
I LLE is optimizing a pseudolikelihood: in contrast the MEU

algorithm, which LLE approximates, does recover PCA when
K = n − 1.
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Campaign for Real Data

Say NO to the Swiss Roll



Simple Experiments

I Simple motion capture data example.
I Changing incline of run of human captured with 34 markers

(102 dimensions).
I 55 frames in the data.
I Follow the suggestion of Harmeling. (Harmeling, 2007) and use

the GPLVM likelihood (Lawrence, 2005) for embedding quality.

I The higher the likelihood the better the embedding.
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Motion Capture Data

I Data consists of a 3-dimensional point cloud of the location of
34 points from a subject performing a run.

I 102 dimensional data set containing 55 frames of motion
capture.

I Subject begins the motion from stationary and takes
approximately three strides of run.

I Should see this structure in the visualization: a starting
position followed by a series of loops.

I Data was made available by Ohio State University.
I The two dominant eigenvectors are visualized in following

figures.
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Stick Man Data

I Visualize data.



PCA on Stick Man

I First two principal components of stick man data.
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Figure: Stick man data projected onto their first two principal
components. demStickPpca1.



Laplacian Eigenmaps and LLE
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Figure: Models capture either the cyclic structure or the structure
associated with the start of the run or both parts.



Isomap and MVU
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MEU
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Motion Capture: Model Scores
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Linear Dimensionality Reduction

Linear Latent Variable Model
I Represent data, Y, with a lower dimensional set of latent

variables X.
I Assume a linear relationship of the form

yi ,: = Wxi ,: + εi ,:,

where
εi ,: ∼ N

(
0, σ2I

)
.



Linear Latent Variable Model

Probabilistic PCA
I Define linear-Gaussian

relationship between
latent variables and data.

I Standard Latent variable
approach:

I Define Gaussian prior
over latent space, X.

I Integrate out latent
variables.

X W

Y

p (Y|X,W) =
n∏

i=1

N
(
yi,:|Wxi,:, σ2I

)
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Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

X W

Y

p (Y|W) =
n∏

i=1

N
(
yi ,:|0,WW> + σ2I

)



Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p (Y|W) =
n∏

i=1

N (yi ,:|0,C) , C = WW> + σ2I

log p (Y|W) = −n
2
log |C| − 1

2
tr
(
C−1Y>Y

)
+ const.

If Uq are first q principal eigenvectors of n−1Y>Y and the
corresponding eigenvalues are Λq,

W = UqLR>, L =
(
Λq − σ2I

) 1
2

where R is an arbitrary rotation matrix.



Linear Latent Variable Model III

Dual Probabilistic PCA
I Define linear-Gaussian

relationship between
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I Novel Latent variable
approach:

I Define Gaussian prior
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Dual Probabilistic PCA
I Define linear-Gaussian

relationship between
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I Novel Latent variable
approach:

I Define Gaussian prior
over parameters, W.
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Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004)

X W

Y

p (Y|X) =

p∏
j=1

N
(
y:,j |0,XX> + σ2I

)



Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004)

p (Y|X) =

p∏
j=1

N
(
y:,j |0,K

)
, K = XX> + σ2I

log p (Y|X) = −
p
2
log |K| −

1
2
tr
(
K−1YY>

)
+ const.

If U′q are first q principal eigenvectors of p−1YY> and the corresponding eigenvalues
are Λq ,

X = U′qLR>, L =
(
Λq − σ2I

) 1
2

where R is an arbitrary rotation matrix.



Linear Latent Variable Model IV

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p (Y|W) =
n∏

i=1

N
(
yi,:|0,C

)
, C = WW> + σ2I

log p (Y|W) = −
n
2
log |C| −

1
2
tr
(
C−1Y>Y

)
+ const.

If Uq are first q principal eigenvectors of n−1Y>Y and the corresponding eigenvalues
are Λq ,

W = UqLR>, L =
(
Λq − σ2I

) 1
2

where R is an arbitrary rotation matrix.



Equivalence of Formulations

The Eigenvalue Problems are equivalent
I Solution for Probabilistic PCA (solves for the mapping)

Y>YUq = UqΛq W = UqLR>

I Solution for Dual Probabilistic PCA (solves for the latent
positions)

YY>U′q = U′qΛq X = U′qLR>

I Equivalence is from
Uq = Y>U′qΛ

− 1
2

q



Non-Linear Latent Variable Model

Dual Probabilistic PCA

I Define linear-Gaussian
relationship between
latent variables and data.

I Novel Latent variable
approach:

I Define Gaussian prior
over parameteters, W.

I Integrate out
parameters.

X W

Y

p (Y|X,W) =
n∏

i=1

N
(
yi,:|Wxi,:, σ2I

)

p (W) =

p∏
i=1

N
(
wi,:|0, I

)

p (Y|X) =

p∏
j=1

N
(
y:,j |0,XX> + σ2I

)



Non-Linear Latent Variable Model

Dual Probabilistic PCA

I Inspection of the marginal
likelihood shows ...

I The covariance matrix
is a covariance
function.

I We recognise it as the
‘linear kernel’.

I We call this the
Gaussian Process
Latent Variable model
(GP-LVM).
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

I Inspection of the marginal
likelihood shows ...

I The covariance matrix
is a covariance
function.

I We recognise it as the
‘linear kernel’.

I We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

X W

Y

p (Y|X) =

p∏
j=1

N
(
y:,j |0,K

)
K =?

Replace linear kernel with non-linear

kernel for non-linear model.



Non-linear Latent Variable Models

RBF Kernel
I The RBF kernel has the form ki ,j = k (xi ,:, xj ,:) , where

k (xi ,:, xj ,:) = α exp

(
−
(xi ,: − xj ,:)

> (xi ,: − xj ,:)

2`2

)
.

I No longer possible to optimise wrt X via an eigenvalue
problem.

I Instead find gradients with respect to X, α, ` and σ2 and
optimise using conjugate gradients.



Applications

Style Based Inverse Kinematics
I Facilitating animation through modeling human motion with

the GP-LVM (Grochow et al., 2004)

Tracking
I Tracking using models of human motion learnt with the

GP-LVM (Urtasun et al., 2005, 2006)



Stick Man

Generalization with less Data than Dimensions
I Powerful uncertainly handling of GPs leads to suprising

properties.
I Non-linear models can be used where there are fewer data

points than dimensions without overfitting.
I Example: Modelling a stick man in 102 dimensions with 55

data points!



Stick Man II

demStick1

Figure: The latent space for the stick man motion capture data.
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Figure: The latent space for the stick man motion capture data.



Selecting Data Dimensionality

I GP-LVM Provides probabilistic non-linear dimensionality
reduction.

I How to select the dimensionality?
I Bayesian approach to model selection (Titsias and Lawrence,

2010).



Integrate Mapping Function and Latent Variables

Bayesian GP-LVM
I Start with a standard

GP-LVM.

I Apply standard latent
variable approach:

I Define Gaussian prior
over latent space, X.

I Integrate out latent
variables.

I Unfortunately
integration is
intractable. Use
variational
approximations (Titsias
and Lawrence, 2010).

X

Y

p (Y|X) =
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Integrate Mapping Function and Latent Variables

Bayesian GP-LVM
I Start with a standard

GP-LVM.
I Apply standard latent

variable approach:
I Define Gaussian prior

over latent space, X.
I Integrate out latent

variables.
I Unfortunately

integration is
intractable. Use
variational
approximations (Titsias
and Lawrence, 2010).

X

Y

p (Y|X) =

p∏
j=1

N
(
y:,j |0,K

)

p (X) =

q∏
j=1

N
(
x:,j |0, α−2i I

)
p (Y|α) =??



Learning Dimensionality: Automatic Relevance
Determination

I Precision parameters, {αi}qi=1, softly switch off latent
dimensions.

p (X) =
q∏

j=1

N
(
x:,j |0, α−2i I

)
I Equivalently, scale columns of X in the covariance function

k(xi ,:, xj ,:) = exp
(
−1
2
(x:,i − x:,j)>A−1(x:,i − x:,j)

)
A is diagonal with elements α2i . Now keep prior spherical

p (X) =
q∏

j=1

N (x:,j |0, I)

I Covariance functions of this type are known as ARD (see e.g.
Neal, 1996; MacKay, 2003; Rasmussen and Williams, 2006).



Summary

I Spectral approaches to dimensionality reduction have an
underlying interpretation as a Gaussian random field.

I The probabilistic model is consistent as p →∞, not n→∞.
I Spectral approaches have the neighborhood pre-specified.
I The GP-LVM is also a Gaussian model of data with a

generative interpretation.
I In the GP-LVM the “neighborhood” is learnt.
I The Bayesian GP-LVM allows the number of latent dimensions

to be determined.
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