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Online Resources

All source code and slides are available online

@ This talk available from my home page (see talks link on side).
@ Project main page (with links to software)

e http://bioinf.man.ac.uk/resources/puma/
@ Additional project homepage

o http:
//www.dcs.shef.ac.uk/ neil/projects/pipeline/
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PUMA Project Outline

Noise Problems in Microarrays

@ Project was motivated by the fact that microarray data is very
noisy.
@ The aim of the project is to:

o Assess the level of noise in the estimated gene expression.
e Propagate the noise through downstream analysis.

@ Personnel:

o Investigators: Neil Lawrence (Sheffield), Magnus Rattray
(Manchester)

o Fellows/Post-docs: Marta Milo (Sheffield), Guido
Sanguinetti (Sheffield)

o PhD Students: Xuejun Liu (Manchester), Richard Pearson
(Manchester)
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Microarray Processing Affymetrix GeneChip A
Detecti ifferential Ex sion with PPLR
Tidying up Profiles with Probabilistic PCA

Central Dogma

DNA —mRNA —Protein

Every cell has the same DNA.

Cells produce different proteins (building blocks of life).

Level of mRNA produced is known as gene expression.

°
°

@ Has a downstream effect on level of Protein produced.
@ Gene expression is controlled by Transcription factors.
°

Transcription factors themselves are proteins.

o Feedbacks in these systems lead to gene networks.

Neil Lawrence and Magnus Rattray PUMA
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Affymetrix Arrays

Photolithography and Combinatorial Chemistry

@ Affymetrix arrays are a technology for measuring level of
mRNA.

@ PM (perfect match) probes match the gene sequence.
@ MM (mismatch) probes have wrong middle base.

@ MM designed to measure non-specific binding.

@ Approx 10,000 probe-sets per chip.
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Microarray Processing Affymetrix GeneChip Arrays
Detecting Differential Gene Expression with PPLR
ing up Profiles with Probabilistic PCA

Affymetrix Arrays

Photolithography and Combinatorial Chemistry

METR AFFYMETRIX
Q- il

Bl R

Figure: Affymetrix arrays for human and mouse (image from Wikimedia
Commons under GFDL).
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Affymetrix Arrays

Photoli aphy and Combinatorial Chemistry

mRNA reference sequence

7/ —_—— ————— e |
X X X X X X X X X X X X X X

/PM Probe
Fluorescence Probe
intensity image Set

MM Probe

Figure: Affymetrix array schematic
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Affymetrix Arrays

Photolit aphy and Combinatorial Chemist

mRNA reference sequence

5 /4 / 3

7’
3E3E3€ 3EEEIEIE € X IEIXEE
- Oligo sequence T——__

++ * TGTGATGGTGGGAATGGGTCAGAAGGACTCCTATGTGGGTGACGAGGCC - - -

/ PM Probe
Fluorescence é | . Probe
intensity image Set
MM Probe

Figure: Affymetrix array schematic
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Affymetrix Arrays

Photo raphy and Combinatorial Chemistry

mRNA reference sequence

5 /4 / 3

7/
XXX XXEXFXX X XX*Xx*

- Oligo sequence T T -

++ * TGTGATGGTGGGAATGGGTCAGAAGGACTCCTATGTGGGTGACGAGGCC - - -

/ PM Probe

Fluorescence
intensity image

Probe
Set

MM Probe

Figure: Affymetrix array schematic
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Affymetrix Arrays

Photolithography and Combinatorial Chemistr

mRNA reference sequence

5 ., / o
7’ - - —_— -
SEEE EFEHHE K W e e e

— = e
- = e
=

_ - Oligo sequence —-—_ _

++ * TGTGATGGTGGGAATGGGTCAGAAGGACTCCTATGTGGGTGACGAGGCC - - -

TTACCCAGTCTTCCTGAGGATACAC | Perfect Match sequence

TTACCCAGTCTTGCTGAGGATACAC | Mismatch sequence

PM Probe

Fluorescence ....l. .u. . Probe

intensity image Set

MM Probe

Figure: Affymetrix array schematic
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gMOS Family of Methods

Gamma Model of Signal [Milo et al., 2003, Liu et al., 2005]

@ Most methods return a single expression level estimate.

@ The gMOS family of methods additionally provide confidence
intervals.

@ This confidence intervals can the be propagated through
higher level analysis.
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gMOS Family of Methods Il

m; (Mismatch)

Gamma Model of Signal r

sj ~ Ga(sj|a, b)

probability

m, s; and y;

a

Ga (x|a, b) = ﬂxa exp (—bx) Figure: PDF of mj,
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gMOS Family of Methods Il

m; (Mismatch)

Gamma Model of Signal r

sj ~ Ga(sj|a, b)

s, (signal)

mj ~ Ga (mj|a, b)

probability

m, s; and y;

a

Ga(x|a, b) = ﬂxa exp (=bx) Figure: PDF of m;, s;
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gMOS Family of Methods Il

m; (Mismatch)

Gamma Model of Signal r

sj ~ Ga(sj|a, b) | s, (sgnal)
Y; (Perfect match)
m; ~ Ga (mjla, b) z
Qa
3
o
a
yj = mj+ s
yJ.NGa (yj|a+a7b) o mj,s]andy]
ba a . - .
Ga(xla, b) = T e (=b) Figure: PDF of mj, s; and the implied
distribution for y;.
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Profiles with Probabilistic PCA

Inferring the Signal

@ Maximise likelihood with respect to a, a and b.

o Assume independence between y; and m;,
p (yj, mj) = Ga (yj|, b) Ga (mj|a, b) .

@ Use resulting & and b to give distribution over s;.

p(s;) = Ga (sj\&, 5)-
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Modelling Probe Pair Affinity

@ y; and m; are i
correlated.

perfect match, y;

Figure: Correlation of PM (y;) and MM (m;).
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Modelling Probe Pair Affinity

@ y; and m; are i
correlated.

@ gMOS makes an
independence
assumption.

10000

perfect match, y;

Figure: Correlation of PM (y;) and MM (m;).
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Modelling Probe Pair Affinity

@ y; and m; are i
correlated.

@ gMOS makes an
independence
assumption.

@ Correlations arise
through shared binding
affinity (scale).

10000

perfect match, y;

Figure: Correlation of PM (y;) and MM (m;).
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Modelling Probe Pair Affinity

@ y; and m; are i
correlated.

@ gMOS makes an
independence
assumption.

@ Correlations arise
through shared binding
affinity (scale).

@ Assume each probe pair

0 5000
has a shared scale b;. PR
@ Assume Ei . .
igure: Correlation of PM (y;) and MM (m;).
b; ~ Ga (bj|c,d) and 2 2 (m;)
marginalise.
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Specific Binding to Mismatch

Mismatch Effected by Signal

o Affymetrix Latin Square
Spike-In data set.

expression level
s

5

0 5 10 15
log mRNA concentration

Figure:
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Specific Binding to Mismatch

y; (Perfect match)

Mismatch Effected by Signal

o Affymetrix Latin Square
Spike-In data set.

expression level
s

@ The perfect match

responds to Increasing 5o A prs 7
mRNA log mMRNA concentration

Figure: The perfect match goes up

with the mRNA concentration as

expected.

Neil Lawrence and Magnus Rattray PUMA



Microarray Processing

Affymetrix GeneChip Arrays
Differential Gene Expression with PPLR
Profiles with Probabilistic PCA

Specific Binding to Mismatch

Mismatch Effected by Signal

o Affymetrix Latin Square
Spike-In data set.

@ The perfect match
responds to increasing
mRNA.

@ But so does the
mismatch.
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y; (Perfect match)

expression level
s

m; (Mismatch)

0 5 10 15
log mRNA concentration

Figure: The perfect match goes up
with the mRNA concentration as
expected. But so does the mismatch.
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Specific Binding and Multiple Arrays

multi-mgMOS

@ Specific Binding to MM probe:

e Introduce parameter ¢ and assume
yj ~ Ga(yjla+ a, b)), m;~ Ga(mj|a+ ¢, b))

e Log normal prior for ¢ and seek a MAP solution.

o Multiple arrays:

o Still take b;j ~ Ga (bj|c, d) but share c and d parameters
across chips.
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Mouse Data Set

http://www.ncbi.nlm.nih.gov/projects/geo
Mouse back skin mRNA expression profile for Dab2 [Lin et al., 2004].

2
Root Mean Square Error
RMSE qr-PCR ‘ x-probe set | o
-2
o 10 20

days after birth

Prediction of Dab2 Expression level from qr-PCR
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Mouse Data Set

http://www.ncbi.nlm.nih.gov/projects/geo
Mouse back skin mRNA expression profile for Dab2 [Lin et al., 2004].

2
Root Mean Square Error
RMSE qr-PCR ‘ x-probe set | o
MAS 5.0 0.656 0.360
-2
o 10 20

days after birth

Prediction of Dab2 Expression level from qr-PCR, MAS 5.0
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Mouse Data Set

http://www.ncbi.nlm.nih.gov/projects/geo
Mouse back skin mRNA expression profile for Dab2 [Lin et al., 2004].

2
Root Mean Square Error
RMSE qr-PCR ‘ x-probe set | o
MAS 5.0 0.656 0.360
-2
o 10 20

days after birth

Prediction of Dab2 Expression level from qr-PCR, MAS 5.0,
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Mouse Data Set

http://www.ncbi.nlm.nih.gov/projects/geo

Mouse back skin mRNA expression profile for Dab2 [Lin et al., 2004].
2
Root Mean Square Error
RMSE qr-PCR ‘ x-probe set | o
MAS 5.0 0.656 0.360
-2
multi-mgMQOS | 0.601 0.233
o 10 20
days after birth
Prediction of Dab2 Expression level from qr-PCR, MAS 5.0,
and multi-mgMOS.
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Differential Gene Expression

Probability of Positive Log Ratio[Liu et al., 2006]

o Differential gene expression is normally assessed with log
ratios of gene expression.
Si
rij = |Og —
3j
@ This measure is very sensitive to noise at low expresion levels.

@ Use variance of expression to obtain Probability of Positive
Log Ratio (PPLR).
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PPLR Results

Golden spike-in dataset [Choe et al.,
2005]
e Ranking (y-axis) against log 101 ]
ratio (x-axis) for.
e Ranking by Expected 201
Log Ratio.
30» 4
@ Red stars indicate expected
log ratio.
@ Red lines indicate error bars. “r |
@ Blue squares indicates genes ———
that were spiked-in. & ———
-20 -10 (o} 10 2
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PPLR Results

Golden spike-in dataset [Choe et al.,

2005]
e Ranking (y-axis) against log 10} { :
ratio (x-axis) for. :‘-
L
201 ) |

e Ranking by PPLR.

30 3
@ Red stars indicate expected "
log ratio. 1"
@ Red lines indicate error bars. “r |
@ Blue squares indicates genes
that were spiked-in. sor . —
-3 -2 -1 (4] 1 2 3
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Microarray Processing

Cleaning up Profiles

Converting Noisy Profiles to Clean

@ If we can 'clean up’ the profiles we can use in other methods.

@ Construct a probabilistic model for the data and corruption
process.

@ Work with posterior distribution over cleaned up profile.

@ We designed a heteroschedastic Probabilistic PCA for doing
this [Sanguinetti et al., 2005].

Neil Lawrence and Magnus Rattray PUMA
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Probabilistic PCA

Probabilistic PCA

o Define linear-Gaussian
relationship between

. n
latent variables and data. p(YIX, W) = [N (yr.[Wxi. + ,0%1)
i=1
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Microarray Processing

Probabilistic PCA

Probabilistic PCA

o Define linear-Gaussian
relationship between
latent variables and data. p(YIX, W) = [N (yr.IWxi. + ,0%1)
o Latent variable approach: =t
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Microarray Processing

Probabilistic PCA

Probabilistic PCA

o Define linear-Gaussian
relationship between
latent variables and data. p(YIX, W) = [N (yr.IWxi. + ,0%1)
o Latent variable approach: =t

o Define Gaussian prior
over latent space, X.

p(x) = H N (Xi,:lov I)
i=1
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Microarray Processing

Probabilistic PCA

Probabilistic PCA

o Define linear-Gaussian
relationship between
latent variables and data. p(YIX, W) = [N (yr.IWxi. + ,0%1)
o Latent variable approach: =t
o Define Gaussian prior

over latent space, X.
o Integrate out /atent

. n
variables. p(YW) =T]n (y,-’:“l,, wwT + g2l>
i=1

p(x) = H N (Xi,:lov I)
i=1
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Probabilistic PCA I

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

n
pOYIW) =TT (vi e, WWT + 021)
=1l
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Probabilistic PCA I

bilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]
p(YW)=T][N(yi:ln,C), C= wwT 4521
i=1

1 T
log p(Y|W) = —g log |C| — Etr (C*IYTY> + const.

Where Y is the matrix Y with premoved. If Ug are first g principal eigenvectors of

n=1¥TY and the corresponding eigenvalues are Ag,

(NI

W=UlvT, L= (A —d?)

where V is an arbitrary rotation matrix.

n
B = n_l Zyi,:
i=1
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Heteroschedastic Probabilistic PCA

Heteroschedastic PPCA

@ Define linear-Gaussian @
relationship between
latent variables and Y. 0

;
p(YIX, W) = [T (v Wi, + . 0%1)
i=1

p (9i,:1vi,:) = N (3i.:lyi,.» D;)

p (VW) = ﬁN (vi: I, W
i=1

T+02|+D,)
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Heteroschedastic Probabilistic PCA

Heteroschedastic PPCA

@ Define linear-Gaussian
relationship between
latent variables and Y.

@ Define a further Gaussian
relationship to corrupted
profiles Y.

e D; is a diagonal matrix
of estimated variances.

Neil Lawrence and Magnus Rattray
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p(YIX, W) = [T (yi: /Wi, + . 0%1)
i=1

p (9i,:1vi,:) = N (3i.:lyi,.» D;)

p (VW) = ﬁN (i1, W
i=1

T+02|+D,)
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Heteroschedastic Probabilistic PCA

Heteroschedastic PPCA

@ Define linear-Gaussian
relationship between
latent variables and Y.

@ Define a further Gaussian
relationship to corrupted
profiles Y.

e D; is a diagonal matrix
of estimated variances.

@ Integrate out /atent
variables.

Neil Lawrence and Magnus Rattray
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p(YIX, W) = [T (yi: /Wi, + . 0%1)
i=1

p (9i,:1vi,:) = N (3i.:lyi,.» D;)

p (VW) = ﬁN (vi: I, W
i=1

T+02|+D,)
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Heteroschedastic PPCA 1l

n
p(YW) =[N (y,-,:yp,,wa + 021+ D,-)
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Heteroschedastic PPCA 1l

Heteroschedastic PPCA Max. Likelihood Soln [Sanguinetti et al., 2005]

n
p(Y|W) = H N (yi,;!u,WWT + o2l + D,-)
ey

@ Can no longer solve via eigenvalue problem.
@ We use an EM algorithm.

e A major problem is the strong correlation between W and .
o We use some tricks to speed up convergence.

@ Software available in R and MATLAB.
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Heteroschedastic PPCA Results

Mouse Cochlear Dataset

@ Data from a conditionally imortal cell lin extracted from
mouse cochlear epithelieal cells.
@ Twelve samples from 14 days of differentiation after extration
at E13.5 [Rivolta et al., 2002].
@ Experimental setup:
o Perform HPPCA/PCA on the data.
o Extract 50 genes most associated with 2nd principal

component
o Cluster original profiles and reconstructed profiles.
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Heteroschedastic PPCA Results

SEBPIIEPT

Figure: Hierarchical Clustering on Corrected Profiles.
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Figure: Hierarchical Clustering on Uncorrected Profiles.
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Heteroschedastic PPCA Results

=

dayo
dayl
daya
day3

Figure: Hierarchical Clustering on Uncorrected Profiles.
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Heteroschedastic PPCA Results
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Figure: Hierarchical Clustering on genes selected by normal PCA.
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Jﬁﬁ

Figure: Hierarchical Clustering on genes selected by normal PCA.
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Transcription Factor Activities

Inferring Activitiy of Transcription Factors

@ Transcription factors control the expression of genes.

@ Knowledge of their ‘activity’ is key to understanding the
mechanism behind biological processes.

@ Transcription factors are proteins — activity is a combination
of their concentration and effect.

@ The mRNA concentration of a given transcription factor may
be known but:

e Transcription factors are often lowly expressed — mRNA
concentrations difficult to measure.
e Transcription factors are often post-transcriptionally regulated.

Neil Lawrence and Magnus Rattray PUMA
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ChIP Microarrays

Chromatine Immunoprecipitation (ChIP) Microarrays

@ ChIP Microarrays tell us which TFs bind to which genes under
certain conditions.

@ In effect this gives a structure for the regulatory network.

@ Combine this information with gene expression data to obtain
transcription factor activities (TFA).

Neil Lawrence and Magnus Rattray PUMA
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Transcription Factor Activities

Evaluating Activities of Transcription Factors

@ Several approaches based on regression [Liao et al., 2003, Gao et al.,
2004, Boulesteix and Strimmer, 2005, Alter and Golub, 2004]

@ Assume a gene's expresion is given by a linear relationship
yi = Bx; + €;.
yi € R7*! is the expression profile of the ith gene,
x; € {0,1}9%" indicates which transctiption factors bind to the ith gene
B € R7%9 is the matrix of TFAs.
e~ N (07 O'2|)

@ Problem: the matrix B is not gene specific. It gives average
TFA across genes.

Neil Lawrence and Magnus Rattray PUMA
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Gene Specific TFAs

Associate TFAs to Genes [Sanguinetti et al., 2006]

@ Intoduce gene specific TFAs,

yi = Bix; + €.

Neil Lawrence and Magnus Rattray PUMA
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Gene Specific TFAs

Associate TFAs to Genes [Sanguinetti et al., 2006]

@ Intoduce gene specific TFAs,
yi = Bix; + €.

@ Parameter Explosion
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Gene Specific TFAs

Associate TFAs to Genes [Sanguinetti et al., 2006]

@ Intoduce gene specific TFAs,
yi = Bix; + €.

@ Parameter Explosion
e Assume prior distribution for B;.
N N T
pB)=][rp®)=T]IIr®:)
i=1 i=1 t=1
p(bi) = N(b;.|0,%)

b; . € 9% is the vector of TFAs for each TF associated with the
ith gene at time t

Neil Lawrence and Magnus Rattray PUMA
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Temporal Continuity of TFAs

Time Course Experiments

@ Introduce concept of temporal conitiuity with Gaussian
distribution.

p(bitlbie—1) =N (bj|vbj 1+ (1 =) p, (1 — %) X)

The temporal continuity, v is between 0 and 1.

Neil Lawrence and Magnus Rattray PUMA
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Temporal Continuity of TFAs Il

Effect of ~

@ When v = 0 we recover

p(bi:) = N(bj|u,X)

which is equivalent to the original independent model.

@ As v — 1 we recover

P(bi,t

bit 1) = I2im0N (bj ¢lbjc—1,0°1)
g“c—

which is appropriate if the ‘time points’ are in fact biological
replicates.
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From Simple to Complex Models
Results on TFAs

Yeast Cell Cycle Data with ChlP-on-chip 204 TFs
@ Yeast cell cycle cdcl5 data set [Spellman et al., 1998].
@ ChIP on chip from 113 TFs [Lee et al., 2002].

@ 24 experimental points in time series data.

@ Compare with non-specific TFAs obtained by Regression.

Neil Lawrence and Magnus Rattray PUMA
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Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained by
regression Right: gene specific TFA for averge of B; across genes.

Neil Lawrence and Magnus Rattray PUMA



ChlIP-microarray and Transcription Factor Activities
Transcription Factors Transcription Factor Concentrations
From Simple to Complex Models

Results on TFAs Il

0.
04) 1.5]
1
0.05
0.5
0
0|
0,05}
-0.5]
0.4 =
-0.15} ~1.5]
% 5 10 15 20 25 ) 5 10 15 20 25

Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained by
regression Right: gene specific TFA SCW11.
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Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained by
regression Right: gene specific TFA CTS1.
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Results on TFAs Il

Graphs of TFAs
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Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained by
regression Right: gene specific TFA YER124C.
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Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained by
regression Right: gene specific TFA YKL51C.
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Separation of Concentration and Effect

Splitting the Activity into Component Parts

@ TFA is a combination of:

o TF concentration.
o TF effect.

@ Model expression by splitting the two:
yi=(BoX)c: + €
where © is the Hadamard (element by element) product.
B € R"*9 is a matrix of each TFs effect on each gene.

c: € R9%! is concentration of each TF at time t.

@ Bayesian treatment of ¢ and B through a variational approach.
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TF Concentration Results
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Figure: Left: concentration of ACE2 and right: effect of ACE2 on its
target genes as a histogram.
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TF Concentration Results Il

Nice ACE2 Stories in Results

o ACE2 four most significant targets: CTS1, DSE1, DSE2,
SCW11.

e Evidence to back this up comes from CO data base.

CTS1 relationship is known.

DSE1 and DSE2 are involved in cell wall degradation causing
daughter to seperate from parent.

o SCW11's function is unclear but protein is localised at cell wall.

@ Negative regulation of NCE4

o Not documented, but ACE2 terminates mitosis & NCE4
ensures DNA stability during replication
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More Complex Model

Complex Models on Small Networks
@ Simple linear models allow genome wide analysis of TFAs.

@ We now consider a more complex model on a much smaller
network.
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Differential Equation Model

Inference of p53 Concentration
@ pb3 is an important in cancer.
@ Many targets of p53 are not shared with other TFs.

@ Consider more complex model in the simple p53 network.

Differential Equation model

@ Simple linear model differential equation model recently used
by Barenco et al. [2006].

@ They inferred transcription factor concentrations using Markov
Chain Monte Carlo (107 iterations).

@ We repeat their experiments with Gaussian processes.
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Simple Linear Model

Linear model of regulation

dy; (t) _ Bi + Sif (t) — Diyi (t)

where:

yi(t) — expression of the ith gene at time t.

f(t) — concentration of the transcription factor at time t.
i — gene's decay rate.

basal transcription rate.

— sensitivity to the transcription factor.

“wmD
|
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Equation Solution

Solve via Laplace Transforms

@ Solution to the equation:

t
yi(t) = % 4 5 exp(—D,-t)/ f (u)exp (Dju) du.
i 0

If £ (t) is a zero mean Gaussian process then y; (t) is also a
Gaussian process with mean % .
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Two Properties of GPs

Integral of Gaussian Process

The integral of a GP is also a GP,

f(t) ~ N(O, Kff)

and .
g(t):/ f (u) du
0
then
g (t) ~ N(0,Kg),
where

t pt
keg (t, t') = /0 /0 ker (u7 u') dudd
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Two Properties of GPs

Product with deterministic function

The integral of a GP is also a GP,
f(t)~N(0,Kg),

and
g (t)=f(t)h(t)
where h(t) is a deterministic function then,

g (t) ~ N(0,Kg),

where

keg (t.t") = h(t) ke (t, ') h (1)
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Covariance for Transcription Model

RBF Kernel function for f (t)

yi(t) = 5 + Siexp (—D;jt) /Ot f (u)exp (D;u) du.

D;

@ Joint distribution
for x1 (t), x2 (1)
and f (t).
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Joint Sampling of y (t) and f (t) from Covariance
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Figure: Left: joint samples from the transcription covariance, blue: f (t),
cyan: y; (t) and red: y» (t). Right: numerical solution for f (t) of the
differential equation from y; (t) and y» (t) (blue and cyan). True f (t)
included for comparison.
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Joint Sampling of y (t) and f (t) from Covariance
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Figure: Left: joint samples from the transcription covariance, blue: f (t),
cyan: y; (t) and red: y» (t). Right: numerical solution for f (t) of the
differential equation from y; (t) and y» (t) (blue and cyan). True f (t)
included for comparison.
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Joint Sampling of y (t) and f (t) from Covariance
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Figure: Left: joint samples from the transcription covariance, blue: f (t),
cyan: y; (t) and red: y» (t). Right: numerical solution for f (t) of the
differential equation from y; (t) and y» (t) (blue and cyan). True f (t)
included for comparison.
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Results — Transcription Rates

Estimation of Equation Parameters demBarencol
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Figure: Basal transcription rates. Our results (black) compared with
Barenco et al. [2006] (white).
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Results — Transcription Rates
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Figure: Sensitivities. Our results (black) compared with Barenco et al.
[2006] (white).
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Results — Transcription Rates
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Figure: Decays. Our results (black) compared with Barenco et al. [2006]
(white).
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Results — Protein Concentration

Prediction with error bars of protein concentration:
p(fly1, y2,¥3,Y4,Ys)
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Figure: (a) RBF covariance function (b) MLP covariance function. Also
included are results from Barenco et al. [2006] as crosses.
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Results — Positive Constrained

GP predictions in log spa

Figure: (a) RBF covariance function (b) MLP covariance function. Also
included are results from Barenco et al. [2006] as crosses.
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Transcription Model Summary

Progress so far and Future work

@ Elegant solution of a problem with indirect observations.

o Already extended to non-linear response equations (using
Laplace approximation).

@ Expect to extend it to systems with multiple transcription
factors.

@ Gives results in 13 minutes vs 10° Monte-Carlo iterations.
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Conclusions

Summary

PUMA: Propagation of Uncertainty in Microarray Analysis

@ Level of Noise in the Array can be Assesed (gMOS methods).
@ Probabilistic Models can:

@ Improve selection of over-expressed genes (PPLR).
o Clean up gene expression profiles (NPPCA).

e Simple (log-linear) probabilistic models can be used with
network connectivity data to
e To infer genome wide transcription factor activities (chipdyno).
e To infer genome wide transcription factor protein concentrations
(chipvar).
@ Gaussian processes & differential equations for complex
interations.

o And finally ...

Neil Lawrence and Magnus Rattray PUMA



Conclusions

Acknowledgements

@ Prinicipal Investigators
o Neil Lawrence and Magnus Rattray

e gMOS family of Methods and PPLR
e Xuejun Liu and Marta Milo

@ Uncertainty Propagation through PCA
e Marta Milo and Guido Sanguinetti

@ Inference of Transcription Factor Activities

e Guido Sanguinetti

Neil Lawrence and Magnus Rattray PUMA



References

References

O. Alter and G. H. Golub. Integrative analysis of genome-scale data using
pseudoinverse projection predicts novel correlation between dna
replication and rna transcription. Proceedings of the National
Academy of Sciences USA, 101(47):16577-16582, 2004.

M. Barenco, D. Tomescu, D. Brewer, R. Callard, J. Stark, and
M. Hubank. Ranked prediction of p53 targets using hidden variable
dynamic modeling. Genome Biology, 7(3):R25, 2006.

A.-L. Boulesteix and K. Strimmer. Predicting transcription factor
activities from combined analysis of microarray and ChIP data: a
partial least squares approach. Theor. Biol. Med. Model., 2(23):
1471-16582, 2005.

S. E. Choe, M. Boutros, A. M. Michelson, G. M. Church, and M. S.
Halfon. Preferred analysis methods for Affymetrix GeneChips revealed
by a wholly defined control dataset. Genome Biology, 6(R16), 2005.

F. Gao, B. C. Foat, and H. J. Bussemaker. Defining transcriptional
networks through integrative modeling of mRNA expression and
transcription factor binding data. BMC Bioinformatics, 5(31):



Start of Appendices

First Frame

Neil Lawrence and Magnus Rattray PUMA



	Microarray Processing
	Affymetrix GeneChip Arrays
	Detecting Differential Gene Expression with PPLR
	Tidying up Profiles with Probabilistic PCA

	Transcription Factors
	ChIP-microarray and Transcription Factor Activities
	Transcription Factor Concentrations
	From Simple to Complex Models 

	Conclusions
	Appendix
	References
	Start of Appendices


