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Online Resources

All source code and slides are available online

This talk available from my home page (see talks link on side).

Project main page (with links to software)

http://bioinf.man.ac.uk/resources/puma/.

Additional project homepage

http:
//www.dcs.shef.ac.uk/~neil/projects/pipeline/.

Neil Lawrence and Magnus Rattray PUMA

http://bioinf.man.ac.uk/resources/puma/
http://www.dcs.shef.ac.uk/~neil/projects/pipeline/
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PUMA Project Outline

Noise Problems in Microarrays

Project was motivated by the fact that microarray data is very
noisy.

The aim of the project is to:

Assess the level of noise in the estimated gene expression.
Propagate the noise through downstream analysis.

Personnel:

Investigators: Neil Lawrence (Sheffield), Magnus Rattray
(Manchester)
Fellows/Post-docs: Marta Milo (Sheffield), Guido
Sanguinetti (Sheffield)
PhD Students: Xuejun Liu (Manchester), Richard Pearson
(Manchester)
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Central Dogma

DNA →mRNA →Protein

Every cell has the same DNA.

Cells produce different proteins (building blocks of life).

Level of mRNA produced is known as gene expression.

Has a downstream effect on level of Protein produced.

Gene expression is controlled by Transcription factors.

Transcription factors themselves are proteins.

Feedbacks in these systems lead to gene networks.
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Affymetrix Arrays

Photolithography and Combinatorial Chemistry

Affymetrix arrays are a technology for measuring level of
mRNA.

PM (perfect match) probes match the gene sequence.

MM (mismatch) probes have wrong middle base.

MM designed to measure non-specific binding.

Approx 10,000 probe-sets per chip.

Neil Lawrence and Magnus Rattray PUMA
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Affymetrix Arrays

Photolithography and Combinatorial Chemistry

Figure: Affymetrix arrays for human and mouse (image from Wikimedia

Commons under GFDL).
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Affymetrix Arrays

Photolithography and Combinatorial ChemistrymRNA reference sequence
Fluorescenceintensity image PM ProbeMM Probe

5´ 3´
ProbeSet

Figure: Affymetrix array schematic
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Affymetrix Arrays

Photolithography and Combinatorial ChemistrymRNA reference sequence
Fluorescenceintensity image PM ProbeMM Probe

5´ 3´Oligo sequence···TGTGATGGTGGGAATGGGTCAGAAGGACTCCTATGTGGGTGACGAGGCC···ProbeSet
Figure: Affymetrix array schematic
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Affymetrix Arrays

Photolithography and Combinatorial Chemistry

Perfect Match sequenceTTACCCAGTCTTCCTGAGGATACACGCTGAGGATACAC
mRNA reference sequence

Mismatch sequenceFluorescenceintensity image PM ProbeMM Probe
5´ 3´Oligo sequence···TGTGATGGTGGGAATGGGTCAGAAGGACTCCTATGTGGGTGACGAGGCC···ProbeSetTTACCCAGTCTT

Figure: Affymetrix array schematic
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gMOS Family of Methods

Gamma Model of Signal [Milo et al., 2003, Liu et al., 2005]

Most methods return a single expression level estimate.

The gMOS family of methods additionally provide confidence
intervals.

This confidence intervals can the be propagated through
higher level analysis.

Neil Lawrence and Magnus Rattray PUMA
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gMOS Family of Methods II

Gamma Model of Signal

sj ∼ Ga (sj |α, b)

mj ∼ Ga (mj |a, b)

yj = mj + sj

yj ∼ Ga (yj |a + α, b)

Ga (x|a, b) =
ba

Γ (a)
xa exp (−bx)

probability 0 mj, sj and yj
mj (Mismatch)

Figure: PDF of mj , sj and the implied
distribution for yj .
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gMOS Family of Methods II

Gamma Model of Signal

sj ∼ Ga (sj |α, b)

mj ∼ Ga (mj |a, b)

yj = mj + sj
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gMOS

Inferring the Signal

Maximise likelihood with respect to α, a and b.

Assume independence between yj and mj ,

p (yj ,mj) = Ga (yj |α, b) Ga (mj |a, b) .

Use resulting α̂ and b̂ to give distribution over sj .

p (sj) = Ga
(
sj |α̂, b̂

)
.
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Modelling Probe Pair Affinity

mgMOS

yj and mj are
correlated.

gMOS makes an
independence
assumption.

Correlations arise
through shared binding
affinity (scale).

Assume each probe pair

has a shared scale bj .

Assume
bj ∼ Ga (bj |c, d) and
marginalise.
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Figure: Correlation of PM (yj ) and MM (mj ).
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Specific Binding to Mismatch

Mismatch Effected by Signal

Affymetrix Latin Square
Spike-In data set.

The perfect match
responds to increasing
mRNA.

But so does the
mismatch.

log mRNA concentrationexpression level
Figure: The perfect match goes up

with the mRNA concentration as

expected. But so does the mismatch.
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Specific Binding to Mismatch

Mismatch Effected by Signal

Affymetrix Latin Square
Spike-In data set.

The perfect match
responds to increasing
mRNA.

But so does the
mismatch.
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Specific Binding and Multiple Arrays

multi-mgMOS

Specific Binding to MM probe:

Introduce parameter φ and assume

yj ∼ Ga (yj |a + α, bj) , mj ∼ Ga (mj |a + φα, bj)

Log normal prior for φ and seek a MAP solution.

Multiple arrays:

Still take bj ∼ Ga (bj |c, d) but share c and d parameters
across chips.

Neil Lawrence and Magnus Rattray PUMA
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Mouse Data Set

http://www.ncbi.nlm.nih.gov/projects/geo

Mouse back skin mRNA expression profile for Dab2 [Lin et al., 2004].

Root Mean Square Error

RMSE qr-PCR x-probe set

MAS 5.0 0.656 0.360

GCRMA 0.694 0.370

multi-mgMOS 0.601 0.233 days after birth
Prediction of Dab2 Expression level from qr-PCR, MAS 5.0,
GCRMA and multi-mgMOS.

Neil Lawrence and Magnus Rattray PUMA
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Differential Gene Expression

Probability of Positive Log Ratio[Liu et al., 2006]

Differential gene expression is normally assessed with log
ratios of gene expression.

rij = log
si
sj

This measure is very sensitive to noise at low expresion levels.

Use variance of expression to obtain Probability of Positive
Log Ratio (PPLR).

Neil Lawrence and Magnus Rattray PUMA



Microarray Processing
Transcription Factors

Conclusions

Affymetrix GeneChip Arrays
Detecting Differential Gene Expression with PPLR
Tidying up Profiles with Probabilistic PCA

PPLR Results

Golden spike-in dataset [Choe et al.,

2005]

Ranking (y -axis) against log
ratio (x-axis) for.

Ranking by Expected
Log Ratio.
Ranking by PPLR.

Red stars indicate expected
log ratio.

Red lines indicate error bars.

Blue squares indicates genes
that were spiked-in.
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Cleaning up Profiles

Converting Noisy Profiles to Clean

If we can ’clean up’ the profiles we can use in other methods.

Construct a probabilistic model for the data and corruption
process.

Work with posterior distribution over cleaned up profile.

We designed a heteroschedastic Probabilistic PCA for doing
this [Sanguinetti et al., 2005].

Neil Lawrence and Magnus Rattray PUMA
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Probabilistic PCA

Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Latent variable approach:

Define Gaussian prior
over latent space, X.
Integrate out latent
variables.

X W

Y

p (Y|X, W) =
nY

i=1

N
`
yi,:|Wxi,: + µ, σ2I

´

p (X) =
nY

i=1

N
`
xi,:|0, I

´

p (Y|W) =
nY

i=1

N
“
yi,:|µ, WWT + σ2I

”

Neil Lawrence and Magnus Rattray PUMA
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Probabilistic PCA II

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

X W

Y

p (Y|W) =
nY

i=1

N
“
yi,:|µ, WWT + σ2I

”
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Probabilistic PCA II

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

p (Y|W) =
nY

i=1

N
`
yi,:|µ, C

´
, C = WWT + σ2I

log p (Y|W) = −
n

2
log |C| −

1

2
tr

“
C−1ỸTỸ

”
+ const.

Where Ỹ is the matrix Y with µremoved. If Uq are first q principal eigenvectors of

n−1ỸTỸ and the corresponding eigenvalues are Λq ,

W = UqLV
T, L =

`
Λq − σ2I

´ 1
2

where V is an arbitrary rotation matrix.

µ = n−1
nX

i=1

yi,:

Neil Lawrence and Magnus Rattray PUMA
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Heteroschedastic Probabilistic PCA

Heteroschedastic PPCA

Define linear-Gaussian
relationship between
latent variables and Y.

Define a further Gaussian
relationship to corrupted
profiles Ŷ.

Di is a diagonal matrix
of estimated variances.

Integrate out latent
variables.

Y

X W

Y

p (Y|X, W) =
nY

i=1

N
“
yi,:|Wxi,: + µ, σ

2I
”

p
`
ŷi,:|yi,:

´
= N

`
ŷi,:|yi,:, Di

´

p
“
Ŷ|W

”
=

nY
i=1

N
“
yi,:|µ, WWT + σ

2I + Di

”

Neil Lawrence and Magnus Rattray PUMA
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Di is a diagonal matrix
of estimated variances.

Integrate out latent
variables.

Y

X W

Y

p (Y|X, W) =
nY

i=1

N
“
yi,:|Wxi,: + µ, σ

2I
”

p
`
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Heteroschedastic PPCA II

Heteroschedastic PPCA Max. Likelihood Soln [Sanguinetti et al., 2005]

Y

X W

Y

p (Y|W) =
n∏

i=1

N
(
yi ,:|µ,WWT + σ2I + Di

)
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Microarray Processing
Transcription Factors

Conclusions

Affymetrix GeneChip Arrays
Detecting Differential Gene Expression with PPLR
Tidying up Profiles with Probabilistic PCA

Heteroschedastic PPCA II

Heteroschedastic PPCA Max. Likelihood Soln [Sanguinetti et al., 2005]

p (Y|W) =
n∏

i=1

N
(
yi ,:|µ,WWT + σ2I + Di

)

Can no longer solve via eigenvalue problem.

We use an EM algorithm.

A major problem is the strong correlation between W and µ.
We use some tricks to speed up convergence.

Software available in R and MATLAB.

Neil Lawrence and Magnus Rattray PUMA
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Heteroschedastic PPCA Results

Mouse Cochlear Dataset

Data from a conditionally imortal cell lin extracted from
mouse cochlear epithelieal cells.
Twelve samples from 14 days of differentiation after extration
at E13.5 [Rivolta et al., 2002].

Experimental setup:

Perform HPPCA/PCA on the data.
Extract 50 genes most associated with 2nd principal
component
Cluster original profiles and reconstructed profiles.

Neil Lawrence and Magnus Rattray PUMA
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Heteroschedastic PPCA Results

Figure: Hierarchical Clustering on Corrected Profiles.
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Figure: Hierarchical Clustering on Uncorrected Profiles.
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Transcription Factor Activities

Inferring Activitiy of Transcription Factors

Transcription factors control the expression of genes.

Knowledge of their ‘activity’ is key to understanding the
mechanism behind biological processes.

Transcription factors are proteins — activity is a combination
of their concentration and effect.

The mRNA concentration of a given transcription factor may
be known but:

Transcription factors are often lowly expressed — mRNA
concentrations difficult to measure.
Transcription factors are often post-transcriptionally regulated.
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ChIP Microarrays

Chromatine Immunoprecipitation (ChIP) Microarrays

ChIP Microarrays tell us which TFs bind to which genes under
certain conditions.

In effect this gives a structure for the regulatory network.

Combine this information with gene expression data to obtain
transcription factor activities (TFA).
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Transcription Factor Activities

Evaluating Activities of Transcription Factors

Several approaches based on regression [Liao et al., 2003, Gao et al.,
2004, Boulesteix and Strimmer, 2005, Alter and Golub, 2004]

Assume a gene’s expresion is given by a linear relationship

yi = Bxi + εi .

yi ∈ <T×1 is the expression profile of the ith gene,

xi ∈ {0, 1}q×1 indicates which transctiption factors bind to the ith gene

B ∈ <T×q is the matrix of TFAs.

εi ∼ N
`
0, σ2I

´
Problem: the matrix B is not gene specific. It gives average
TFA across genes.

Neil Lawrence and Magnus Rattray PUMA



Microarray Processing
Transcription Factors

Conclusions

ChIP-microarray and Transcription Factor Activities
Transcription Factor Concentrations
From Simple to Complex Models

Gene Specific TFAs

Associate TFAs to Genes [Sanguinetti et al., 2006]

Intoduce gene specific TFAs,

yi = Bixi + εi .

Parameter Explosion

Assume prior distribution for Bi .

p (B) =
NY

i=1

p (Bi ) =
NY

i=1

TY
t=1

p (bi,t)

p (bi,t) = N (bi,t |0, Σ)

bi,t ∈ <q×1 is the vector of TFAs for each TF associated with the

ith gene at time t
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Temporal Continuity of TFAs

Time Course Experiments

Introduce concept of temporal conitiuity with Gaussian
distribution.

p (bi ,t |bi ,t−1) = N
(
bi ,t |γbi ,t−1 + (1− γ) µ,

(
1− γ2

)
Σ

)
The temporal continuity, γ is between 0 and 1.

Neil Lawrence and Magnus Rattray PUMA



Microarray Processing
Transcription Factors

Conclusions

ChIP-microarray and Transcription Factor Activities
Transcription Factor Concentrations
From Simple to Complex Models

Temporal Continuity of TFAs II

Effect of γ

When γ = 0 we recover

p (bi ,t) = N (bi ,t |µ,Σ)

which is equivalent to the original independent model.

As γ → 1 we recover

p (bi ,t |bi ,t−1) = lim
σ2→0

N
(
bi ,t |bi ,t−1, σ

2I
)

which is appropriate if the ‘time points’ are in fact biological
replicates.
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Results on TFAs

Yeast Cell Cycle Data with ChIP-on-chip 204 TFs

Yeast cell cycle cdc15 data set [Spellman et al., 1998].

ChIP on chip from 113 TFs [Lee et al., 2002].

24 experimental points in time series data.

Compare with non-specific TFAs obtained by Regression.
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Results on TFAs II

Graphs of TFAs
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Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained by
regression Right: gene specific TFA for averge of Bi across genes.
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Results on TFAs II

Graphs of TFAs
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Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained by
regression Right: gene specific TFA SCW11.
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Results on TFAs II

Graphs of TFAs
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Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained by
regression Right: gene specific TFA CTS1.
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Results on TFAs II

Graphs of TFAs
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Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained by
regression Right: gene specific TFA YER124C.
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Results on TFAs II

Graphs of TFAs
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Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained by
regression Right: gene specific TFA YKL51C.
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Separation of Concentration and Effect

Splitting the Activity into Component Parts

TFA is a combination of:

TF concentration.
TF effect.

Model expression by splitting the two:

yi = (B� X) ct + εt

where � is the Hadamard (element by element) product.

B ∈ <N×q is a matrix of each TFs effect on each gene.

ct ∈ <q×1 is concentration of each TF at time t.

Bayesian treatment of c and B through a variational approach.
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TF Concentration Results

Concentration of ACE2
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Figure: Left: concentration of ACE2 and right : effect of ACE2 on its
target genes as a histogram.
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TF Concentration Results II

Nice ACE2 Stories in Results

ACE2 four most significant targets: CTS1, DSE1, DSE2,
SCW11.

Evidence to back this up comes from CO data base.
CTS1 relationship is known.
DSE1 and DSE2 are involved in cell wall degradation causing
daughter to seperate from parent.
SCW11’s function is unclear but protein is localised at cell wall.

Negative regulation of NCE4

Not documented, but ACE2 terminates mitosis & NCE4
ensures DNA stability during replication
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More Complex Model

Complex Models on Small Networks

Simple linear models allow genome wide analysis of TFAs.

We now consider a more complex model on a much smaller
network.
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Differential Equation Model

Inference of p53 Concentration

p53 is an important in cancer.

Many targets of p53 are not shared with other TFs.

Consider more complex model in the simple p53 network.

Differential Equation model

Simple linear model differential equation model recently used
by Barenco et al. [2006].

They inferred transcription factor concentrations using Markov
Chain Monte Carlo (107 iterations).

We repeat their experiments with Gaussian processes.
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Simple Linear Model

Linear model of regulation

dyi (t)

dt
= Bi + Si f (t)− Diyi (t)

where:

yi (t) — expression of the ith gene at time t.
f (t) — concentration of the transcription factor at time t.

Di — gene’s decay rate.
Bi — basal transcription rate.
Si — sensitivity to the transcription factor.
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Equation Solution

Solve via Laplace Transforms

Solution to the equation:

yi (t) =
Bi

Di
+ Si exp (−Di t)

∫ t

0
f (u) exp (Diu) du.

If f (t) is a zero mean Gaussian process then yi (t) is also a
Gaussian process with mean Bi

Di
.
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Two Properties of GPs

Integral of Gaussian Process

The integral of a GP is also a GP,

f (t) ∼ N (0,Kff )

and

g (t) =

∫ t

0
f (u) du

then
g (t) ∼ N (0,Kgg ) ,

where

kgg

(
t, t ′

)
=

∫ t

0

∫ t′

0
kff

(
u, u′

)
dudu′
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Two Properties of GPs

Product with deterministic function

The integral of a GP is also a GP,

f (t) ∼ N (0,Kff ) ,

and
g (t) = f (t) h (t)

where h (t) is a deterministic function then,

g (t) ∼ N (0,Kgg ) ,

where
kgg

(
t, t ′

)
= h (t) kff

(
t, t ′

)
h

(
t ′

)
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Covariance for Transcription Model

RBF Kernel function for f (t)

yi (t) =
Bi

Di
+ Si exp (−Di t)

∫ t

0
f (u) exp (Diu) du.

Joint distribution
for x1 (t), x2 (t)
and f (t).

Here:
D1 S1 D2 S2

5 5 0.5 0.5

y

y

y y
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Joint Sampling of y (t) and f (t) from Covariance

gpsimTest
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Figure: Left: joint samples from the transcription covariance, blue: f (t),
cyan: y1 (t) and red : y2 (t). Right: numerical solution for f (t) of the
differential equation from y1 (t) and y2 (t) (blue and cyan). True f (t)
included for comparison.
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Joint Sampling of y (t) and f (t) from Covariance

gpsimTest
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Figure: Left: joint samples from the transcription covariance, blue: f (t),
cyan: y1 (t) and red : y2 (t). Right: numerical solution for f (t) of the
differential equation from y1 (t) and y2 (t) (blue and cyan). True f (t)
included for comparison.
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Joint Sampling of y (t) and f (t) from Covariance

gpsimTest
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Figure: Left: joint samples from the transcription covariance, blue: f (t),
cyan: y1 (t) and red : y2 (t). Right: numerical solution for f (t) of the
differential equation from y1 (t) and y2 (t) (blue and cyan). True f (t)
included for comparison.
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Results — Transcription Rates

Estimation of Equation Parameters demBarenco1

DDB2 hPA26 TNFRSF20b p21 BIK
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Figure: Basal transcription rates. Our results (black) compared with
Barenco et al. [2006] (white).
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Results — Transcription Rates

Estimation of Equation Parameters demBarenco1
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Figure: Sensitivities. Our results (black) compared with Barenco et al.
[2006] (white).
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Results — Transcription Rates

Estimation of Equation Parameters demBarenco1
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Figure: Decays. Our results (black) compared with Barenco et al. [2006]
(white).
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Results — Protein Concentration

Prediction with error bars of protein concentration:
p (f|y1, y2, y3, y4, y5)
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Figure: (a) RBF covariance function (b) MLP covariance function. Also
included are results from Barenco et al. [2006] as crosses.

Neil Lawrence and Magnus Rattray PUMA



Microarray Processing
Transcription Factors

Conclusions

ChIP-microarray and Transcription Factor Activities
Transcription Factor Concentrations
From Simple to Complex Models

Results — Positive Constrained

GP predictions in log space.
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Figure: (a) RBF covariance function (b) MLP covariance function. Also
included are results from Barenco et al. [2006] as crosses.
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Transcription Model Summary

Progress so far and Future work

Elegant solution of a problem with indirect observations.

Already extended to non-linear response equations (using
Laplace approximation).

Expect to extend it to systems with multiple transcription
factors.

Gives results in 13 minutes vs 107 Monte-Carlo iterations.
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Summary

PUMA: Propagation of Uncertainty in Microarray Analysis

Level of Noise in the Array can be Assesed (gMOS methods).

Probabilistic Models can:

Improve selection of over-expressed genes (PPLR).
Clean up gene expression profiles (NPPCA).

Simple (log-linear) probabilistic models can be used with
network connectivity data to

To infer genome wide transcription factor activities (chipdyno).
To infer genome wide transcription factor protein concentrations
(chipvar).

Gaussian processes & differential equations for complex
interations.

And finally ...
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