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Online Resources

All source code and slides are available online
e This talk available from my home page (see talks link on
side).

@ Project main page (with links to software)

e http://bioinf.manchester.ac.uk/resources/puma/
@ Additional project homepage
e http:

//www.cs.man.ac.uk/ neill/projects/pipeline/



http://bioinf.manchester.ac.uk/resources/puma/
http://www.cs.man.ac.uk/~neill/projects/pipeline/
http://www.cs.man.ac.uk/~neill/projects/pipeline/

PUMA Project Outline

Noise Problems in Microarrays

@ Project was motivated by the fact that microarray data is
very noisy.

@ The aim of the project is to:
o Assess the level of noise in the estimated gene expression.
o Propagate the noise through downstream analysis.

@ Personnel:

o Investigators: Neil Lawrence, Magnus Rattray

o Fellows/Post-docs: Pei Gao, Marta Milo (Sheffield),
Guido Sanguinetti (former post-doc Sheffield)

e PhD Students: Xuejun Liu, Richard Pearson
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Central Dogma

DNA —mRNA —Protein

@ Every cell has the same DNA.

Cells produce different proteins (building blocks of life).
Level of mMRNA produced is known as gene expression.
Has a downstream effect on level of Protein produced.

Gene expression is controlled by Transcription factors.

Transcription factors themselves are proteins.

o Feedbacks in these systems lead to gene networks.
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Affymetrix Arrays

Photolithography and Combinatorial Chemistry

o Affymetrix arrays are a technology for measuring level of
mRNA.

@ PM (perfect match) probes match the gene sequence.
@ MM (mismatch) probes have wrong middle base.

@ MM designed to measure non-specific binding.

@ Approx 10,000 probe-sets per chip.
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Affymetrix Arrays

Photolithography and Combinatorial Chemistry

AFFYMETRIX, AFFYMETRIX,
IR g T L Tteavionetd I
4 GeneChip® GeneChip*®
Mouse Genome

Huma

43020 Aray

Figure: Affymetrix arrays for human and mouse (image from Wikimedia
Commons under GFDL).




Affymetrix Arrays

Photolithography and Combinatorial Chemistry

mRNA reference sequence

Fluorescence
intensity image

MM Probe

Figure: Affymetrix array schematic




Affymetrix Arrays

Photolithography and Combinatorial Chemistry

mRNA reference sequence

== Oligo sequence -

* " TGTGATGGTGGGAATGGGTCAGAAGGACTCCTATGTGGGTGACGAGGCC: +« +

PM Probe
Fluorescence
intensity image

Probe
Set

MM Probe

Figure: Affymetrix array schematic
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Affymetrix Arrays

Photolithography and Combinatorial Chemistry

mRNA reference sequence

== Oligo sequence T=a

* " TGTGATGGTGGGAATGGGTCAGAAGGACTCCTATGTGGGTGACGAGGCC: « + |

TTACCCAGTCTTCCTGAGGATACAC | Perfect Match sequence

TTACCCAGTCTTGCTGAGGATACAC| Mismatch sequence
PM Probe

Fluorescence
intensity image

Probe
Set

MM Probe

Figure: Affymetrix array schematic




gMOS Family of Methods

Gamma Model of Signal (Milo et al., 2003; Liu et al., 2005)

@ Most methods return a single expression level estimate.

@ The gMOS family of methods additionally provide
confidence intervals.

@ This confidence intervals can the be propagated through
higher level analysis.
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gMOS Family of Methods Il

Gamma Model of Signal — m, (Mismatch)

mj ~ Ga (mjla, b)

z
3
©
fea}
2
[« 8
0
m, s, and Y;
L .
Ga (xla, b) = —xexp (=bx) Figure: PDF of mj,
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gMOS Family of Methods Il

Gamma Model of Signal

mj ~ Ga (mjla, b)

m; (Mismatch)

s, (signal)

. . 5

s; ~ Ga(sj|a, b) 2
s

fe)

[=)

a

L ‘
m, s, and Y;
ba a .
Galxla, b) = Fovx e (=b9) Figure: PDF of mj, s;
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gMOS Family of Methods Il

m; (Mismatch)

Gamma Model of Signal

mj ~ Ga (mjla, b)

s, (signal)

Y, (Perfect match)

sj ~ Ga(sj|a, b) 2
yj = mj+s;
yj ~ Ga(yjla+ a, b) 0 =, s,a17,
ba a . . .
Galxla, b) = Fovx e (=b9) Figure: PDF of mj, s; and the implied

distribution for y;.
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Y [ON)

Inferring the Signal

@ Maximise likelihood with respect to «, a and b.

e Assume independence between y; and mj,
p (yJ’ mj) = Ga (yj|aa b) Ga (mj|a7 b).

@ Use resulting & and b to give distribution over s;.

p(s;) = Ga <sj|64, B) .
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Modelling Probe Pair Affinity

@ y; and mj are
correlated.

10000,
g
g
< 5000
: x
8

g; & x

5000 10000
perfect match, y;

Figure: Correlation of PM (y;) and MM (m;).
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Modelling Probe Pair Affinity

@ y; and mj are
correlated.

@ gMOS makes an
independence
assumption.

10000

mismatch, m,

X

%

5000
perfect match, y;

Figure: Correlation of PM (y;) and MM (my;).

10000




Modelling Probe Pair Affinity

@ y; and mj are 20000
correlated.

@ gMOS makes an
independence
assumption.

mismatch, m,

@ Correlations arise
through shared binding

affinity (scale). *x X

5000
perfect match, y;

Figure: Correlation of PM (y;) and MM (my;).
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Modelling Probe Pair Affinity

@ y; and mj are 20000
correlated.

@ gMOS makes an
independence
assumption.

mismatch, m;

@ Correlations arise
through shared binding
affinity (scale).

@ Assume each probe pair

0 5000 10000
has a shared scale b;. CEESEEEES )
@ Assume Fi . .
igure: Correlation of PM (y;) and MM (m;).
b; ~ Ga(bj|c,d) and 2 ) (m;)
marginalise.
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Specific Binding to Mismatch

Mismatch Effected by Signal

o Affymetrix Latin Square
Spike-In data set.

expression level
S

0 5 10 15
log mRNA concentration

Figure:
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Specific Binding to Mismatch

¥; (Perfect match)

Mismatch Effected by Signal

o Affymetrix Latin Square
Spike-In data set.

expression level
S

@ The perfect match

responds to Increasing 5; . pr 15
m RNA log mMRNA concentration

Figure: The perfect match goes up
with the mRNA concentration as

expected.
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Specific Binding to Mismatch

Mismatch Effected by Signal

o Affymetrix Latin Square
Spike-In data set.

@ The perfect match

responds to increasing
mRNA.

@ But so does the
mismatch.

¥; (Perfect match)

expression level

0 5 10
log mRNA concentration

15

Figure: The perfect match goes up
with the mRNA concentration as
expected. But so does the mismatch.
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Specific Binding and Multiple Arrays

multi-mgMOS

@ Specific Binding to MM probe:

o Introduce parameter ¢ and assume
yj ~ Ga(yjla+ a, bj), m; ~ Ga(mj|la+ ¢a, bj)
o Log normal prior for ¢ and seek a MAP solution.

@ Multiple arrays:

o Still take bj ~ Ga (bj|c, d) but share c and d parameters
across chips.
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Mouse Data Set

http://www.ncbi.nlm.nih.gov/projects/geo

Mouse back skin mRNA expression profile for Dab2 (Lin et al.,

2004).
2
Root Mean Square Error
RMSE qr-PCR | x-probe set
-2
-4 . .
0 10 20

days after birth

Prediction of Dab2 Expression level from qr-PCR



http://www.ncbi.nlm.nih.gov/projects/geo

MANCHESTER.
1824

Mouse Data Set

http://www.ncbi.nlm.nih.gov/projects/geo
Mouse back skin mRNA expression profile for Dab2 (Lin et al.,

2004).
2
Root Mean Square Error
RMSE gr-PCR | x-probe set
MAS 5.0 0.656 0.360
-2
-4 . .
0 10 20

days after birth

Prediction of Dab2 Expression level from qr-PCR, MAS 5.0
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Mouse Data Set

http://www.ncbi.nlm.nih.gov/projects/geo
Mouse back skin mRNA expression profile for Dab2 (Lin et al.,

2004).
2
Root Mean Square Error
RMSE gr-PCR | x-probe set
MAS 5.0 0.656 0.360
GCRMA 0.694 0.370
-4 . .
0 10 20

days after birth

Prediction of Dab2 Expression level from qr-PCR, MAS 5.0,
GCRMA
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MANCHESTER.
1824

Mouse Data Set

http://www.ncbi.nlm.nih.gov/projects/geo
Mouse back skin mRNA expression profile for Dab2 (Lin et al.,

2004).
2
Root Mean Square Error
RMSE qr-PCR | x-probe set
MAS 5.0 0.656 0.360
GCRMA 0.694 0.370 _
multi-mgMOS | 0.601 0.233
-4 . .
0 10 20

days after birth

Prediction of Dab2 Expression level from qr-PCR, MAS 5.0,
GCRMA and multi-mgMOS.
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Transcription Factor Activities

Inferring Activitiy of Transcription Factors

@ Transcription factors control the expression of genes.

@ Knowledge of their ‘activity’ is key to understanding the
mechanism behind biological processes.

@ Transcription factors are proteins — activity is a
combination of their concentration and effect.

@ The mRNA concentration of a given transcription factor
may be known but:

e Transcription factors are often lowly expressed — mRNA
concentrations difficult to measure.

e Transcription factors are often post-transcriptionally
regulated.
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ChIP Microarrays

Chromatine Immunoprecipitation (ChIP) Microarrays

@ ChIP Microarrays tell us which TFs bind to which genes
under certain conditions.

@ In effect this gives a structure for the regulatory network.

@ Combine this information with gene expression data to
obtain transcription factor activities (TFA).
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Transcription Factor Activities

Evaluating Activities of Transcription Factors

@ Several approaches based on regression (Liao et al., 2003; Gao
et al., 2004; Boulesteix and Strimmer, 2005; Alter and Golub, 2004)

@ Assume a gene's expresion is given by a linear relationship

yi = Bx; + €;.
yi € R7*! is the expression profile of the ith gene,

x; € {0,1}7" indicates which transctiption factors bind to the ith

gene
B € R7%9 is the matrix of TFAs.
ei~N (0, azl)

@ Problem: the matrix B is not gene specific. It gives
average TFA across genes. .




Gene Specific TFAs

Associate TFAs to Genes (Sanguinetti et al., 2006)

@ Intoduce gene specific TFAs,

yi = Bix; + €.
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Gene Specific TFAs

Associate TFAs to Genes (Sanguinetti et al., 2006)

@ Intoduce gene specific TFAs,
yi = Bix; + €.

@ Parameter Explosion




Gene Specific TFAs

Associate TFAs to Genes (Sanguinetti et al., 2006)

@ Intoduce gene specific TFAs,

yi = Bix; + €.
@ Parameter Explosion

o Assume prior distribution for B;.

p(B) = Hp(Bi) =[11Ir®:0)

i=1 t=1
p(bi) = N(bi,|0,X)

b; . € R9*! is the vector of TFAs for each TF associated with
the ith gene at time t

[m]

=




Temporal Continuity of TFAs

Time Course Experiments

@ Introduce concept of temporal continuity with Gaussian
distribution.

p(bjtbie—1) = N (bi¢|vbjs—1+ (1 —7)p, (1 - ’Yz) )

The temporal continuity, v is between 0 and 1.
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Temporal Continuity of TFAs Il

Effect of ~

@ When ~ = 0 we recover

P(bi,t) =N (bi,t‘p‘v ):)

which is equivalent to the original independent model.

@ As v — 1 we recover
P(biclbic1) = lim N (bilbie1,0°1)
@ =

which is appropriate if the ‘time points’ are in fact
biological replicates.




Results on TFAs

Yeast Cell Cycle Data with ChlP-on-chip 204 TFs
@ Yeast cell cycle cdcl5 data set (Spellman et al., 1998).
@ ChIP-on-chip from 113 TFs (Lee et al., 2002).

@ 24 experimental points in time series data.

@ Compare with non-specific TFAs obtained by Regression.
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Results on TFAs Il

Graphs of TFAs

5 10 15 20 25

Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained
by regression Right: gene specific TFA for averge of B; across genes.
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Results on TFAs Il

- B M 15 26 2% 0 5 10 15 20 25

Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained
by regression Right: gene specific TFA SCW11.
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Results on TFAs Il

5 10 15 20 25

Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained

by regression Right: gene specific TFA CTS1.
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Results on TFAs Il

Graphs of TFAs

5 10 15 20 25 0 5 10 15 20 25

Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained
by regression Right: gene specific TFA YER124C.
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Results on TFAs Il

5 10 15 20 25

Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained
by regression Right: gene specific TFA YKL51C.
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Separation of Concentration and Effect

Splitting the Activity into Component Parts

@ TFA is a combination of:

o TF concentration.
o TF effect.

@ Model expression by splitting the two:
yi=(BoOX)c: + €
where © is the Hadamard (element by element) product.
B € R"*9 is a matrix of each TFs effect on each gene.
c: € N1 is concentration of each TF at time t.

@ Bayesian treatment of ¢ and B through a variational
approach.




TF Concentration Results

Concentration of ACE2
0|

15j

10

0 5 10

15

20 25

0 5]
Figure: Left: concentration of ACE2 and right: effect of ACE2 on
its target genes as a histogram.
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TF Concentration Results Il

Nice ACE2 Stories in Results

o ACE2 four most significant targets: CTS1, DSE1, DSE2,
SCW11.

o Evidence to back this up comes from biological literature.

CTS1 relationship is known.

DSE1 and DSE2 are involved in cell wall degradation

causing daughter to seperate from parent.

e SCW11's function is unclear but protein is localised at cell
wall.

o Negative regulation of NCE4

o Not documented, but ACE2 terminates mitosis & NCE4
ensures DNA stability during replication
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More Complex Model

Complex Models on Small Networks

smaller network.

@ Simple linear models allow genome wide analysis of TFAs
@ We now consider a more complex model on a much




Differential Equation Model

Inference of p53 Concentration

@ pb3 is an important in cancer.

@ Many targets of p53 are not shared with other TFs.

Differential Equation model

@ Simple linear model differential equation model recently
used by Barenco et al. (2006).

o Initially inferred transcription factor concentrations using
Markov Chain Monte Carlo (107 iterations). Now use
maximum likelihood and curvature.

@ We repeat their experiments with Gaussian processes.

[m] [ = =




Simple Linear Model

Linear model of regulation

dy;_gt) = Bi+ Sif (t) — Diyi (t)

yi(t) — expression of the ith gene at time t.

f(t) — concentration of the transcription factor at time t
D; — gene's decay rate.
B; — basal transcription rate.
Si — sensitivity to the transcription factor.
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Equation Solution

Solve via Laplace Transforms

@ Solution to the equation:

t
yi(t) = % + Siexp (—D;t)/ f (u)exp (Dju) du.
i 0

If £ (t) is a zero mean Gaussian process then y; (t) is also

a Gaussian process with mean % .
1
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Two Properties of GPs

Integral of Gaussian Process
The integral of a GP is also a GP,
f(t) ~ N(O, Kff)
and
then

2 (t) =/0 f (u) du
where

g(t) ~ N(0,Kg),

/

t pt/
ke (t, t') = /0 /0 ker (u, u') dudu
=] =




Two Properties of GPs

Product with deterministic function
The integral of a GP is also a GP,
f (t) ~ N (0, Kff) 5
and
g

where h(t) is a deterministic function then,

(t) = f(t) h(2)

where

g (t) ~ N(0,Kgg),

keg (t,t') = h(t) ke (£, 1) h(t')

[m]

=




Covariance for Transcription Model

RBF Kernel function for f (t)

, t
yi(t) = % + 5; exp(—D,-t)/ f (u) exp (Diu) du.
i 0

@ Joint distribution 1)
for x1 (t), x2 (t)
and f (t). Nt
o Here:
(D[S0 ]S | Py(t)
|55 ][05][05] f

i
1O B R



Joint Sampling of y (t) and f (t) from Covariance

gpsimTest
2
1.5] 1.5]
1 1
0.5 0.5
GO 10 20 30 40 50 UO 10 20 30 40 50

Figure: Left: joint samples from the transcription covariance, blue:
f(t), cyan: yi (t) and red: y, (t). Right: numerical solution for f (t)
of the differential equation from y; (t) and y> (t) (blue and cyan).
True f (t) included for comparison.
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Joint Sampling of y (t) and f (t) from Covariance

25 2.5]
2] 2|
15 1.5]

10 10 20 30 40 50 10 10 20 30 40 50

Figure: Left: joint samples from the transcription covariance, blue:
f(t), cyan: yi (t) and red: y, (t). Right: numerical solution for f (t)
of the differential equation from y; (t) and y> (t) (blue and cyan).
True f (t) included for comparison.
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Joint Sampling of y (t) and f (t) from Covariance

2

1.5] 1.5

0 10 20 30 40 50 0 10 20 30 40 50

Figure: Left: joint samples from the transcription covariance, blue:
f(t), cyan: yi (t) and red: y, (t). Right: numerical solution for f (t)
of the differential equation from y; (t) and y> (t) (blue and cyan).
True f (t) included for comparison.
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Artificial Data

Toy Problem
@ Results from an artificial data set.

@ We used a ‘known TFC' and derived six ‘mRNA profiles’.

e Known TFC composed of three Gaussian basis functions.
o mRNA profiles derived analytically.

@ Fourteen subsamples were taken and corrupted by noise.
@ This ‘data’ was then used to:

o Learn decays, sensitivities and basal transcription rates.
o Infer a posterior distribution over the missing TFC.




Artificial Data Results

demToyProbleml
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% 5 10 2 5 10

Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter
sets {B;, Si, D,-}?:1 (lines) along with noise corrupted ‘data’ . Right: The
inferred TFC (with error bars).
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Artificial Data Results

demToyProbleml
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter
sets {B;, Si, D,-}?:1 (lines) along with noise corrupted ‘data’ . Right: The
inferred TFC (with error bars).
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Artificial Data Results

demToyProbleml
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter
sets {B;, Si, D,-}?:1 (lines) along with noise corrupted ‘data’ . Right: The
inferred TFC (with error bars).
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Artificial Data Results

demToyProbleml
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter
sets {B;, Si, D,-}?:1 (lines) along with noise corrupted ‘data’ . Right: The
inferred TFC (with error bars).
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Artificial Data Results
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter
sets {B;, Si, D,-}?:1 (lines) along with noise corrupted ‘data’ . Right: The
inferred TFC (with error bars).
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Artificial Data Results

demToyProbleml
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter
sets {B;, Si, D,-}?:1 (lines) along with noise corrupted ‘data’ . Right: The
inferred TFC (with error bars).
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Artificial Data Results

demToyProbleml
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter
sets {B;, Si, D,-}?:1 (lines) along with noise corrupted ‘data’ . Right: The
inferred TFC (with error bars).
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Artificial Data Results
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter
sets {B;, Si, D,-}?:1 (lines) along with noise corrupted ‘data’ . Right: The
inferred TFC (with error bars).
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Artificial Data Results

demToyProbleml
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter
sets {B;, Si, D,-}?:1 (lines) along with noise corrupted ‘data’ . Right: The
inferred TFC (with error bars).
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Artificial Data Results
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter
sets {B;, Si, D,-}?:1 (lines) along with noise corrupted ‘data’ . Right: The
inferred TFC (with error bars).
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Artificial Data Results

demToyProbleml
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter
sets {B;, Si, D,-}?:1 (lines) along with noise corrupted ‘data’ . Right: The
inferred TFC (with error bars).
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Artificial Data Results

demToyProbleml
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter
sets {B;, Si, D,-}?:1 (lines) along with noise corrupted ‘data’ . Right: The
inferred TFC (with error bars).
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Artificial Data Results

demToyProbleml
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter
sets {B;, Si, D,-}?:1 (lines) along with noise corrupted ‘data’ . Right: The
inferred TFC (with error bars).
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Artificial Data Results

demToyProbleml
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter
sets {B;, Si, D,-}?:1 (lines) along with noise corrupted ‘data’ . Right: The
inferred TFC (with error bars).
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Artificial Data Results

demToyProbleml
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter
sets {B;, Si, D,-}?:1 (lines) along with noise corrupted ‘data’ . Right: The
inferred TFC (with error bars).
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Artificial Data Results

demToyProbleml
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene
mRNA concentration profiles each obtained by using different parameter
sets {B;, Si, D,-}?:1 (lines) along with noise corrupted ‘data’ . Right: The
inferred TFC (with error bars).
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Artificial Data Results
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene

mRNA concentration profiles each obtained by using different parameter
sets {B;, Si, D,-}?:1 (lines) along with noise corrupted ‘data’ . Right: The
inferred TFC (with error bars).
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Results

Linear System

@ Recently published biological data set studied using linear
response model by Barenco et al. (2006).

@ Study focused on the tumour suppressor protein p53.

@ mRNA abundance measured for five targets: DDB2, p21,
SESN1/hPA26, BIK and TNFRSF10b.

@ Quadratic interpolation for the mRNA production rates to
obtain gradients.

@ They used MCMC sampling to obtain estimates of the
model parameters B;, S;, Dj and f(t).
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Linear response analysis

Experimental Setup

@ We analysed data using the linear response model.

@ Raw data was processed using the mmgMOS model of Liu
et al. (2005) which provides variance as well as expression
level.

@ We present posterior distribution over TFCs.

@ Results of inference on the values of the hyperparameters
Bj, SJ and Dj.

o Samples from the posterior distribution were obtained
using Hybrid Monte Carlo (see €.g. Neal, 1996).
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Linear Response Results

k- -

Figure: Predicted protein concentration for p53. Solid line is mean, dashed
lines 95% credibility intervals. The prediction of (Barenco et al., 2006) was
pointwise and is shown as crosses.




Results — Transcription Rates

Estimation of Equation Parameters demBarenco1l

DDB2 hPA26  TNFRSF20b p21 BIK

Figure: Basal transcription rates. Our results (black) compared with
Barenco et al. (2006) (white).




Results — Transcription Rates

Estimation of Equation Parameters demBarencol

05

o!

DDB2 hPA26

Figure: Sensitivities. Our results (black) compared with Barenco
et al. (2006) (white).




Results — Transcription Rates

Estimation of Equation Parameters demBarencol

DDB2 hPA26 TNFRSF20b p21 BIK

Figure: Decays. Our results (black) compared with Barenco et al.
(2006) (white).




Linear Response Discussion

GP Results

@ Note oscillatory behaviour, possible artifact of RBF
covariance Rasmussen and Williams (see page 123 in
2006).

@ Results are in good accordance with the results obtained
by Barenco et al..

@ Differences in estimates of the basal transcription rates
probably due to:
o different methods used for probe-level processing of the

microarray data.
o Our failure to constrain f (0) = 0.

@ Our results take about 13 minutes to produce Barenco
et al. required 10 million iterations of Monte Carlo.

— [y = -



Non-linear Response Model

More Realistic Response
@ Transcription factor concentrations are positive, but direct
samples from a GP will not be.

@ Linear models don’t account for saturation.

@ Solution: model response using a positive nonlinear
function.




Formalism

dt

Non-linear Response
@ Introduce a non-linearity g (-) parameterised by 6;
dx;

= B; +g(f(1),0;) — Djx;

xj(t) = % + exp (—Djt) /0 dug(f(u),6;)exp (Dju) .

@ The induced distribution of x;(t) is no longer a GP.
@ Derive the functional gradient and learn a MAP solution
for f(t).

likelihood.

@ Also compute Hessian so we can approximate the marginal




Example: linear response

Using non-RBF kernels
@ Start by taking g(-) to be linear.
functions.

@ Provides 'sanity check’ and allows arbitrary covariance

required.

@ Avoids double numerical integral that would normally be




Response Results

demBarencoMap demBarencoMap2

Figure: Left: RBF prior on f (log likelihood -101.4); Right: MLP
prior on f (log likelihood -105.6).




Non-linear response analysis

Non-linear responses

@ Exponential response model (constrains protein
concentrations positive).

@ log (1 + exp(f)) response model.

3
° 1+exp(—f)

@ Inferred MAP solutions for the latent function f are
plotted below.
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exp (-) Response Results

demBarencoMap3, demBarencoMap4

6

6

5 5

Figure: Left: shows results of using a squared exponential prior covariance
on f (log likelihood -100.6); Right: shows results of using an MLP prior
covariance on f (log likelihood -106.4).




log (1 + exp (f)) Response Results

demBarencoMapb, demBarencoMap6

6 6
5 ] 5
4 4

Figure: Left: shows results of using a squared exponential prior covariance
on f (log likelihood -100.9); Right: shows results of using an MLP prior
covariance on f (log likelihood -110.0).
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3
TTep(—F) Response Results

demBarencoMap7, demBarencoMa

1

0.8

0.6

0.4

0.2

Figure: Left: shows results of using a squared exponential prior covariance
on f (log likelihood -104.1); Right: shows results of using an MLP prior
covariance on f (log likelihood -111.2).




Transcription Model Summary

Progress so far and Future work

o Elegant solution of a problem with indirect observations.

@ Already extended to non-linear response equations (using
Laplace approximation).

@ Expect to extend it to systems with multiple transcription
factors.
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Summary

PUMA: Propagation of Uncertainty in Microarray Analysis

@ Level of Noise in the Array can be Assesed (gMOS
methods).

@ Probabilistic Models can:

@ Improve selection of over-expressed genes (PPLR) — Appendix
o Clean up gene expression profiles (NPPCA) — Appendix

@ Simple (log-linear) probabilistic models can be used with
network connectivity data to

o To infer genome wide transcription factor activities (chipdyno).
@ To infer genome wide transcription factor protein
‘concentrations’ (chipvar).

@ Gaussian processes & differential equations for complex
interactions.
o AnA £l
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Differential Gene Expression

Probability of Positive Log Ratio(Liu et al., 2006)
o Differential gene expression is normally assessed with log
ratios of gene expression.
g
E

@ This measure is very sensitive to noise at low expresion
levels.

@ Use variance of expression to obtain Probability of Positive
Log Ratio (PPLR).




PPLR Results

Golden spike-in dataset (Choe et al.,
2005)

@ Ranking (y-axis) against log
ratio (x-axis) for.

e Ranking by Expected
Log Ratio.

@ Red stars indicate expected
log ratio.

@ Red lines indicate error bars.

@ Blue squares indicates genes
that were spiked-in.
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PPLR Results

Golden spike-in dataset (Choe et al.,

2005)

@ Ranking (y-axis) against log
ratio (x-axis) for.

e Ranking by PPLR.

@ Red stars indicate expected
log ratio.

@ Red lines indicate error bars.

@ Blue squares indicates genes
that were spiked-in.
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Cleaning up Profiles

Converting Noisy Profiles to Clean

o If we can 'clean up’ the profiles we can use in other
methods.

@ Construct a probabilistic model for the data and
corruption process.

@ Work with posterior distribution over cleaned up profile.

@ We designed a heteroschedastic Probabilistic PCA for
doing this (Sanguinetti et al., 2005).
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Probabilistic PCA

Probabilistic PCA

@ Define linear-Gaussian
relationship between

. n
latent variables and data. | ,(y|x,w)= TN (vi Wi + 2,0
i=1
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Probabilistic PCA

Probabilistic PCA

o Define linear-Gaussian
relationship between
latent variables and data. |, (v|x,w) = [N (y;. W, + 1, o?1)

o Latent variable approach: i=1
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Probabilistic PCA

Probabilistic PCA

@ Define linear-Gaussian
relationship between

latent variables and data.

o Latent variable approach:

o Define Gaussian prior

over latent space, X.

n
p(YlX,W) = H N (Yi,:|wxi,: + K, UZI)
i=1

p(X)=T]N(xil0,1)
i=1




Probabilistic PCA

Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

n
p(YlX,W) = H N (Yi,:|wxi,: + K, UZI)

o Latent variable approach: =t
o Define Gaussian prior n
X) = N (x;..[0,1
over latent space, X. P(X) ’131 (xi,:10,1)
o Integrate out /atent
variables.

n
p(YIW) = TN (yilee, WWT + 1)
i=1
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Probabilistic PCA I

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

n
POYIW) = TN (vilee, WWT 1)
i=1
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Probabilistic PCA I

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

n
p(YIW) =[N (yislsC), C=wwT 152
i=1

log p (Y|W) = —g log |C| — %tr (C’I?T?) + const.

Where Y is the matrix Y with premoved. If Ug are first g principal eigenvectors
of n=1¥YTY and the corresponding eigenvalues are Aq,

W=UvT, L= (A —o%)?

where V is an arbitrary rotation matrix.

n
H= n_l Zyi,:
i=1




Heteroschedastic Probabilistic PCA

Heteroschedastic PPCA

@ Define linear-Gaussian
relationship between

latent variables and Y.

®

n
POYIX, W) = [T N (v IWxi . + s, o1)
i=1
p (§i,:lyi,:) = N (§i,:lyi,:» Dj)

n

p (VW) = [T (5. W + 2% +0,)
i=1




Heteroschedastic Probabilistic PCA

Heteroschedastic PPCA

@ Define linear-Gaussian
relationship between
latent variables and Y. 0

@ Define a further Gaussian
relationship to corrupted p(YIX,W) = [T N (v Wi + 1 o1
profiles Y. =

e D; is a diagonal matrix p (9i:1vi,:) = N (9i,:1yi,:» D7)
of estimated variances.

o (VW) =TT (v, I, WW
i=1

T+ 0%+ D))

u
N)
yel
2}



Heteroschedastic Probabilistic PCA

Heteroschedastic PPCA

@ Define linear-Gaussian
relationship between
latent variables and Y. 0

@ Define a further Gaussian
reIat.ionsbip to corrupted p(YIX,W) = [T N (v Wi + 1 o1
profiles Y. =

e D; is a diagonal matrix p (9i:1vi,:) = N (9i,:1yi,:» D7)
of estimated variances.
¢w) = TTN (v . T c2)am,

@ Integrate out /latent p (VW) = ,-EIIN(Y""”’WW +of1+;)

variables.
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Heteroschedastic PPCA I

Heteroschedastic PPCA Max. Likelihood Soln (Sanguinetti et al.,
2005)

p(YW) =TTV (yi:le. WWT + 621+ D))
i=1
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Heteroschedastic PPCA I

Heteroschedastic PPCA Max. Likelihood Soln (Sanguinetti et al.,
P1))

p(YIW) =[N (y,-7;|u,WWT P D,-)
i=1

@ Can no longer solve via eigenvalue problem.
@ We use an EM algorithm.

o A major problem is the strong correlation between W and

.
o We use some tricks to speed up convergence.

@ Software available in R and MATLAB.




Heteroschedastic PPCA Results

Mouse Cochlear Dataset

@ Data from a conditionally imortal cell lin extracted from
mouse cochlear epithelial cells.

@ Twelve samples from 14 days of differentiation after
extration at E13.5 (Rivolta et al., 2002).

@ Experimental setup:

e Perform HPPCA/PCA on the data.

o Extract 50 genes most associated with 2nd principal
component

o Cluster original profiles and reconstructed profiles.
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Figure: Hierarchical Clustering on Corrected Profiles.
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Figure: Hierarchical Clustering on Uncorrected Profiles.
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Heteroschedastic PPCA Results
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Figure: Hierarchical Clustering on Uncorrected Profiles.
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Figure: Hierarchical Clustering on genes selected by normal PCA.




Heteroschedastic PPCA Results
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Figure: Hierarchical Clustering on genes selected by normal PCA.
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