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Online Resources

All source code and slides are available online

This talk available from my home page (see talks link on
side).

Project main page (with links to software)

http://bioinf.manchester.ac.uk/resources/puma/.

Additional project homepage

http:
//www.cs.man.ac.uk/~neill/projects/pipeline/.

http://bioinf.manchester.ac.uk/resources/puma/
http://www.cs.man.ac.uk/~neill/projects/pipeline/
http://www.cs.man.ac.uk/~neill/projects/pipeline/
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PUMA Project Outline

Noise Problems in Microarrays

Project was motivated by the fact that microarray data is
very noisy.

The aim of the project is to:

Assess the level of noise in the estimated gene expression.
Propagate the noise through downstream analysis.

Personnel:

Investigators: Neil Lawrence, Magnus Rattray
Fellows/Post-docs: Pei Gao, Marta Milo (Sheffield),
Guido Sanguinetti (former post-doc Sheffield)
PhD Students: Xuejun Liu, Richard Pearson
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Central Dogma

DNA →mRNA →Protein

Every cell has the same DNA.

Cells produce different proteins (building blocks of life).

Level of mRNA produced is known as gene expression.

Has a downstream effect on level of Protein produced.

Gene expression is controlled by Transcription factors.

Transcription factors themselves are proteins.

Feedbacks in these systems lead to gene networks.
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Affymetrix Arrays

Photolithography and Combinatorial Chemistry

Affymetrix arrays are a technology for measuring level of
mRNA.

PM (perfect match) probes match the gene sequence.

MM (mismatch) probes have wrong middle base.

MM designed to measure non-specific binding.

Approx 10,000 probe-sets per chip.
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Affymetrix Arrays

Photolithography and Combinatorial Chemistry

Figure: Affymetrix arrays for human and mouse (image from Wikimedia

Commons under GFDL).
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Affymetrix Arrays

Photolithography and Combinatorial ChemistrymRNA reference sequence
Fluorescenceintensity image PM ProbeMM Probe

5´ 3´
ProbeSet

Figure: Affymetrix array schematic
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Photolithography and Combinatorial ChemistrymRNA reference sequence
Fluorescenceintensity image PM ProbeMM Probe
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Affymetrix Arrays

Photolithography and Combinatorial Chemistry

Perfect Match sequenceTTACCCAGTCTTCCTGAGGATACACGCTGAGGATACAC
mRNA reference sequence

Mismatch sequenceFluorescenceintensity image PM ProbeMM Probe
5´ 3´Oligo sequence···TGTGATGGTGGGAATGGGTCAGAAGGACTCCTATGTGGGTGACGAGGCC···ProbeSetTTACCCAGTCTT

Figure: Affymetrix array schematic
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gMOS Family of Methods

Gamma Model of Signal (Milo et al., 2003; Liu et al., 2005)

Most methods return a single expression level estimate.

The gMOS family of methods additionally provide
confidence intervals.

This confidence intervals can the be propagated through
higher level analysis.
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gMOS Family of Methods II

Gamma Model of Signal

mj ∼ Ga (mj |a, b)

sj ∼ Ga (sj |α, b)

yj = mj + sj

yj ∼ Ga (yj |a + α, b)

Ga (x|a, b) =
ba

Γ (a)
xa exp (−bx)

probability 0 mj, sj and yj
mj (Mismatch)

Figure: PDF of mj , sj and the implied
distribution for yj .
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gMOS Family of Methods II

Gamma Model of Signal

mj ∼ Ga (mj |a, b)
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gMOS

Inferring the Signal

Maximise likelihood with respect to α, a and b.

Assume independence between yj and mj ,

p (yj ,mj) = Ga (yj |α, b) Ga (mj |a, b) .

Use resulting α̂ and b̂ to give distribution over sj .

p (sj) = Ga
(
sj |α̂, b̂

)
.
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Modelling Probe Pair Affinity

mgMOS

yj and mj are
correlated.

gMOS makes an
independence
assumption.

Correlations arise
through shared binding
affinity (scale).

Assume each probe pair

has a shared scale bj .

Assume
bj ∼ Ga (bj |c, d) and
marginalise.
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Figure: Correlation of PM (yj ) and MM (mj ).
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Specific Binding to Mismatch

Mismatch Effected by Signal

Affymetrix Latin Square
Spike-In data set.

The perfect match
responds to increasing
mRNA.

But so does the
mismatch.

log mRNA concentrationexpression level
Figure: The perfect match goes up

with the mRNA concentration as

expected. But so does the mismatch.
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Specific Binding to Mismatch

Mismatch Effected by Signal

Affymetrix Latin Square
Spike-In data set.

The perfect match
responds to increasing
mRNA.

But so does the
mismatch.

log mRNA concentrationexpression level yj  (Perfect match) mj  (Mismatch)
Figure: The perfect match goes up

with the mRNA concentration as

expected. But so does the mismatch.
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Specific Binding and Multiple Arrays

multi-mgMOS

Specific Binding to MM probe:

Introduce parameter φ and assume

yj ∼ Ga (yj |a + α, bj) , mj ∼ Ga (mj |a + φα, bj)

Log normal prior for φ and seek a MAP solution.

Multiple arrays:

Still take bj ∼ Ga (bj |c, d) but share c and d parameters
across chips.
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Mouse Data Set

http://www.ncbi.nlm.nih.gov/projects/geo

Mouse back skin mRNA expression profile for Dab2 (Lin et al.,
2004).

Root Mean Square Error

RMSE qr-PCR x-probe set

MAS 5.0 0.656 0.360

GCRMA 0.694 0.370

multi-mgMOS 0.601 0.233 days after birth
Prediction of Dab2 Expression level from qr-PCR, MAS 5.0,
GCRMA and multi-mgMOS.

http://www.ncbi.nlm.nih.gov/projects/geo


PUMA

Mouse Data Set

http://www.ncbi.nlm.nih.gov/projects/geo

Mouse back skin mRNA expression profile for Dab2 (Lin et al.,
2004).

Root Mean Square Error

RMSE qr-PCR x-probe set

MAS 5.0 0.656 0.360

GCRMA 0.694 0.370

multi-mgMOS 0.601 0.233 days after birth
Prediction of Dab2 Expression level from qr-PCR, MAS 5.0,
GCRMA and multi-mgMOS.

http://www.ncbi.nlm.nih.gov/projects/geo


PUMA

Mouse Data Set

http://www.ncbi.nlm.nih.gov/projects/geo

Mouse back skin mRNA expression profile for Dab2 (Lin et al.,
2004).

Root Mean Square Error

RMSE qr-PCR x-probe set

MAS 5.0 0.656 0.360

GCRMA 0.694 0.370

multi-mgMOS 0.601 0.233 days after birth
Prediction of Dab2 Expression level from qr-PCR, MAS 5.0,
GCRMA and multi-mgMOS.

http://www.ncbi.nlm.nih.gov/projects/geo


PUMA

Mouse Data Set

http://www.ncbi.nlm.nih.gov/projects/geo

Mouse back skin mRNA expression profile for Dab2 (Lin et al.,
2004).

Root Mean Square Error

RMSE qr-PCR x-probe set

MAS 5.0 0.656 0.360

GCRMA 0.694 0.370

multi-mgMOS 0.601 0.233 days after birth
Prediction of Dab2 Expression level from qr-PCR, MAS 5.0,
GCRMA and multi-mgMOS.

http://www.ncbi.nlm.nih.gov/projects/geo


PUMA

Transcription Factor Activities

Inferring Activitiy of Transcription Factors

Transcription factors control the expression of genes.

Knowledge of their ‘activity’ is key to understanding the
mechanism behind biological processes.

Transcription factors are proteins — activity is a
combination of their concentration and effect.

The mRNA concentration of a given transcription factor
may be known but:

Transcription factors are often lowly expressed — mRNA
concentrations difficult to measure.
Transcription factors are often post-transcriptionally
regulated.
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ChIP Microarrays

Chromatine Immunoprecipitation (ChIP) Microarrays

ChIP Microarrays tell us which TFs bind to which genes
under certain conditions.

In effect this gives a structure for the regulatory network.

Combine this information with gene expression data to
obtain transcription factor activities (TFA).
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Transcription Factor Activities

Evaluating Activities of Transcription Factors

Several approaches based on regression (Liao et al., 2003; Gao
et al., 2004; Boulesteix and Strimmer, 2005; Alter and Golub, 2004)

Assume a gene’s expresion is given by a linear relationship

yi = Bxi + εi .

yi ∈ <T×1 is the expression profile of the ith gene,

xi ∈ {0, 1}q×1 indicates which transctiption factors bind to the ith

gene

B ∈ <T×q is the matrix of TFAs.

εi ∼ N
`
0, σ2I

´
Problem: the matrix B is not gene specific. It gives
average TFA across genes.
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Gene Specific TFAs

Associate TFAs to Genes (Sanguinetti et al., 2006)

Intoduce gene specific TFAs,

yi = Bixi + εi .

Parameter Explosion

Assume prior distribution for Bi .

p (B) =
NY

i=1

p (Bi ) =
NY

i=1

TY
t=1

p (bi,t)

p (bi,t) = N (bi,t |0, Σ)

bi,t ∈ <q×1 is the vector of TFAs for each TF associated with

the ith gene at time t
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Temporal Continuity of TFAs

Time Course Experiments

Introduce concept of temporal continuity with Gaussian
distribution.

p (bi ,t |bi ,t−1) = N
(
bi ,t |γbi ,t−1 + (1− γ) µ,

(
1− γ2

)
Σ

)
The temporal continuity, γ is between 0 and 1.
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Temporal Continuity of TFAs II

Effect of γ

When γ = 0 we recover

p (bi ,t) = N (bi ,t |µ,Σ)

which is equivalent to the original independent model.

As γ → 1 we recover

p (bi ,t |bi ,t−1) = lim
σ2→0

N
(
bi ,t |bi ,t−1, σ

2I
)

which is appropriate if the ‘time points’ are in fact
biological replicates.
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Results on TFAs

Yeast Cell Cycle Data with ChIP-on-chip 204 TFs

Yeast cell cycle cdc15 data set (Spellman et al., 1998).

ChIP-on-chip from 113 TFs (Lee et al., 2002).

24 experimental points in time series data.

Compare with non-specific TFAs obtained by Regression.
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Results on TFAs II

Graphs of TFAs
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Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained
by regression Right: gene specific TFA for averge of Bi across genes.
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Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained
by regression Right: gene specific TFA SCW11.
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Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained
by regression Right: gene specific TFA YER124C.
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Results on TFAs II

Graphs of TFAs
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Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained
by regression Right: gene specific TFA YKL51C.
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Separation of Concentration and Effect

Splitting the Activity into Component Parts

TFA is a combination of:

TF concentration.
TF effect.

Model expression by splitting the two:

yi = (B� X) ct + εt

where � is the Hadamard (element by element) product.

B ∈ <N×q is a matrix of each TFs effect on each gene.

ct ∈ <q×1 is concentration of each TF at time t.

Bayesian treatment of c and B through a variational
approach.
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TF Concentration Results

Concentration of ACE2
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Figure: Left: concentration of ACE2 and right : effect of ACE2 on
its target genes as a histogram.
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TF Concentration Results II

Nice ACE2 Stories in Results

ACE2 four most significant targets: CTS1, DSE1, DSE2,
SCW11.

Evidence to back this up comes from biological literature.
CTS1 relationship is known.
DSE1 and DSE2 are involved in cell wall degradation
causing daughter to seperate from parent.
SCW11’s function is unclear but protein is localised at cell
wall.

Negative regulation of NCE4

Not documented, but ACE2 terminates mitosis & NCE4
ensures DNA stability during replication
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More Complex Model

Complex Models on Small Networks

Simple linear models allow genome wide analysis of TFAs.

We now consider a more complex model on a much
smaller network.
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Differential Equation Model

Inference of p53 Concentration

p53 is an important in cancer.

Many targets of p53 are not shared with other TFs.

Differential Equation model

Simple linear model differential equation model recently
used by Barenco et al. (2006).

Initially inferred transcription factor concentrations using
Markov Chain Monte Carlo (107 iterations). Now use
maximum likelihood and curvature.

We repeat their experiments with Gaussian processes.
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Simple Linear Model

Linear model of regulation

dyi (t)

dt
= Bi + Si f (t)− Diyi (t)

where:

yi (t) — expression of the ith gene at time t.
f (t) — concentration of the transcription factor at time t.

Di — gene’s decay rate.
Bi — basal transcription rate.
Si — sensitivity to the transcription factor.
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Equation Solution

Solve via Laplace Transforms

Solution to the equation:

yi (t) =
Bi

Di
+ Si exp (−Di t)

∫ t

0
f (u) exp (Diu) du.

If f (t) is a zero mean Gaussian process then yi (t) is also
a Gaussian process with mean Bi

Di
.
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Two Properties of GPs

Integral of Gaussian Process

The integral of a GP is also a GP,

f (t) ∼ N (0,Kff )

and

g (t) =

∫ t

0
f (u) du

then
g (t) ∼ N (0,Kgg ) ,

where

kgg

(
t, t ′

)
=

∫ t

0

∫ t′

0
kff

(
u, u′

)
dudu′
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Two Properties of GPs

Product with deterministic function

The integral of a GP is also a GP,

f (t) ∼ N (0,Kff ) ,

and
g (t) = f (t) h (t)

where h (t) is a deterministic function then,

g (t) ∼ N (0,Kgg ) ,

where
kgg

(
t, t ′

)
= h (t) kff

(
t, t ′

)
h

(
t ′

)
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Covariance for Transcription Model

RBF Kernel function for f (t)

yi (t) =
Bi

Di
+ Si exp (−Di t)

∫ t

0
f (u) exp (Diu) du.

Joint distribution
for x1 (t), x2 (t)
and f (t).

Here:
D1 S1 D2 S2

5 5 0.5 0.5

y

y

y y
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Joint Sampling of y (t) and f (t) from Covariance

gpsimTest
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Figure: Left: joint samples from the transcription covariance, blue:
f (t), cyan: y1 (t) and red : y2 (t). Right: numerical solution for f (t)
of the differential equation from y1 (t) and y2 (t) (blue and cyan).
True f (t) included for comparison.



PUMA

Joint Sampling of y (t) and f (t) from Covariance

gpsimTest

0 10 20 30 40 50
1

1.5

2

2.5

3

0 10 20 30 40 50
1

1.5

2

2.5

3

Figure: Left: joint samples from the transcription covariance, blue:
f (t), cyan: y1 (t) and red : y2 (t). Right: numerical solution for f (t)
of the differential equation from y1 (t) and y2 (t) (blue and cyan).
True f (t) included for comparison.



PUMA

Joint Sampling of y (t) and f (t) from Covariance

gpsimTest

0 10 20 30 40 50
0

0.5

1

1.5

2

0 10 20 30 40 50
0

0.5

1

1.5

2

Figure: Left: joint samples from the transcription covariance, blue:
f (t), cyan: y1 (t) and red : y2 (t). Right: numerical solution for f (t)
of the differential equation from y1 (t) and y2 (t) (blue and cyan).
True f (t) included for comparison.



PUMA

Artificial Data

Toy Problem

Results from an artificial data set.

We used a ‘known TFC’ and derived six ‘mRNA profiles’.

Known TFC composed of three Gaussian basis functions.
mRNA profiles derived analytically.

Fourteen subsamples were taken and corrupted by noise.

This ‘data’ was then used to:

Learn decays, sensitivities and basal transcription rates.
Infer a posterior distribution over the missing TFC.
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Artificial Data Results
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Figure: Left: The TFC, f (t), which drives the system. Middle: Five gene

mRNA concentration profiles each obtained by using different parameter

sets {Bi , Si , Di}5
i=1 (lines) along with noise corrupted ‘data’ . Right: The

inferred TFC (with error bars).
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Results

Linear System

Recently published biological data set studied using linear
response model by Barenco et al. (2006).

Study focused on the tumour suppressor protein p53.

mRNA abundance measured for five targets: DDB2, p21,
SESN1/hPA26, BIK and TNFRSF10b.

Quadratic interpolation for the mRNA production rates to
obtain gradients.

They used MCMC sampling to obtain estimates of the
model parameters Bj , Sj , Dj and f (t).
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Linear response analysis

Experimental Setup

We analysed data using the linear response model.

Raw data was processed using the mmgMOS model of Liu
et al. (2005) which provides variance as well as expression
level.

We present posterior distribution over TFCs.

Results of inference on the values of the hyperparameters
Bj , Sj and Dj .

Samples from the posterior distribution were obtained
using Hybrid Monte Carlo (see e.g. Neal, 1996).
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Linear Response Results

demBarenco1

0 5 10
−2

−1

0

1

2

3

4

Figure: Predicted protein concentration for p53. Solid line is mean, dashed

lines 95% credibility intervals. The prediction of (Barenco et al., 2006) was

pointwise and is shown as crosses.
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Results — Transcription Rates

Estimation of Equation Parameters demBarenco1

DDB2 hPA26 TNFRSF20b p21 BIK
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Figure: Basal transcription rates. Our results (black) compared with
Barenco et al. (2006) (white).
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Results — Transcription Rates

Estimation of Equation Parameters demBarenco1
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Figure: Sensitivities. Our results (black) compared with Barenco
et al. (2006) (white).
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Results — Transcription Rates

Estimation of Equation Parameters demBarenco1
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Figure: Decays. Our results (black) compared with Barenco et al.
(2006) (white).
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Linear Response Discussion

GP Results

Note oscillatory behaviour, possible artifact of RBF
covariance Rasmussen and Williams (see page 123 in
2006).

Results are in good accordance with the results obtained
by Barenco et al..

Differences in estimates of the basal transcription rates
probably due to:

different methods used for probe-level processing of the
microarray data.
Our failure to constrain f (0) = 0.

Our results take about 13 minutes to produce Barenco
et al. required 10 million iterations of Monte Carlo.
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Non-linear Response Model

More Realistic Response

Transcription factor concentrations are positive, but direct
samples from a GP will not be.

Linear models don’t account for saturation.

Solution: model response using a positive nonlinear
function.
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Formalism

Non-linear Response

Introduce a non-linearity g (·) parameterised by θj

dxj

dt
= Bj + g(f (t), θj )− Djxj

xj (t) =
Bj

Dj
+ exp

`
−Dj t

´ Z t

0
du g(f (u), θj ) exp

`
Dju

´
.

The induced distribution of xj(t) is no longer a GP.

Derive the functional gradient and learn a MAP solution
for f (t).

Also compute Hessian so we can approximate the marginal
likelihood.
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Example: linear response

Using non-RBF kernels

Start by taking g(·) to be linear.

Provides ’sanity check’ and allows arbitrary covariance
functions.

Avoids double numerical integral that would normally be
required.
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Response Results

demBarencoMap1, demBarencoMap2
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Figure: Left: RBF prior on f (log likelihood -101.4); Right: MLP
prior on f (log likelihood -105.6).
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Non-linear response analysis

Non-linear responses

Exponential response model (constrains protein
concentrations positive).

log (1 + exp (f )) response model.
3

1+exp(−f )

Inferred MAP solutions for the latent function f are
plotted below.
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exp (·) Response Results

demBarencoMap3, demBarencoMap4
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Figure: Left: shows results of using a squared exponential prior covariance

on f (log likelihood -100.6); Right: shows results of using an MLP prior

covariance on f (log likelihood -106.4).
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log (1 + exp (f )) Response Results

demBarencoMap5, demBarencoMap6
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Figure: Left: shows results of using a squared exponential prior covariance

on f (log likelihood -100.9); Right: shows results of using an MLP prior

covariance on f (log likelihood -110.0).
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3
1+exp(−f ) Response Results

demBarencoMap7, demBarencoMap8
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Figure: Left: shows results of using a squared exponential prior covariance

on f (log likelihood -104.1); Right: shows results of using an MLP prior

covariance on f (log likelihood -111.2).
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Transcription Model Summary

Progress so far and Future work

Elegant solution of a problem with indirect observations.

Already extended to non-linear response equations (using
Laplace approximation).

Expect to extend it to systems with multiple transcription
factors.
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Summary

PUMA: Propagation of Uncertainty in Microarray Analysis

Level of Noise in the Array can be Assesed (gMOS
methods).

Probabilistic Models can:

Improve selection of over-expressed genes (PPLR) — Appendix
Clean up gene expression profiles (NPPCA) — Appendix

Simple (log-linear) probabilistic models can be used with
network connectivity data to

To infer genome wide transcription factor activities (chipdyno).
To infer genome wide transcription factor protein
‘concentrations’ (chipvar).

Gaussian processes & differential equations for complex
interactions.

And finally ...
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Differential Gene Expression

Probability of Positive Log Ratio(Liu et al., 2006)

Differential gene expression is normally assessed with log
ratios of gene expression.

rij = log
si
sj

This measure is very sensitive to noise at low expresion
levels.

Use variance of expression to obtain Probability of Positive
Log Ratio (PPLR).
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PPLR Results

Golden spike-in dataset (Choe et al.,

2005)

Ranking (y -axis) against log
ratio (x-axis) for.

Ranking by Expected
Log Ratio.
Ranking by PPLR.

Red stars indicate expected
log ratio.

Red lines indicate error bars.

Blue squares indicates genes
that were spiked-in.
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Golden spike-in dataset (Choe et al.,

2005)

Ranking (y -axis) against log
ratio (x-axis) for.

Ranking by Expected
Log Ratio.
Ranking by PPLR.

Red stars indicate expected
log ratio.

Red lines indicate error bars.

Blue squares indicates genes
that were spiked-in.
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Cleaning up Profiles

Converting Noisy Profiles to Clean

If we can ’clean up’ the profiles we can use in other
methods.

Construct a probabilistic model for the data and
corruption process.

Work with posterior distribution over cleaned up profile.

We designed a heteroschedastic Probabilistic PCA for
doing this (Sanguinetti et al., 2005).
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Probabilistic PCA

Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Latent variable approach:

Define Gaussian prior
over latent space, X.
Integrate out latent
variables.

X W

Y

p (Y|X, W) =
nY

i=1

N
`
yi,:|Wxi,: + µ, σ2I

´

p (X) =
nY

i=1

N
`
xi,:|0, I

´

p (Y|W) =
nY

i=1

N
“
yi,:|µ, WWT + σ2I

”
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Y

p (Y|X, W) =
nY

i=1

N
`
yi,:|Wxi,: + µ, σ2I

´

p (X) =
nY

i=1

N
`
xi,:|0, I

´

p (Y|W) =
nY

i=1

N
“
yi,:|µ, WWT + σ2I

”
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Probabilistic PCA II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

X W

Y

p (Y|W) =
nY

i=1

N
“
yi,:|µ, WWT + σ2I

”
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Probabilistic PCA II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p (Y|W) =
nY

i=1

N
`
yi,:|µ, C

´
, C = WWT + σ2I

log p (Y|W) = −
n

2
log |C| −

1

2
tr

“
C−1ỸTỸ

”
+ const.

Where Ỹ is the matrix Y with µremoved. If Uq are first q principal eigenvectors

of n−1ỸTỸ and the corresponding eigenvalues are Λq ,

W = UqLV
T, L =

`
Λq − σ2I

´ 1
2

where V is an arbitrary rotation matrix.

µ = n−1
nX

i=1

yi,:
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Heteroschedastic Probabilistic PCA

Heteroschedastic PPCA

Define linear-Gaussian
relationship between
latent variables and Y.

Define a further Gaussian
relationship to corrupted
profiles Ŷ.

Di is a diagonal matrix
of estimated variances.

Integrate out latent
variables.

Y

X W

Y

p (Y|X, W) =
nY

i=1

N
“
yi,:|Wxi,: + µ, σ

2I
”

p
`
ŷi,:|yi,:

´
= N

`
ŷi,:|yi,:, Di

´

p
“
Ŷ|W

”
=

nY
i=1

N
“
yi,:|µ, WWT + σ

2I + Di

”
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Heteroschedastic Probabilistic PCA

Heteroschedastic PPCA
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relationship between
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Di is a diagonal matrix
of estimated variances.

Integrate out latent
variables.

Y

X W
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Heteroschedastic Probabilistic PCA

Heteroschedastic PPCA

Define linear-Gaussian
relationship between
latent variables and Y.

Define a further Gaussian
relationship to corrupted
profiles Ŷ.

Di is a diagonal matrix
of estimated variances.

Integrate out latent
variables.

Y

X W

Y

p (Y|X, W) =
nY

i=1

N
“
yi,:|Wxi,: + µ, σ

2I
”

p
`
ŷi,:|yi,:

´
= N
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ŷi,:|yi,:, Di

´

p
“
Ŷ|W

”
=

nY
i=1
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yi,:|µ, WWT + σ

2I + Di
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Heteroschedastic PPCA II

Heteroschedastic PPCA Max. Likelihood Soln (Sanguinetti et al.,

2005)

Y

X W

Y

p (Y|W) =
n∏

i=1

N
(
yi ,:|µ,WWT + σ2I + Di

)
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Heteroschedastic PPCA II

Heteroschedastic PPCA Max. Likelihood Soln (Sanguinetti et al.,

2005)

p (Y|W) =
n∏

i=1

N
(
yi ,:|µ,WWT + σ2I + Di

)

Can no longer solve via eigenvalue problem.

We use an EM algorithm.

A major problem is the strong correlation between W and
µ.
We use some tricks to speed up convergence.

Software available in R and MATLAB.
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Heteroschedastic PPCA Results

Mouse Cochlear Dataset

Data from a conditionally imortal cell lin extracted from
mouse cochlear epithelial cells.
Twelve samples from 14 days of differentiation after
extration at E13.5 (Rivolta et al., 2002).

Experimental setup:

Perform HPPCA/PCA on the data.
Extract 50 genes most associated with 2nd principal
component
Cluster original profiles and reconstructed profiles.
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Heteroschedastic PPCA Results

Figure: Hierarchical Clustering on Corrected Profiles.



PUMA

Heteroschedastic PPCA Results

Figure: Hierarchical Clustering on Uncorrected Profiles.
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Heteroschedastic PPCA Results

Figure: Hierarchical Clustering on Uncorrected Profiles.
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Heteroschedastic PPCA Results

Figure: Hierarchical Clustering on genes selected by normal PCA.
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Heteroschedastic PPCA Results

Figure: Hierarchical Clustering on genes selected by normal PCA.
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