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Outline

0 Microarray Processing
o Affymetrix GeneChip Arrays
@ Detecting Differential Gene Expression with PPLR
@ Tidying up Profiles with Probabilistic PCA

© Inferring Transcription Factors’ Activities — Scuba Diving
@ ChlIP-microarray and Transcription Factor Activities
@ Transcription Factor Concentrations

© From Simple to Complex Models — Mini-Sub

@ Structural Inference — The Bathyscape

© Conclusions
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Online Resources

All source code and slides are available online
@ This talk available from my home page (see talks link on side).
@ PUMA Project main page (with links to software)
http://bioinf.man.ac.uk/resources/puma/
o Additional project homepages

http://www.cs.man.ac.uk/ neill/projects/pipeline/
http://www.cs.man.ac.uk/ " neill/projects/tigra/

Neil Lawrence and Magnus Rattray () Towards Computational Systems Biology October 31, 2007 3 /45


http://bioinf.man.ac.uk/resources/puma/
http://www.cs.man.ac.uk/~neill/projects/pipeline/
http://www.cs.man.ac.uk/~neill/projects/tigra/

PUMA Project Outline

o Noisy Data — Useful inference

@ My first contact with microarray: 2001 cDNA arrays with Niranjan,
Pen Rashbass.
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PUMA Project Outline

e Early work from Niranjan was about classification (e.g. tumour types)
and feature selection (which genes are important in differentiating)

@ Aim to build on this work with more complex modelling.
> |t was apparent that we needed to handle the noise in this data!
@ Today our work focuses on determining the influence of /atent
chemical species on the data.

@ We've developed techniques for both genome wide inference and
transcription factor specific inference.

@ All these techniques are embedded in a probabilistically rigorous
handling of the data.
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Future Perspectives

@ Our work so far has focussed on data driven models.
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Future Perspectives

Our work so far has focussed on data driven models.

Examples include

» Differential expression analysis
» Hierarchical Clustering
» Principal Component Analysis

An alternative perspective is mechanistic models.

» For example: differential equation models.

There is always a balance between a realistic model and a tractable
model.
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Affymetrix Arrays

e Working with Matthew Holley, our (Marta Milo, Niranjan and ) focus
shifted to Affymetrix arrays.

Figure: Affymetrix arrays for human and mouse (image from Wikimedia
Commons under GFDL).

@ There are multiple probe pairs on an Affymetrix array; could we
exploit this to estimate the noise?
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Affymetrix Arrays

mRNA reference sequence

Fluorescence
intensity image

MM Probe

Figure: Affymetrix array schematic
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Affymetrix Arrays
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gMOS Family of Methods

@ gMOS — Gamma Model of Signal [Milo et al., 2003, Liu et al., 2005]
@ Most methods return a single expression level estimate.

@ The gMOS family of methods additionally provide confidence
intervals.

@ This confidence intervals can the be propagated through higher level
analysis.

Neil Lawrence and Magnus Rattray () Towards Computational Systems Biology October 31, 2007 10 / 45



gMOS Family of Methods Il

m; (Mismatch)

@ Gamma Model of
Signal

sj ~ Ga(sj|a, b)

probability

m, s; and Y;

Figure: PDF of mj,
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e Gamma Model of
Signal
sj ~ Ga(sj|a, b)

mj ~ Ga (mjla, b)
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gMOS Family of Methods Il

m; (Mismatch)

@ Gamma Model of
Signal

s; (signal)

SJ' ~ Ga (Sj‘Oz, b) v, (Perfect match)

probability

mj ~ Ga (mjla, b)

yj = mj+s; g

m, s; and Y;

yjNGa(yj|a+a’b) . . .
Figure: PDF of m;, s; and the implied

distribution for y;.
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Modelling Probe Pair Affinity

e mgMOS
@ y; and m; are correlated.
:
ﬁ 5000
i *
o %
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perfect match, y;

Figure: Correlation of PM (y;) and
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Modelling Probe Pair Affinity

e mgMOS
@ y; and m; are correlated.

@ gMOS makes an independence
assumption.

@ Correlations arise through
shared binding affinity (scale).

@ Assume each probe pair has a

shared scale.

5000
perfect match, y;

> Assume a probability
distribution for the
shared scale and MM (m;).
‘marginalise’.

Figure: Correlation of PM (y;) and
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Specific Binding to Mismatch

o Mismatch Effected by
Signal

o Affymetrix Latin Square
Spike-In data set.

expression level
s

0 5 10 15
log mRNA concentration

Figure:
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Specific Binding to Mismatch

Y, (Perfect match)

o Mismatch Effected by
Signal

o Affymetrix Latin Square
Spike-In data set.

expression level
s

@ The perfect match
responds to increasing
mRNA.
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Figure: The perfect match goes up
with the mRNA concentration as

expected.
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Specific Binding to Mismatch

Y, (Perfect match)

o Mismatch Effected by
Signal

o Affymetrix Latin Square
Spike-In data set.

expression level
s

m (Mismatch)

@ The perfect match

. . 0 5 10 15
responds to increasing log MRNA concentration
mRNA.

Figure: The perfect match goes u
@ But so does the ' P '8 P
. with the mRNA concentration as
mismatch.

expected. But so does the mismatch.
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Specific Binding and Multiple Arrays

multi-mgMOS
Specific Binding to MM probe:
An additional parameter is used to account for binding to MM probe.

Multiple arrays:

» Some of the parameters in the model are specific to the chip, not the
sample.
» Share these parameters across the arrays.
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Mouse Data Set

@ http://www.ncbi.nlm.nih.gov/projects/geo
@ Mouse back skin mRNA expression profile for Dab2 [Lin et al., 2004].

RMSE

Root Mean Square Error

qr-PCR ‘ x-probe set

0 10 20

days after birth

Prediction of Dab2 Expression
level from qr-PCR
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Mouse Data Set

@ http://www.ncbi.nlm.nih.gov/projects/geo
@ Mouse back skin mRNA expression profile for Dab2 [Lin et al., 2004].
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Mouse Data Set

@ http://www.ncbi.nlm.nih.gov/projects/geo
@ Mouse back skin mRNA expression profile for Dab2 [Lin et al., 2004].

2
0
Root Mean Square Error
RMSE qr-PCR ‘ x-probe set
MAS 5.0 065 | 0360 | -
GCRMA 0.694 0.370

mult-mgMOS | 0.601 | 0.233 | g 0 20

days after birth

Prediction of Dab2 Expression
level from qr-PCR, MAS 5.0,
GCRMA  and multi-mgMOS.
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Differential Gene Expression

@ Probability of Positive Log Ratio[Liu et al., 2006]

» Differential gene expression is normally assessed with log ratios of gene
expression.

Si
rij = log —
]
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Differential Gene Expression

@ Probability of Positive Log Ratio[Liu et al., 2006]
» Differential gene expression is normally assessed with log ratios of gene
expression.

lo S
rij = log —
ij g 5

» This measure is very sensitive to noise at low expresion levels.
» Use variance of expression to obtain Probability of Positive Log Ratio

(PPLR).
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PPLR Results

@ Golden spike-in dataset [Choe ! ——
et al., 2005]
e Ranking (y-axis) against log 10
ratio (x-axis) for.
» Ranking by Expected 20}
Log Ratio.
. . 301
@ Red stars indicate expected
log ratio.
@ Red lines indicate error bars. “or
@ Blue squares indicates genes =
that were spiked-in. 50 — ! :
-20 -10 o] 10 2
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PPLR Results

@ Golden spike-in dataset [Choe
et al., 2005]

e Ranking (y-axis) against log
ratio (x-axis) for.

» Ranking by PPLR.
@ Red stars indicate expected
log ratio.
@ Red lines indicate error bars.

@ Blue squares indicates genes
that were spiked-in.
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Cleaning up Profiles

@ Converting Noisy Profiles to Clean

If we can 'clean up’ the profiles we can use in other methods.
Construct a probabilistic model for the data and corruption process.
Work with posterior distribution over cleaned up profile.

We designed a heteroschedastic probabilistic PCA for doing this
[Sanguinetti et al., 2005].

v v vYyy
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Heteroschedastic PPCA Results

@ Mouse Cochlear Dataset

» Data from a conditionally imortal cell lin extracted from mouse

cochlear epithelial cells.
» Twelve samples from 14 days of differentiation after extration at E13.5
[Rivolta et al., 2002].

» Experimental setup:

* Perform HPPCA/PCA on the data.
* Extract 50 genes most associated with 2nd principal component
* Cluster original profiles and reconstructed profiles.
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Heteroschedastic PPCA Results
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Heteroschedastic PPCA Results
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Figure: Hierarchical Clustering on Uncorrected Profiles.
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Figure: Hierarchical Clustering on Uncorrected Profiles.
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Figure: Hierarchical Clustering on genes selected by normal PCA.
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Heteroschedastic PPCA Results
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Transcription Factor Activities

@ Transcription factors control the expression of genes.

@ Knowledge of their ‘activity’ is key to understanding the mechanism
behind biological processes.

@ Transcription factors are proteins — activity is a combination of their
concentration and effect.

@ The mRNA concentration of a given transcription factor may be
known but:

» Transcription factors are often lowly expressed — mRNA
concentrations difficult to measure.
» Transcription factors are often post-transcriptionally regulated.

We can see these TFs as /atent chemical species.

» Latent chemical species are a common issue in biological problems.
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ChIP Microarrays

e Chromatine Immunoprecipitation (ChIP) Microarrays

» ChIP Microarrays tell us which TFs bind to which genes under certain
conditions.

> In effect this gives a structure for the regulatory network.

> We use binary output from ChlIP arrays.

» Combine this information with gene expression data to obtain
transcription factor activities (TFA).

» Approach also works for other sources of connectivity information
(motifs).
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Transcription Factor Activities

@ Evaluating Activities of Transcription Factors

» Several approaches based on regression [Liao et al., 2003, Gao et al., 2004,
Boulesteix and Strimmer, 2005, Alter and Golub, 2004]

» Assume a gene's expresion is given by a linear relationship
yi = Bx; + €;.
yi is the expression profile of the ith gene with (contains T experiments),

x; is binary: indicates which transctiption factors bind to the ith gene (there
are g transcription factors total)

B € 79 is the matrix of TFAs.
€ is a noise term.

» Intuition: x; ‘selects’ which columns of B are switched on to recreate
Yi-

» Problem: the matrix B is not gene specific. It gives average TFA
across genes.
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Gene Specific TFAs

@ Associate TFAs to Genes [Sanguinetti et al., 2006]

> Intoduce gene specific TFAs,

yi = Bixi + €.
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Gene Specific TFAs

@ Associate TFAs to Genes [Sanguinetti et al., 2006]

» Intoduce gene specific TFAs,
yi = Bix; + €.

» Parameter Explosion — use Bayesian techniques to deal with the
number of parameters in the model.

» Time Course — encourage transcription factor activity to vary
smoothly over time.

» Temporal continuity parameter, v, is between 0 and 1

* When v = 0 the experiments are unrelated to each other (in terms of
time).
* For v = 1 the experiments are biological replicates.
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Results on TFAs

Yeast Cell Cycle Data with ChlP-on-chip data
Yeast cell cycle cdclb data set [Spellman et al., 1998].
ChIP on chip from 113 TFs [Lee et al., 2002].

24 experimental points in time series data.

Compare with non-specific TFAs obtained by Regression.
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Results on TFAs Il

0 5 10 15 20 25 ~o 5 10 15 20 25

Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained by regression
Right: gene specific TFA for averge of B; across genes.
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Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained by regression
Right: gene specific TFA SCW11.
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Results on TFAs Il
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Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained by regression
Right: gene specific TFA CTSL.
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Results on TFAs Il
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Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained by regression
Right: gene specific TFA YER124C.
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Results on TFAs Il
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Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained by regression
Right: gene specific TFA YKL51C.
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Separation of Concentration and Effect

@ Splitting the Activity into Component Parts
» TFA is a combination of:

* TF ‘concentration’.
* TF ‘effect’.

» Follow up model splits the TFA into its component parts.

* ‘Concentration’ is specific to the transcription factor (it's a time
course).

* ‘Effect’ is specific to the gene (it's a single value — either positive
(activation) or negative (repression)).

» Bayesian treatment of ¢ and B through a variational approach.
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TF Concentration Results

Concentration of ACE2
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Figure: Left: concentration of ACE2 and right: effect of ACE2 on its target
genes as a histogram.
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TF Concentration Results Il

@ Nice ACE2 Stories in Results
» ACE2 four most significant targets: CTS1, DSE1, DSE2, SCW11.

* Evidence to back this up comes from CO data base.

* CTS1 relationship is known.

* DSE1 and DSE2 are involved in cell wall degradation causing daughter
to seperate from parent.

* SCW11's function is unclear but protein is localised at cell wall.

> Negative regulation of NCE4

* Wasn't documented — but now Google search leads to us!!
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More Complex Model

@ Complex Models on Small Networks

» Simple linear models allow genome wide analysis of TFAs.
» We now consider a more complex model on a much smaller network.
» Differential Equation model

* Simple linear model differential equation model recently used by
Barenco et al. [2006].
* Our inference methodology differs from theirs.
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Differential Equation Model

dy&it) = Bi + 5if (t) — Diyi (t)
where:
yi(t) — expression of the ith gene at time t.
f(t) — concentration of the transcription factor at time t.
D; — gene's decay rate.
B; — basal transcription rate.
Si — sensitivity to the transcription factor.

@ pb3 is an tumour repressor.

» Many targets of p53 are not shared with other TFs.
» Consider more complex model in the simple p53 network.
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Covariance for Transcription Model

o RBF Kernel function for f (t)

t
yi(t) = % +S; exp(—D,-t)/ f (u) exp (D;u) du.
i 0

o Joint distribution f(t)\\
for xq (t), x2 (t)
and f (t) Nt

o Here:

(D[S [ D] S | Y (8)
| 5| 5]05]05]

@) n@ ke
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Joint Sampling of y (t) and f (t) from Covariance

gpsimTest
2 T T T T 2
15 \ 15
1 1
0.5 0.5
00 1b Zb 3b 4‘0 50 0O 1‘0 2‘0 éO 4‘0 50

Figure: Left: joint samples from the transcription covariance, blue: f (t), cyan:
y1 (t) and red: y» (t). Right: numerical solution for f (t) of the differential
equation from y; (t) and y» (t) (blue and cyan). True f (t) included for
comparison.
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Figure: Left: joint samples from the transcription covariance, blue: f (t), cyan:
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equation from y; (t) and y» (t) (blue and cyan). True f (t) included for
comparison.
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Joint Sampling of y (t) and f (t) from Covariance
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Figure: Left: joint samples from the transcription covariance, blue: f (t), cyan:
y1 (t) and red: y» (t). Right: numerical solution for f (t) of the differential
equation from y; (t) and y» (t) (blue and cyan). True f (t) included for
comparison.
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Results — Transcription Rates

@ Estimation of Equation Parameters demBarencol

0.25

0.2

0.15

DDB2 hPA26 TNFRSF20b p21 BIK

Figure: Basal transcription rates. Our results (black) compared with
Barenco et al. [2006] (white).
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Results — Transcription Rates

o Estimation of Equation Parameters demBarencol

25

15

0.5

DDB2 hPA26 TNFRSF20b p21 BIK

Figure: Sensitivities. Our results (black) compared with Barenco et al.
[2006] (white).
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Results — Transcription Rates

@ Estimation of Equation Parameters demBarencol
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Figure: Decays. Our results (black) compared with Barenco et al. [2006] (white).
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Results — Protein Concentration

@ Prediction with error bars of protein concentration:
p (Fly1,y2,¥3, ya.¥s)

Figure: (a) RBF covariance function (b) MLP covariance function. Also
included are results from Barenco et al. [2006] as crosses.
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Summary

@ PUMA: Propagation of Uncertainty in Microarray Analysis

> Level of Noise in the Array can be Assesed (gMOS methods).
> Probabilistic Models can:

* Improve selection of over-expressed genes (PPLR).
* Clean up gene expression profiles (NPPCA).

» Simple (log-linear) probabilistic models can be used with network
connectivity data to

* To infer genome wide transcription factor activities (chipdyno).
* To infer genome wide transcription factor protein concentrations
(chipvar).

o Differential equation models

» Deal with latent species using Gaussian processes.
» Structural inference with Thermodynamic Intergration.
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Probabilistic PCA

Probabilistic PCA
@ Define linear-Gaussian
relationship between

. n
latent variables and data. p(YIX,W) =TT N (yi:Wxi.. + s, 0%1)
i=1
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Probabilistic PCA

Probabilistic PCA
o Define linear-Gaussian
relationship between )
latent variables and data. p(YIX,W) =[N (yi:[Wxi. + g, %)
@ Latent variable approach: =
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Probabilistic PCA

Probabilistic PCA
o Define linear-Gaussian
relationship between )
latent variables and data. p(YIX,W) =[N (yi Wi + s, o?1)
@ Latent variable approach: =

Define Gaussian prior
over latent space, X.

p(X) =[N (xi:l0.1)
i=1
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Probabilistic PCA

Probabilistic PCA

@ Define linear-Gaussian
relationship between

latent variables and data.

@ Latent variable approach:

Define Gaussian prior
over latent space, X.
Integrate out latent
variables.

n
p(YIX,W) =[] N (yi.[Wxi. + p, o°1)
i=1

p(X) =[N (xi:l0.1)
i=1

p(YIW)=][nN (y;,;lu, ww' + a2l)
i=1
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Probabilistic PCA I

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

n
pOYIW) =TT (viy e, WWT + 21)
i=1
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Probabilistic PCA I

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

n
p(Y|W):HN(yi,:‘I""C)7 C:WWT+U2I
fi=1l

1 =Ire
logp (Y|W) = 7% log |C| — Etr (C_lYTY) + const.

Where Y is the matrix Y with premoved. If Ug are first g principal eigenvectors of n—1yTy
and the corresponding eigenvalues are Aq,

(NI

W=UlvT, L= (A —d?)

where V is an arbitrary rotation matrix.

n
B = nt Z Yi,:
=1
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Heteroschedastic Probabilistic PCA

Heteroschedastic PPCA &)

@ Define linear-Gaussian
relationship between
latent variables and Y.

i=1

n

i=1

n
p(YIX,W) = [T N (v IWxi . + 12, 0°1)

p (9i,:1vi,:) = N (3i.:lyi,:» D;)

p (YIW) =TI N (vl WW' + 61+ D;)
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Heteroschedastic Probabilistic PCA

Heteroschedastic PPCA x)

@ Define linear-Gaussian
relationship between

latent variables and Y.

@ Define a further Gaussian
relationship to corrupted
profiles Y. =

n
p(YIX,W) = [T N (v IWxi . + 12, 0°1)

D, is a diagonal matrix p (§i:1yi:) = N (3i:lyi,:» D;)

of estimated variances.

n

i=1

p (YIW) =TI N (vi,:l, WW" + 61+ D;)
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Heteroschedastic Probabilistic PCA

Heteroschedastic PPCA x)

@ Define linear-Gaussian
relationship between

latent variables and Y.

@ Define a further Gaussian
relationship to corrupted
profiles Y. =

n
p(YIX,W) = [T N (v IWxi . + 12, 0°1)

D, is a diagonal matrix p (§i:1yi:) = N (3i:lyi,:» D;)

of estimated variances.

@ Integrate out /atent =
variables.

p (YIW) =TI N (vr,.lw, WW" + 61+ D;)
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Heteroschedastic PPCA 1l

Heteroschedastic PPCA Max. Likelihood Soln [Sanguinetti et al., 2005]
O

p(YIW) =[N (y,-’:|p,,WWT + o2l 4 D,-)
i=1
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Heteroschedastic PPCA 1l

Heteroschedastic PPCA Max. Likelihood Soln [Sanguinetti et al., 2005]

p(YW)=T]N <y,-,:|u,wa + 0%l + D,-)
i=1

@ Can no longer solve via eigenvalue problem.
@ We use an EM algorithm.

A major problem is the strong correlation between W and p.
We use some tricks to speed up convergence.

@ Software available in R and MATLAB.
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