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Online Resources

All source code and slides are available online

This talk available from my home page (see talks link on side).

PUMA Project main page (with links to software)

I http://bioinf.man.ac.uk/resources/puma/.

Additional project homepages

I http://www.cs.man.ac.uk/~neill/projects/pipeline/.
I http://www.cs.man.ac.uk/~neill/projects/tigra/
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PUMA Project Outline

Noisy Data → Useful inference

My first contact with microarray: 2001 cDNA arrays with Niranjan,
Pen Rashbass.
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PUMA Project Outline

Early work from Niranjan was about classification (e.g. tumour types)
and feature selection (which genes are important in differentiating)

Aim to build on this work with more complex modelling.

I It was apparent that we needed to handle the noise in this data!

Today our work focuses on determining the influence of latent
chemical species on the data.

We’ve developed techniques for both genome wide inference and
transcription factor specific inference.

All these techniques are embedded in a probabilistically rigorous
handling of the data.
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Future Perspectives

Our work so far has focussed on data driven models.

Examples include

I Differential expression analysis
I Hierarchical Clustering
I Principal Component Analysis

An alternative perspective is mechanistic models.

I For example: differential equation models.

There is always a balance between a realistic model and a tractable
model.
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The Iceberg of Information
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Affymetrix Arrays

Working with Matthew Holley, our (Marta Milo, Niranjan and I) focus
shifted to Affymetrix arrays.

Figure: Affymetrix arrays for human and mouse (image from Wikimedia

Commons under GFDL).

There are multiple probe pairs on an Affymetrix array; could we
exploit this to estimate the noise?
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Affymetrix Arrays mRNA reference sequence
Fluorescenceintensity image PM ProbeMM Probe

5´ 3´
ProbeSet

Figure: Affymetrix array schematic
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Affymetrix Arrays

Perfect Match sequenceTTACCCAGTCTTCCTGAGGATACACGCTGAGGATACAC
mRNA reference sequence

Mismatch sequenceFluorescenceintensity image PM ProbeMM Probe
5´ 3´Oligo sequence···TGTGATGGTGGGAATGGGTCAGAAGGACTCCTATGTGGGTGACGAGGCC···ProbeSetTTACCCAGTCTT

Figure: Affymetrix array schematic
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gMOS Family of Methods

gMOS — Gamma Model of Signal [Milo et al., 2003, Liu et al., 2005]

Most methods return a single expression level estimate.

The gMOS family of methods additionally provide confidence
intervals.

This confidence intervals can the be propagated through higher level
analysis.
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gMOS Family of Methods II

Gamma Model of
Signal

sj ∼ Ga (sj |α, b)

mj ∼ Ga (mj |a, b)

yj = mj + sj

yj ∼ Ga (yj |a + α, b)

probability 0 mj, sj and yj
mj (Mismatch)

Figure: PDF of mj , sj and the implied
distribution for yj .
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Modelling Probe Pair Affinity

mgMOS

yj and mj are correlated.

gMOS makes an independence
assumption.

Correlations arise through
shared binding affinity (scale).

Assume each probe pair has a

shared scale.

I Assume a probability
distribution for the
shared scale and
‘marginalise’.
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Figure: Correlation of PM (yj ) and

MM (mj ).
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Specific Binding to Mismatch

Mismatch Effected by
Signal

Affymetrix Latin Square
Spike-In data set.

The perfect match
responds to increasing
mRNA.

But so does the
mismatch.

log mRNA concentrationexpression level
Figure: The perfect match goes up

with the mRNA concentration as

expected. But so does the mismatch.
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Specific Binding and Multiple Arrays

multi-mgMOS

Specific Binding to MM probe:

An additional parameter is used to account for binding to MM probe.

Multiple arrays:

I Some of the parameters in the model are specific to the chip, not the
sample.

I Share these parameters across the arrays.

Neil Lawrence and Magnus Rattray () Towards Computational Systems Biology October 31, 2007 14 / 45



Mouse Data Set

http://www.ncbi.nlm.nih.gov/projects/geo
Mouse back skin mRNA expression profile for Dab2 [Lin et al., 2004].

Root Mean Square Error

RMSE qr-PCR x-probe set

MAS 5.0 0.656 0.360

GCRMA 0.694 0.370

multi-mgMOS 0.601 0.233 days after birth
Prediction of Dab2 Expression
level from qr-PCR, MAS 5.0,
GCRMA and multi-mgMOS.
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Differential Gene Expression

Probability of Positive Log Ratio[Liu et al., 2006]

I Differential gene expression is normally assessed with log ratios of gene
expression.

rij = log
si
sj

I This measure is very sensitive to noise at low expresion levels.
I Use variance of expression to obtain Probability of Positive Log Ratio

(PPLR).
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PPLR Results

Golden spike-in dataset [Choe
et al., 2005]

Ranking (y -axis) against log
ratio (x-axis) for.

I Ranking by Expected
Log Ratio.

I Ranking by PPLR.

Red stars indicate expected
log ratio.

Red lines indicate error bars.

Blue squares indicates genes
that were spiked-in.
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Cleaning up Profiles

Converting Noisy Profiles to Clean

I If we can ’clean up’ the profiles we can use in other methods.
I Construct a probabilistic model for the data and corruption process.
I Work with posterior distribution over cleaned up profile.
I We designed a heteroschedastic probabilistic PCA for doing this

[Sanguinetti et al., 2005].
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Heteroschedastic PPCA Results

Mouse Cochlear Dataset

I Data from a conditionally imortal cell lin extracted from mouse
cochlear epithelial cells.

I Twelve samples from 14 days of differentiation after extration at E13.5
[Rivolta et al., 2002].

I Experimental setup:

F Perform HPPCA/PCA on the data.
F Extract 50 genes most associated with 2nd principal component
F Cluster original profiles and reconstructed profiles.
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Heteroschedastic PPCA Results

Figure: Hierarchical Clustering on Corrected Profiles.
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Heteroschedastic PPCA Results

Figure: Hierarchical Clustering on Uncorrected Profiles.
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Heteroschedastic PPCA Results

Figure: Hierarchical Clustering on genes selected by normal PCA.
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The Iceberg of Information

Neil Lawrence and Magnus Rattray () Towards Computational Systems Biology October 31, 2007 21 / 45



The Iceberg of Information

Neil Lawrence and Magnus Rattray () Towards Computational Systems Biology October 31, 2007 21 / 45



The Iceberg of Information

Neil Lawrence and Magnus Rattray () Towards Computational Systems Biology October 31, 2007 21 / 45



Transcription Factor Activities

Transcription factors control the expression of genes.

Knowledge of their ‘activity’ is key to understanding the mechanism
behind biological processes.

Transcription factors are proteins — activity is a combination of their
concentration and effect.

The mRNA concentration of a given transcription factor may be
known but:

I Transcription factors are often lowly expressed — mRNA
concentrations difficult to measure.

I Transcription factors are often post-transcriptionally regulated.

We can see these TFs as latent chemical species.

I Latent chemical species are a common issue in biological problems.
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ChIP Microarrays

Chromatine Immunoprecipitation (ChIP) Microarrays

I ChIP Microarrays tell us which TFs bind to which genes under certain
conditions.

I In effect this gives a structure for the regulatory network.
I We use binary output from ChIP arrays.
I Combine this information with gene expression data to obtain

transcription factor activities (TFA).
I Approach also works for other sources of connectivity information

(motifs).
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Transcription Factor Activities

Evaluating Activities of Transcription Factors
I Several approaches based on regression [Liao et al., 2003, Gao et al., 2004,

Boulesteix and Strimmer, 2005, Alter and Golub, 2004]
I Assume a gene’s expresion is given by a linear relationship

yi = Bxi + εi .

yi is the expression profile of the ith gene with (contains T experiments),

xi is binary: indicates which transctiption factors bind to the ith gene (there

are q transcription factors total)

B ∈ <T×q is the matrix of TFAs.

εi is a noise term.

I Intuition: xi ‘selects’ which columns of B are switched on to recreate
yi .

I Problem: the matrix B is not gene specific. It gives average TFA
across genes.
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Gene Specific TFAs

Associate TFAs to Genes [Sanguinetti et al., 2006]

I Intoduce gene specific TFAs,

yi = Bixi + εi .

I Parameter Explosion — use Bayesian techniques to deal with the
number of parameters in the model.

I Time Course — encourage transcription factor activity to vary
smoothly over time.

I Temporal continuity parameter, γ, is between 0 and 1

F When γ = 0 the experiments are unrelated to each other (in terms of
time).

F For γ = 1 the experiments are biological replicates.
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Results on TFAs

Yeast Cell Cycle Data with ChIP-on-chip data

Yeast cell cycle cdc15 data set [Spellman et al., 1998].

ChIP on chip from 113 TFs [Lee et al., 2002].

24 experimental points in time series data.

Compare with non-specific TFAs obtained by Regression.
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Results on TFAs II
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Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained by regression
Right: gene specific TFA for averge of Bi across genes.
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Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained by regression
Right: gene specific TFA SCW11.
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Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained by regression
Right: gene specific TFA CTS1.
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Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained by regression
Right: gene specific TFA YER124C.
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Results on TFAs II
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Figure: TFAs of ACE2 from the Spellman data. Left: TFA obtained by regression
Right: gene specific TFA YKL51C.
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Separation of Concentration and Effect

Splitting the Activity into Component Parts

I TFA is a combination of:

F TF ‘concentration’.
F TF ‘effect’.

I Follow up model splits the TFA into its component parts.

F ‘Concentration’ is specific to the transcription factor (it’s a time
course).

F ‘Effect’ is specific to the gene (it’s a single value — either positive
(activation) or negative (repression)).

I Bayesian treatment of c and B through a variational approach.
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TF Concentration Results

Concentration of ACE2
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Figure: Left: concentration of ACE2 and right : effect of ACE2 on its target
genes as a histogram.
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TF Concentration Results II

Nice ACE2 Stories in Results
I ACE2 four most significant targets: CTS1, DSE1, DSE2, SCW11.

F Evidence to back this up comes from CO data base.
F CTS1 relationship is known.
F DSE1 and DSE2 are involved in cell wall degradation causing daughter

to seperate from parent.
F SCW11’s function is unclear but protein is localised at cell wall.

I Negative regulation of NCE4
F Wasn’t documented — but now Google search leads to us!!

I ACE2 terminates mitosis & NCE4 ensures DNA stability during
replication
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The Iceberg of Information

Neil Lawrence and Magnus Rattray () Towards Computational Systems Biology October 31, 2007 31 / 45



The Iceberg of Information

Neil Lawrence and Magnus Rattray () Towards Computational Systems Biology October 31, 2007 31 / 45



The Iceberg of Information

Neil Lawrence and Magnus Rattray () Towards Computational Systems Biology October 31, 2007 31 / 45



The Iceberg of Information

Neil Lawrence and Magnus Rattray () Towards Computational Systems Biology October 31, 2007 31 / 45



More Complex Model

Complex Models on Small Networks

I Simple linear models allow genome wide analysis of TFAs.
I We now consider a more complex model on a much smaller network.
I Differential Equation model

F Simple linear model differential equation model recently used by
Barenco et al. [2006].

F Our inference methodology differs from theirs.
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Differential Equation Model

dyi (t)

dt
= Bi + Si f (t)− Diyi (t)

where:
yi (t) — expression of the ith gene at time t.
f (t) — concentration of the transcription factor at time t.

Di — gene’s decay rate.
Bi — basal transcription rate.
Si — sensitivity to the transcription factor.

p53 is an tumour repressor.

I Many targets of p53 are not shared with other TFs.
I Consider more complex model in the simple p53 network.
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Covariance for Transcription Model

RBF Kernel function for f (t)

yi (t) =
Bi

Di
+ Si exp (−Di t)

∫ t

0
f (u) exp (Diu) du.

Joint distribution
for x1 (t), x2 (t)
and f (t).

Here:
D1 S1 D2 S2

5 5 0.5 0.5

y

y

y y
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Joint Sampling of y (t) and f (t) from Covariance

gpsimTest
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Figure: Left: joint samples from the transcription covariance, blue: f (t), cyan:
y1 (t) and red : y2 (t). Right: numerical solution for f (t) of the differential
equation from y1 (t) and y2 (t) (blue and cyan). True f (t) included for
comparison.
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Figure: Left: joint samples from the transcription covariance, blue: f (t), cyan:
y1 (t) and red : y2 (t). Right: numerical solution for f (t) of the differential
equation from y1 (t) and y2 (t) (blue and cyan). True f (t) included for
comparison.
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Figure: Left: joint samples from the transcription covariance, blue: f (t), cyan:
y1 (t) and red : y2 (t). Right: numerical solution for f (t) of the differential
equation from y1 (t) and y2 (t) (blue and cyan). True f (t) included for
comparison.
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Results — Transcription Rates

Estimation of Equation Parameters demBarenco1

DDB2 hPA26 TNFRSF20b p21 BIK
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Figure: Basal transcription rates. Our results (black) compared with
Barenco et al. [2006] (white).
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Results — Transcription Rates

Estimation of Equation Parameters demBarenco1
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Figure: Sensitivities. Our results (black) compared with Barenco et al.
[2006] (white).
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Results — Transcription Rates

Estimation of Equation Parameters demBarenco1
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Figure: Decays. Our results (black) compared with Barenco et al. [2006] (white).
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Results — Protein Concentration

Prediction with error bars of protein concentration:
p (f|y1, y2, y3, y4, y5)
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Figure: (a) RBF covariance function (b) MLP covariance function. Also
included are results from Barenco et al. [2006] as crosses.
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The Iceberg of Information
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Summary

PUMA: Propagation of Uncertainty in Microarray Analysis

I Level of Noise in the Array can be Assesed (gMOS methods).
I Probabilistic Models can:

F Improve selection of over-expressed genes (PPLR).
F Clean up gene expression profiles (NPPCA).

I Simple (log-linear) probabilistic models can be used with network
connectivity data to

F To infer genome wide transcription factor activities (chipdyno).
F To infer genome wide transcription factor protein concentrations

(chipvar).

Differential equation models

I Deal with latent species using Gaussian processes.
I Structural inference with Thermodynamic Intergration.

Neil Lawrence and Magnus Rattray () Towards Computational Systems Biology October 31, 2007 39 / 45



Acknowledgements

Inspiration:
I Martino Barenco, Mark Girolami, Mike Hubank, Dirk Husmeier,

Andrew Millar, Nick Monk, Magnus Rattray

Perspiration:
I Investigators

F Neil Lawrence and Magnus Rattray

I gMOS family of Methods and PPLR
F Xuejun Liu (ex PhD student) and Marta Milo (Wellcome Fellow)

I Uncertainty Propagation through PCA
F Marta Milo (Wellcome Fellow), Richard Pearson (PhD student) and

Guido Sanguinetti (ex post-doc)

I Inference of Transcription Factor Activities
F Pei Gao (current post-doc), Michalis Titsias (new post-doc), Guido

Sanguinetti (ex post-doc)

Funding
I BBSRC Grant No BBS/B/0076X (with Magnus)
I EPSRC Grant No EP/F005687/1 (with Magnus, Johannes Yaeger and

Nick Monk)
Neil Lawrence and Magnus Rattray () Towards Computational Systems Biology October 31, 2007 40 / 45



References
O. Alter and G. H. Golub. Integrative analysis of genome-scale data using pseudoinverse projection predicts novel correlation

between dna replication and rna transcription. Proceedings of the National Academy of Sciences USA, 101(47):
16577–16582, 2004.

M. Barenco, D. Tomescu, D. Brewer, R. Callard, J. Stark, and M. Hubank. Ranked prediction of p53 targets using hidden
variable dynamic modeling. Genome Biology, 7(3):R25, 2006.

A.-L. Boulesteix and K. Strimmer. Predicting transcription factor activities from combined analysis of microarray and ChIP data:
a partial least squares approach. Theor. Biol. Med. Model., 2(23):1471–16582, 2005.

S. E. Choe, M. Boutros, A. M. Michelson, G. M. Church, and M. S. Halfon. Preferred analysis methods for Affymetrix
GeneChips revealed by a wholly defined control dataset. Genome Biology, 6(R16), 2005.

F. Gao, B. C. Foat, and H. J. Bussemaker. Defining transcriptional networks through integrative modeling of mRNA expression
and transcription factor binding data. BMC Bioinformatics, 5(31):1471–2105, 2004.

T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-Joseph, G. K. Gerber, N. M. Hannett, C. T. Harbison, C. M. Thompson,
I. Simon, J. Zeitlinger, E. G. Jennings, H. L. Murray, D. B. Gordon, B. Ren, J. J. Wyrick, J.-B. Tagne, T. L. Volkert,
E. Fraenkel, D. K. Gifford, and R. A. Young. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science, 298
(5594):799–804, 2002.

J. C. Liao, R. Boscolo, Y.-L. Yang, L. M. Tran, C. Sabatti, and V. P. Roychowdhury. Network component analysis:
Reconstruction of regulatory signals in biological systems. Proceedings of the National Academy of Sciences USA, 100(26):
15522–15527, 2003.

K. K. Lin, D. Chudova, G. W. Hatfield, P. Smyth, , and B. Andersen. Identification of hair cycle-associated genes from
time-course gene expression profile data by using replicate variance. 101(45):15955–15960, 2004.

X. Liu, M. Milo, N. D. Lawrence, and M. Rattray. A tractable probabilistic model for Affymetrix probe-level analysis across
multiple chips. Bioinformatics, 21(18):3637–3644, 2005.

X. Liu, M. Milo, N. D. Lawrence, and M. Rattray. Probe-level measurement error improves accuracy in detecting differential
gene expression. Bioinformatics, 2006.

M. Milo, A. Fazeli, M. Niranjan, and N. D. Lawrence. A probabilistic model for the extraction of expression levels from
oligonucleotide arrays. Biochemical Transations, 31(6):1510–1512, 2003.

M. N. Rivolta, A. Halsall, C. Johnson, M. Tones, and M. C. Holley. Genetic profiling of functionally related groups of genes
during conditional differentiation of a mammalian cochlear hair cell line. Genome Research, 12(7):1091–1099, 2002.

G. Sanguinetti, M. Milo, M. Rattray, and N. D. Lawrence. Accounting for probe-level noise in principal component analysis of
microarray data. Bionformatics, 21(19):3748–3754, 2005.

G. Sanguinetti, M. Rattray, and N. D. Lawrence. A probabilistic dynamical model for quantitative inference of the regulatory
mechanism of transcription. Bioinformatics, 22(14):1753–1759, 2006.

P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein, and B. Futcher.
Comprehensive identification of cell cycle regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization.
Molecular Biology of the Cell, 9:3273–3297, 1998.

M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. Journal of the Royal Statistical Society, B, 6(3):
611–622, 1999.

Neil Lawrence and Magnus Rattray () Towards Computational Systems Biology October 31, 2007 41 / 45



Probabilistic PCA

Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Latent variable approach:

I Define Gaussian prior
over latent space, X.

I Integrate out latent
variables.

X W

Y

p (Y|X, W) =
nY

i=1

N
`
yi,:|Wxi,: + µ, σ2I

´

p (X) =
nY

i=1

N
`
xi,:|0, I

´

p (Y|W) =
nY

i=1

N
“
yi,:|µ, WWT + σ2I

”
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Probabilistic PCA II

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

X W

Y

p (Y|W) =
nY

i=1

N
“
yi,:|µ, WWT + σ2I

”
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Probabilistic PCA II

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

p (Y|W) =
nY

i=1

N
`
yi,:|µ, C

´
, C = WWT + σ2I

log p (Y|W) = −
n

2
log |C| −

1

2
tr

“
C−1ỸTỸ

”
+ const.

Where Ỹ is the matrix Y with µremoved. If Uq are first q principal eigenvectors of n−1ỸTỸ
and the corresponding eigenvalues are Λq ,

W = UqLV
T, L =

`
Λq − σ2I

´ 1
2

where V is an arbitrary rotation matrix.

µ = n−1
nX

i=1

yi,:
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Heteroschedastic Probabilistic PCA

Heteroschedastic PPCA

Define linear-Gaussian
relationship between
latent variables and Y.

Define a further Gaussian
relationship to corrupted
profiles Ŷ.

I Di is a diagonal matrix
of estimated variances.

Integrate out latent
variables.

Y

X W

Y

p (Y|X, W) =
nY

i=1

N
“
yi,:|Wxi,: + µ, σ

2I
”

p
`
ŷi,:|yi,:

´
= N

`
ŷi,:|yi,:, Di

´

p
“
Ŷ|W

”
=

nY
i=1

N
“
yi,:|µ, WWT + σ

2I + Di

”
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Heteroschedastic PPCA II

Heteroschedastic PPCA Max. Likelihood Soln [Sanguinetti et al., 2005]

Y

X W

Y

p (Y|W) =
n∏

i=1

N
(
yi ,:|µ,WWT + σ2I + Di

)
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Heteroschedastic PPCA II

Heteroschedastic PPCA Max. Likelihood Soln [Sanguinetti et al., 2005]

p (Y|W) =
n∏

i=1

N
(
yi ,:|µ,WWT + σ2I + Di

)

Can no longer solve via eigenvalue problem.

We use an EM algorithm.

I A major problem is the strong correlation between W and µ.
I We use some tricks to speed up convergence.

Software available in R and MATLAB.
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