

Towards Computational Systems Biology with a Statistical Analysis Pipeline for Microarray Data

Neil Lawrence and Magnus Rattray
School of Computer Science
University of Manchester

October 31, 2007

Outline

1 Microarray Processing

- Affymetrix GeneChip Arrays
- Detecting Differential Gene Expression with PPLR
- Tidying up Profiles with Probabilistic PCA

2 Inferring Transcription Factors' Activities — Scuba Diving

- ChIP-microarray and Transcription Factor Activities
- Transcription Factor Concentrations

3 From Simple to Complex Models — Mini-Sub

4 Structural Inference — The Bathyscape

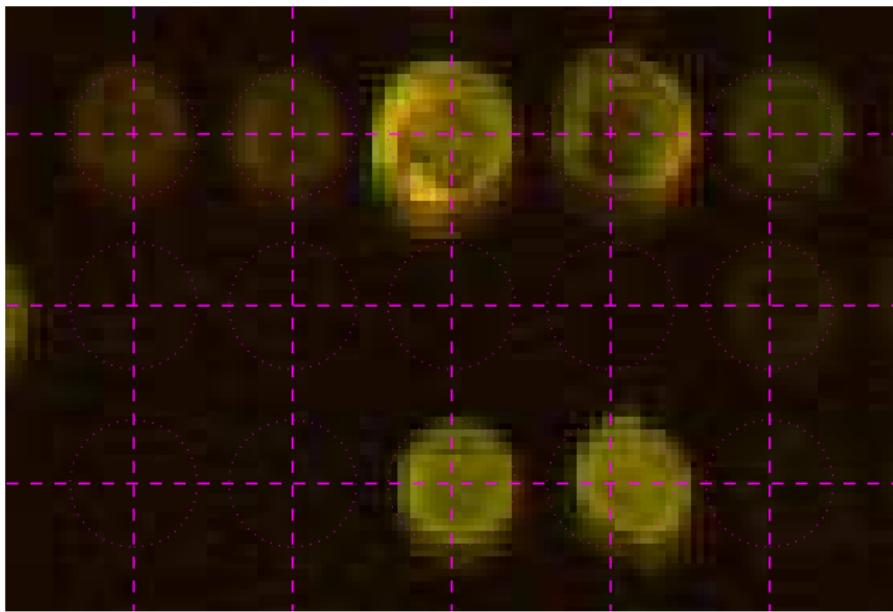
5 Conclusions

All source code and slides are available online

- This talk available from my home page (see talks link on side).
- PUMA Project main page (with links to software)
 - ▶ <http://bioinf.man.ac.uk/resources/puma/>.
- Additional project homepages
 - ▶ <http://www.cs.man.ac.uk/~neill/projects/pipeline/>.
 - ▶ <http://www.cs.man.ac.uk/~neill/projects/tigra/>

PUMA Project Outline

- Noisy Data → Useful inference
- My first contact with microarray: 2001 cDNA arrays with Niranjan, Pen Rashbass.



PUMA Project Outline

- Early work from Niranjan was about classification (e.g. tumour types) and feature selection (which genes are important in differentiating)
- Aim to build on this work with more complex modelling.
 - ▶ It was apparent that we needed to handle the noise in this data!
- Today our work focuses on determining the influence of *latent chemical species* on the data.
- We've developed techniques for both *genome wide* inference and *transcription factor specific* inference.
- All these techniques are embedded in a probabilistically rigorous handling of the data.

PUMA Project Outline

- Early work from Niranjan was about classification (e.g. tumour types) and feature selection (which genes are important in differentiating)
- Aim to build on this work with more complex modelling.
 - ▶ It was apparent that we needed to handle the noise in this data!
- Today our work focuses on determining the influence of *latent chemical species* on the data.
- We've developed techniques for both *genome wide* inference and *transcription factor specific* inference.
- All these techniques are embedded in a probabilistically rigorous handling of the data.

PUMA Project Outline

- Early work from Niranjan was about classification (e.g. tumour types) and feature selection (which genes are important in differentiating)
- Aim to build on this work with more complex modelling.
 - ▶ It was apparent that we needed to handle the noise in this data!
- Today our work focuses on determining the influence of *latent chemical species* on the data.
- We've developed techniques for both *genome wide* inference and *transcription factor specific* inference.
- All these techniques are embedded in a probabilistically rigorous handling of the data.

PUMA Project Outline

- Early work from Niranjan was about classification (e.g. tumour types) and feature selection (which genes are important in differentiating)
- Aim to build on this work with more complex modelling.
 - ▶ It was apparent that we needed to handle the noise in this data!
- Today our work focuses on determining the influence of *latent chemical species* on the data.
- We've developed techniques for both *genome wide* inference and *transcription factor specific* inference.
- All these techniques are embedded in a probabilistically rigorous handling of the data.

PUMA Project Outline

- Early work from Niranjan was about classification (e.g. tumour types) and feature selection (which genes are important in differentiating)
- Aim to build on this work with more complex modelling.
 - ▶ It was apparent that we needed to handle the noise in this data!
- Today our work focuses on determining the influence of *latent chemical species* on the data.
- We've developed techniques for both *genome wide* inference and *transcription factor specific* inference.
- All these techniques are embedded in a probabilistically rigorous handling of the data.

Future Perspectives

- Our work so far has focussed on *data driven* models.
- Examples include
 - ▶ Differential expression analysis
 - ▶ Hierarchical Clustering
 - ▶ Principal Component Analysis
- An alternative perspective is mechanistic models.
 - ▶ For example: differential equation models.
- There is always a balance between a *realistic* model and a *tractable* model.

Future Perspectives

- Our work so far has focussed on *data driven* models.
- Examples include
 - ▶ Differential expression analysis
 - ▶ Hierarchical Clustering
 - ▶ Principal Component Analysis
- An alternative perspective is mechanistic models.
 - ▶ For example: differential equation models.
- There is always a balance between a *realistic* model and a *tractable* model.

Future Perspectives

- Our work so far has focussed on *data driven* models.
- Examples include
 - ▶ Differential expression analysis
 - ▶ Hierarchical Clustering
 - ▶ Principal Component Analysis
- An alternative perspective is mechanistic models.
 - ▶ For example: differential equation models.
- There is always a balance between a *realistic* model and a *tractable* model.

Future Perspectives

- Our work so far has focussed on *data driven* models.
- Examples include
 - ▶ Differential expression analysis
 - ▶ Hierarchical Clustering
 - ▶ Principal Component Analysis
- An alternative perspective is mechanistic models.
 - ▶ For example: differential equation models.
- There is always a balance between a *realistic* model and a *tractable* model.

Future Perspectives

- Our work so far has focussed on *data driven* models.
- Examples include
 - ▶ Differential expression analysis
 - ▶ Hierarchical Clustering
 - ▶ Principal Component Analysis
- An alternative perspective is mechanistic models.
 - ▶ For example: differential equation models.
- There is always a balance between a *realistic* model and a *tractable* model.

Future Perspectives

- Our work so far has focussed on *data driven* models.
- Examples include
 - ▶ Differential expression analysis
 - ▶ Hierarchical Clustering
 - ▶ Principal Component Analysis
- An alternative perspective is mechanistic models.
 - ▶ For example: differential equation models.
- There is always a balance between a *realistic* model and a *tractable* model.

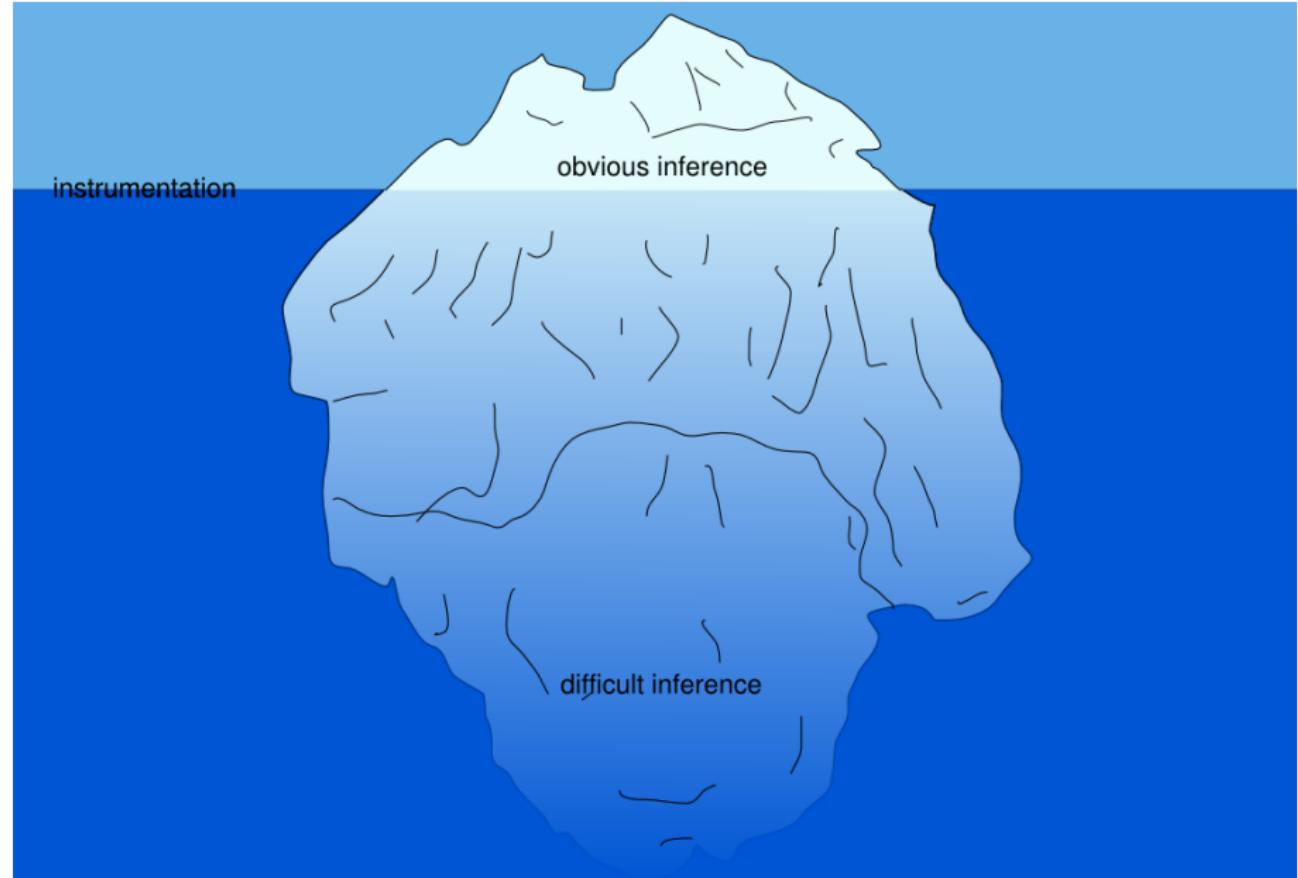
Future Perspectives

- Our work so far has focussed on *data driven* models.
- Examples include
 - ▶ Differential expression analysis
 - ▶ Hierarchical Clustering
 - ▶ Principal Component Analysis
- An alternative perspective is mechanistic models.
 - ▶ For example: differential equation models.
- There is always a balance between a *realistic* model and a *tractable* model.

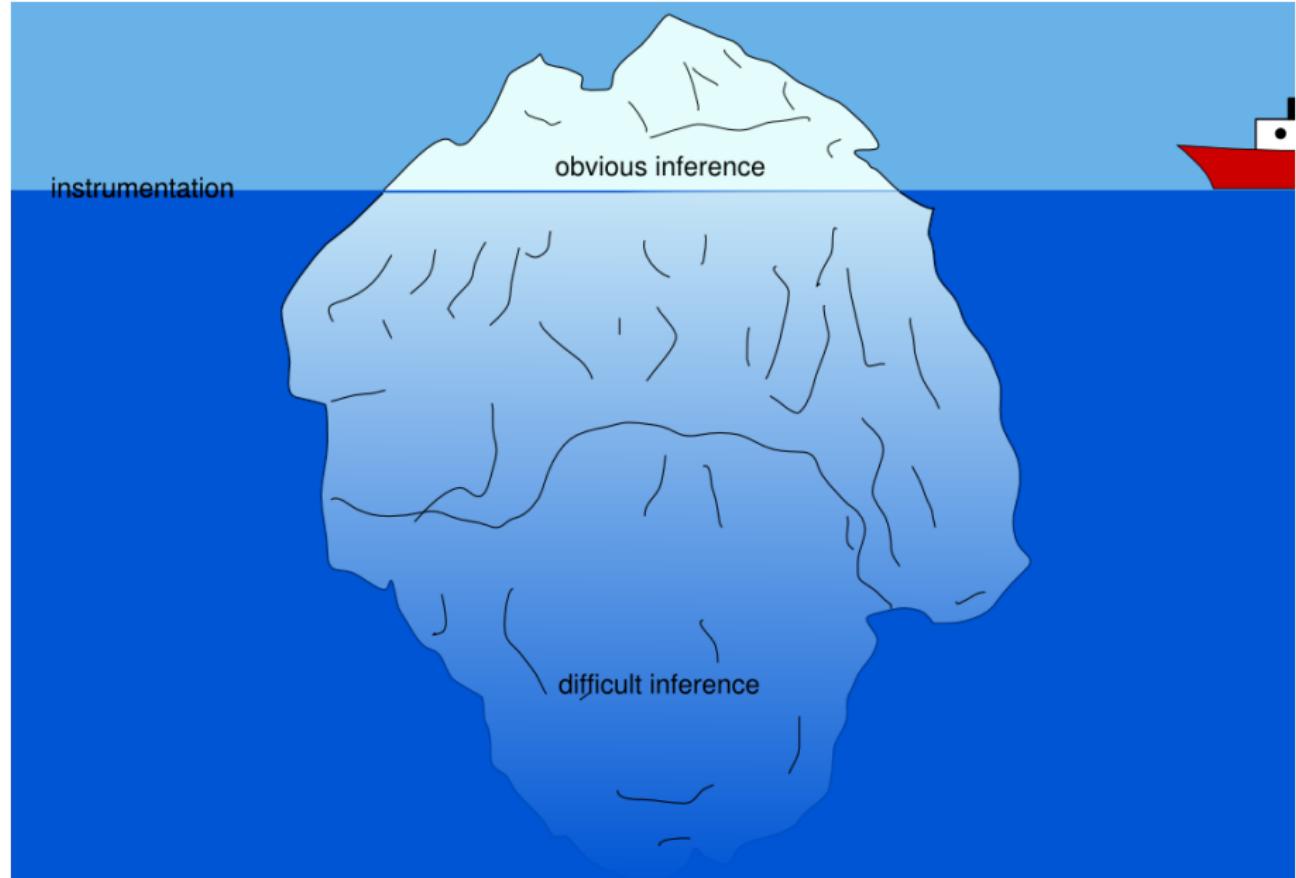
Future Perspectives

- Our work so far has focussed on *data driven* models.
- Examples include
 - ▶ Differential expression analysis
 - ▶ Hierarchical Clustering
 - ▶ Principal Component Analysis
- An alternative perspective is mechanistic models.
 - ▶ For example: differential equation models.
- There is always a balance between a *realistic* model and a *tractable* model.

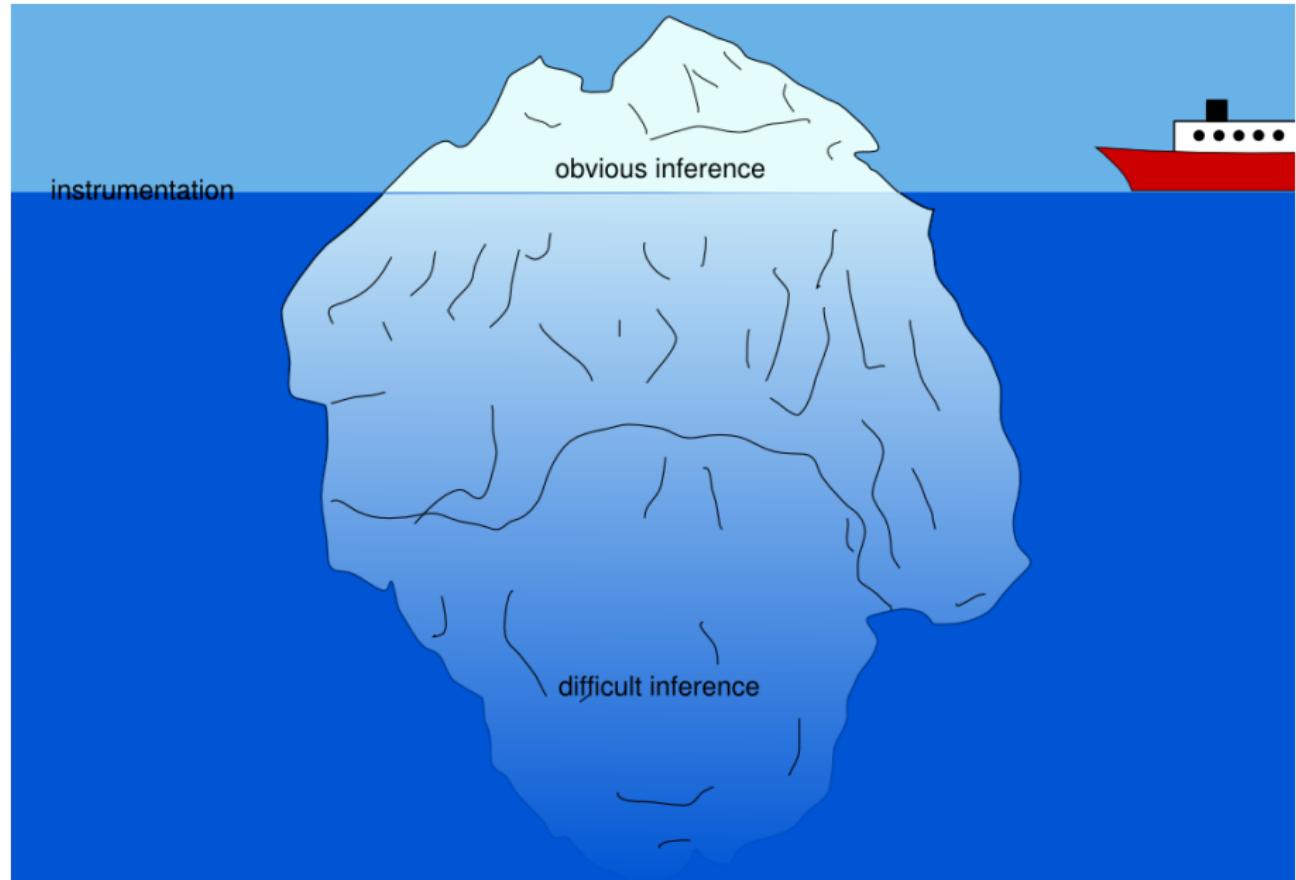
The Iceberg of Information



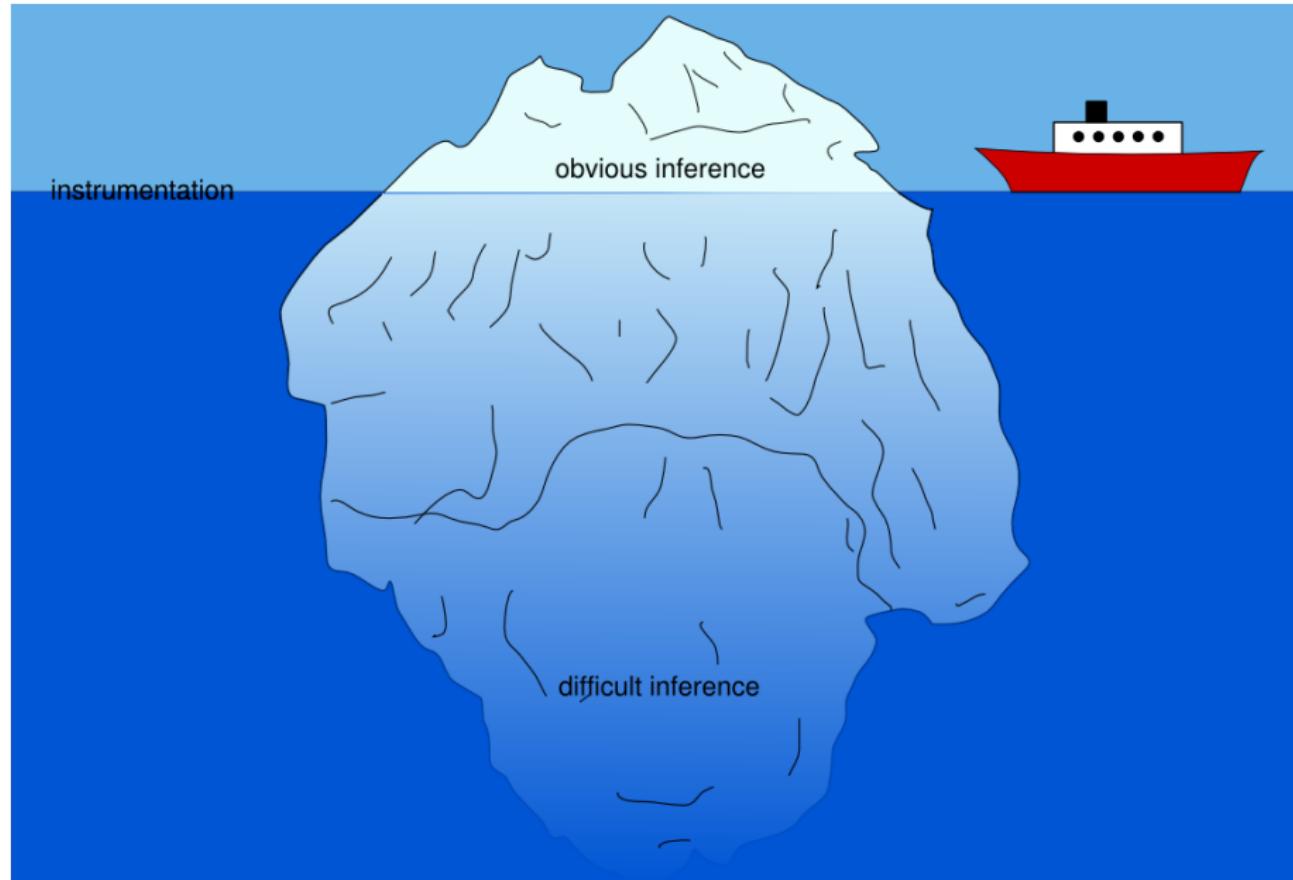
The Iceberg of Information



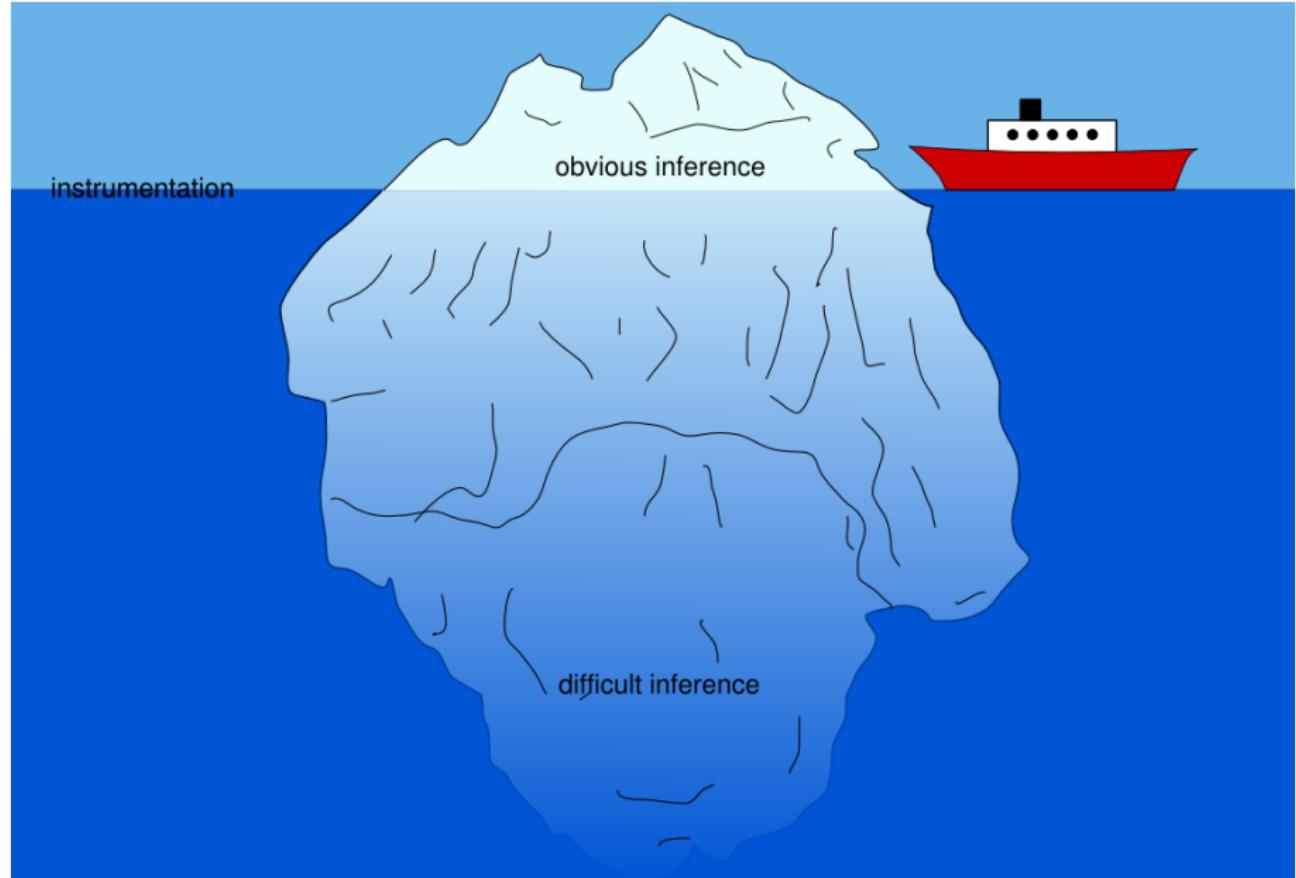
The Iceberg of Information



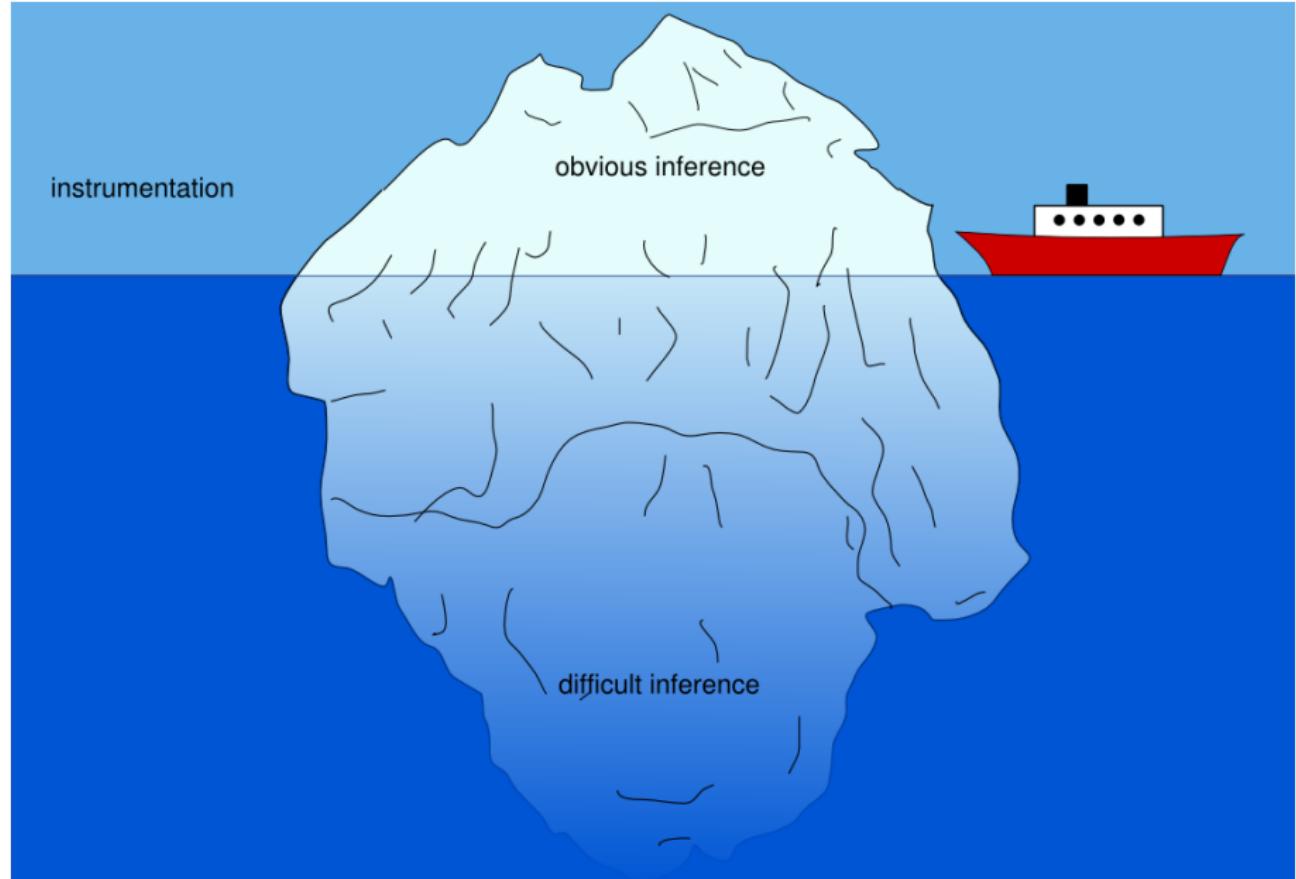
The Iceberg of Information



The Iceberg of Information



The Iceberg of Information



Affymetrix Arrays

- Working with Matthew Holley, our (Marta Milo, Niranjan and I) focus shifted to Affymetrix arrays.

Figure: Affymetrix arrays for human and mouse (image from Wikimedia Commons under GFDL).

- There are multiple probe pairs on an Affymetrix array; could we exploit this to estimate the noise?

Affymetrix Arrays

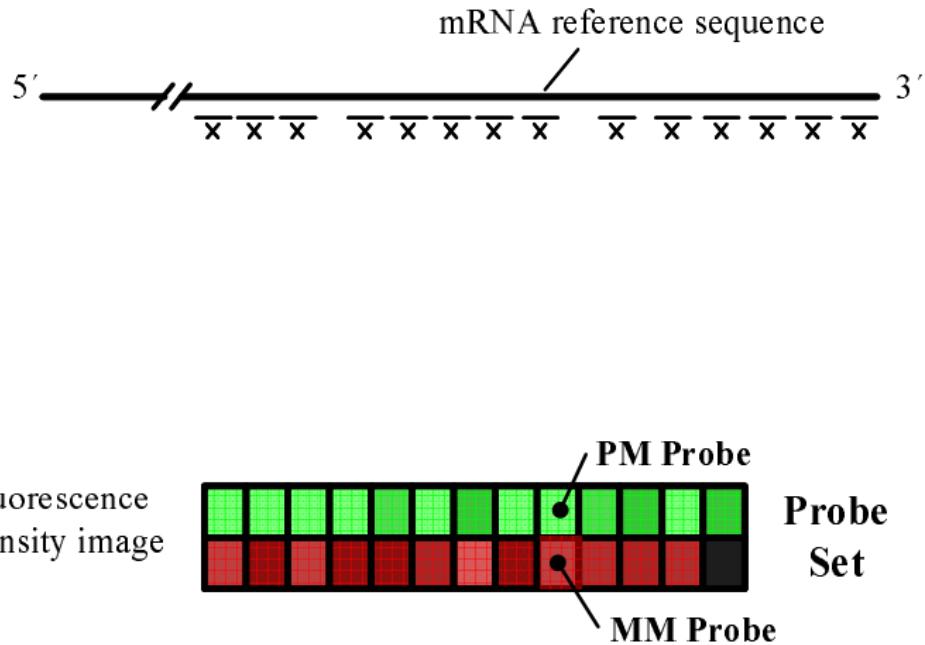


Figure: Affymetrix array schematic

Affymetrix Arrays

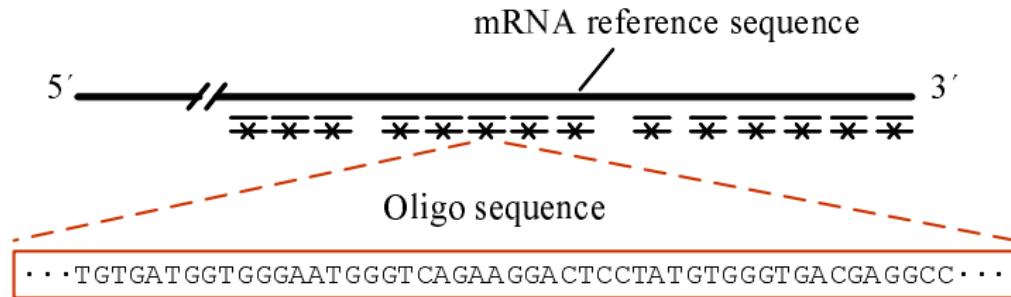
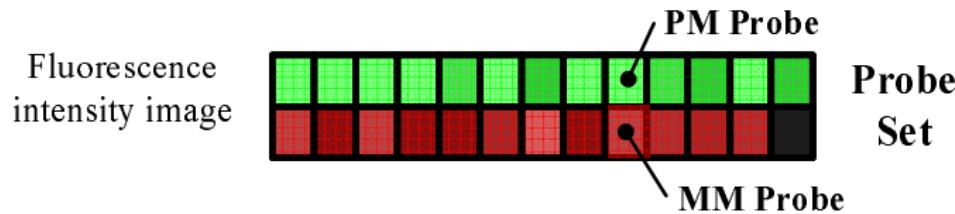


Figure: Affymetrix array schematic

Affymetrix Arrays

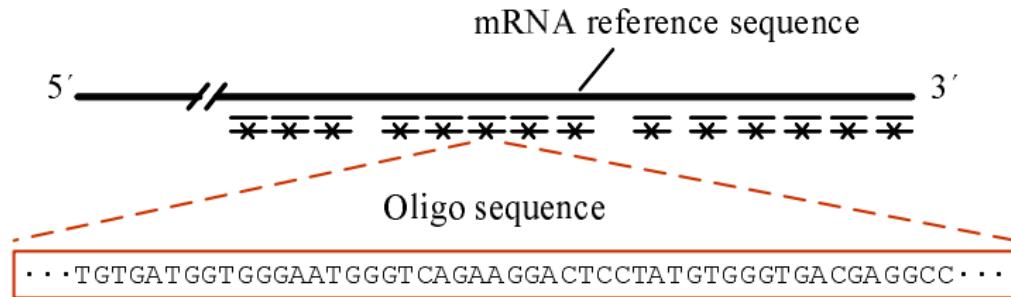
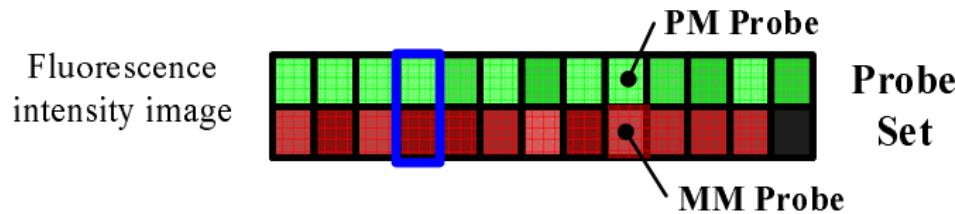


Figure: Affymetrix array schematic

Affymetrix Arrays

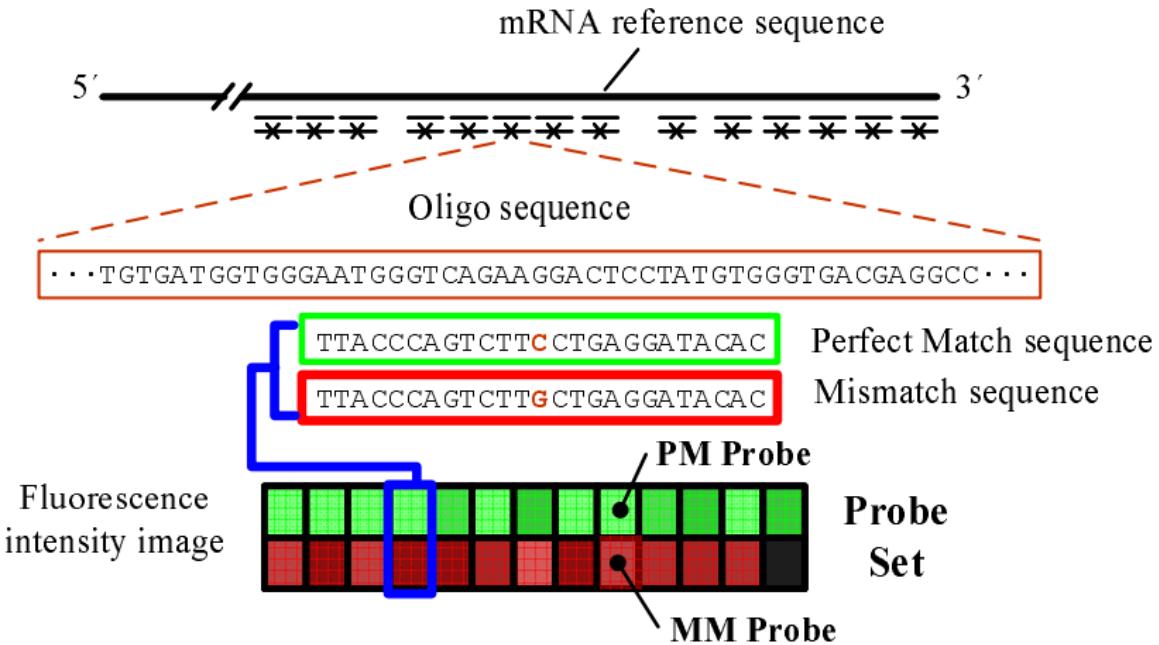


Figure: Affymetrix array schematic

gMOS Family of Methods

- gMOS — Gamma Model of Signal [Milo et al., 2003, Liu et al., 2005]
- Most methods return a single expression level estimate.
- The gMOS family of methods additionally provide *confidence intervals*.
- This confidence intervals can be propagated through higher level analysis.

gMOS Family of Methods II

- Gamma Model of Signal

$$s_j \sim \text{Ga}(s_j | \alpha, b)$$

$$m_j \sim \text{Ga}(m_j | a, b)$$

$$y_j = m_j + s_j$$

$$y_j \sim \text{Ga}(y_j | a + \alpha, b)$$

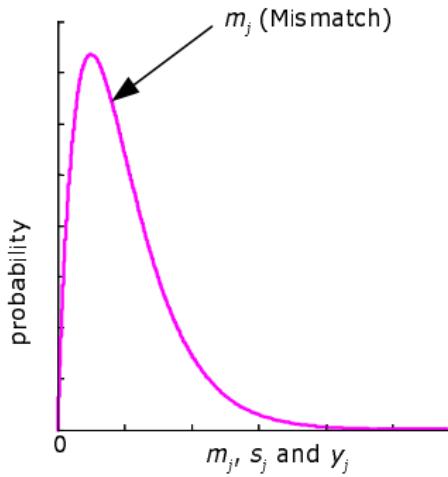


Figure: PDF of m_j , s_j and the implied distribution for y_j .

gMOS Family of Methods II

- Gamma Model of Signal

$$s_j \sim \text{Ga}(s_j | \alpha, b)$$

$$m_j \sim \text{Ga}(m_j | a, b)$$

$$y_j = m_j + s_j$$

$$y_j \sim \text{Ga}(y_j | a + \alpha, b)$$

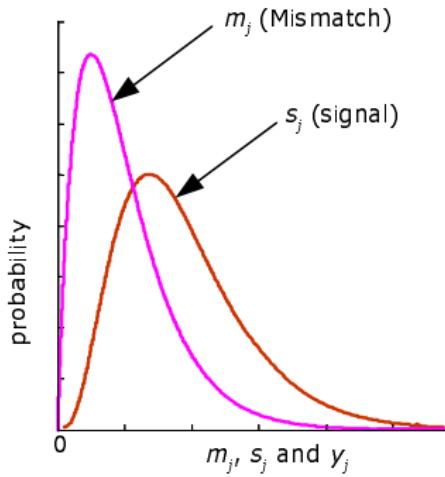


Figure: PDF of m_j , s_j and the implied distribution for y_j .

gMOS Family of Methods II

- Gamma Model of Signal

$$s_j \sim \text{Ga}(s_j | \alpha, b)$$

$$m_j \sim \text{Ga}(m_j | a, b)$$

$$y_j = m_j + s_j$$

$$y_j \sim \text{Ga}(y_j | a + \alpha, b)$$

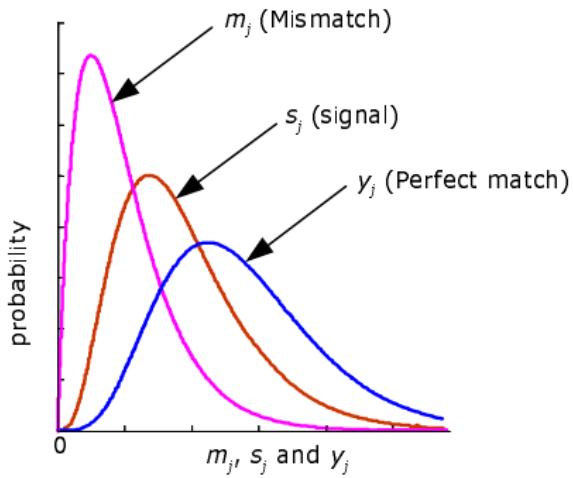


Figure: PDF of m_j , s_j and the implied distribution for y_j .

Modelling Probe Pair Affinity

- mgMOS
- y_j and m_j are correlated.
- gMOS makes an independence assumption.
- Correlations arise through shared binding affinity (scale).
- Assume each probe pair has a shared scale.
 - Assume a probability distribution for the shared scale and 'marginalise'.

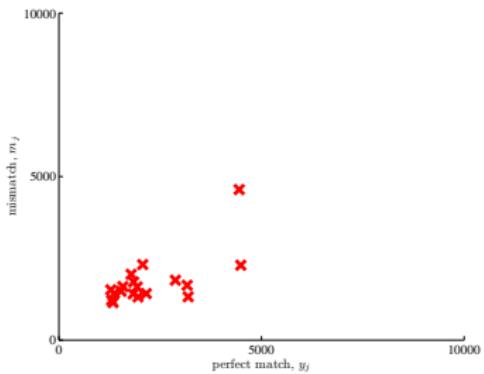


Figure: Correlation of PM (y_j) and MM (m_j).

Modelling Probe Pair Affinity

- mgMOS
- y_j and m_j are correlated.
- gMOS makes an independence assumption.
- Correlations arise through shared binding affinity (scale).
- Assume each probe pair has a shared scale.
 - Assume a probability distribution for the shared scale and 'marginalise'.

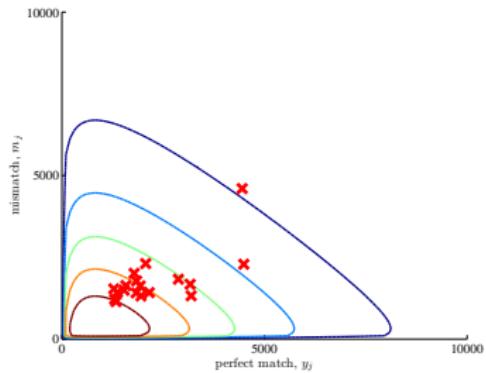


Figure: Correlation of PM (y_j) and MM (m_j).

Modelling Probe Pair Affinity

- mgMOS
- y_j and m_j are correlated.
- gMOS makes an independence assumption.
- Correlations arise through shared binding affinity (scale).
- Assume each probe pair has a shared scale.
 - Assume a probability distribution for the shared scale and 'marginalise'.

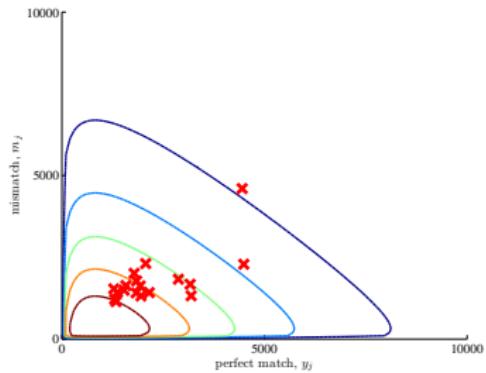


Figure: Correlation of PM (y_j) and MM (m_j).

Modelling Probe Pair Affinity

- mgMOS
- y_j and m_j are correlated.
- gMOS makes an independence assumption.
- Correlations arise through shared binding affinity (scale).
- Assume each probe pair has a shared scale.
 - ▶ Assume a probability distribution for the shared scale and 'marginalise'.

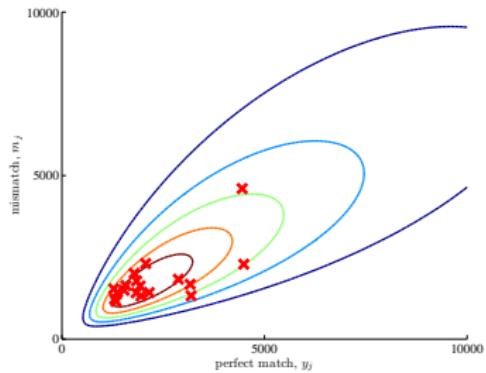


Figure: Correlation of PM (y_j) and MM (m_j).

Modelling Probe Pair Affinity

- mgMOS
- y_j and m_j are correlated.
- gMOS makes an independence assumption.
- Correlations arise through shared binding affinity (scale).
- Assume each probe pair has a shared scale.
 - ▶ Assume a probability distribution for the shared scale and 'marginalise'.

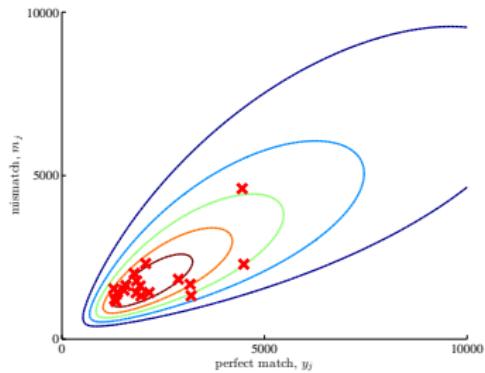


Figure: Correlation of PM (y_j) and MM (m_j).

Specific Binding to Mismatch

- Mismatch Effected by Signal
- Affymetrix Latin Square Spike-In data set.
- The perfect match responds to increasing mRNA.
- But so does the mismatch.

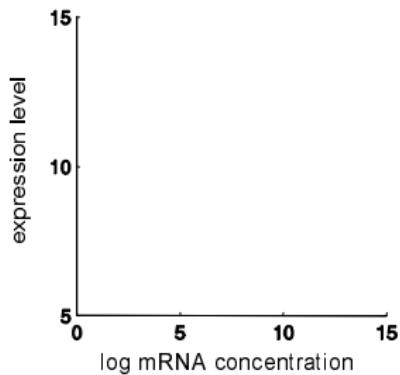


Figure: The perfect match goes up with the mRNA concentration as expected. But so does the mismatch.

Specific Binding to Mismatch

- Mismatch Effected by Signal
- Affymetrix Latin Square Spike-In data set.
- The perfect match responds to increasing mRNA.
- But so does the mismatch.

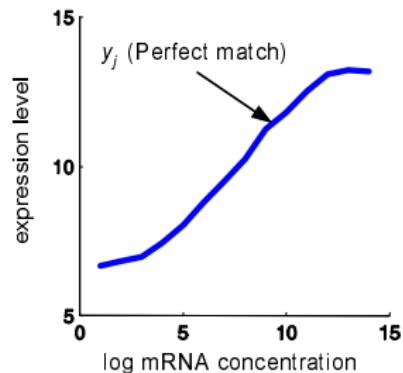


Figure: The perfect match goes up with the mRNA concentration as expected. But so does the mismatch.

Specific Binding to Mismatch

- Mismatch Effected by Signal
- Affymetrix Latin Square Spike-In data set.
- The perfect match responds to increasing mRNA.
- But so does the mismatch.

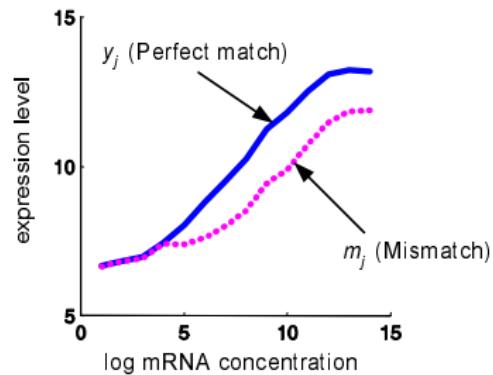


Figure: The perfect match goes up with the mRNA concentration as expected. But so does the mismatch.

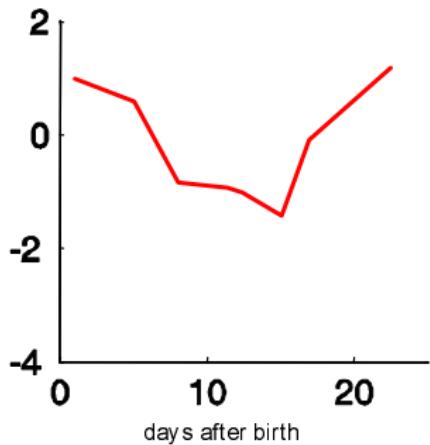
Specific Binding and Multiple Arrays

- multi-mgMOS
- Specific Binding to MM probe:
- An additional parameter is used to account for binding to MM probe.
- Multiple arrays:
 - ▶ Some of the parameters in the model are specific to the chip, not the sample.
 - ▶ Share these parameters across the arrays.

Mouse Data Set

- <http://www.ncbi.nlm.nih.gov/projects/geo>
- Mouse back skin mRNA expression profile for Dab2 [Lin et al., 2004].

RMSE	Root Mean Square Error	
	qr-PCR	x-probe set
MAS 5.0	0.656	0.360
GCRMA	0.694	0.370
multi-mgMOS	0.601	0.233

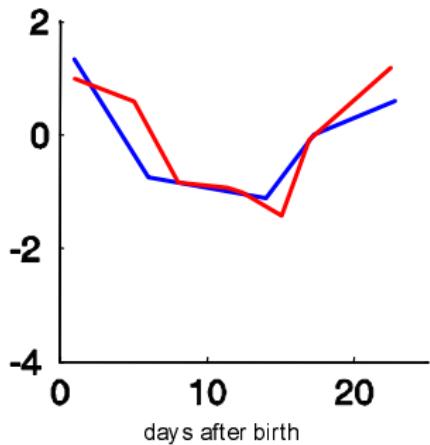


Prediction of Dab2 Expression level from qr-PCR, MAS 5.0, GCRMA and multi-mgMOS.

Mouse Data Set

- <http://www.ncbi.nlm.nih.gov/projects/geo>
- Mouse back skin mRNA expression profile for Dab2 [Lin et al., 2004].

RMSE	Root Mean Square Error	
	qr-PCR	x-probe set
MAS 5.0	0.656	0.360
GCRMA	0.694	0.370
multi-mgMOS	0.601	0.233

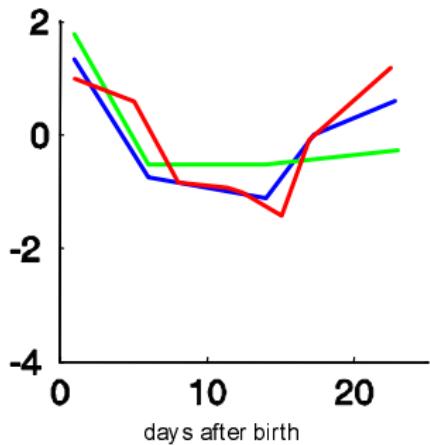


Prediction of Dab2 Expression level from qr-PCR, MAS 5.0, GCRMA and multi-mgMOS.

Mouse Data Set

- <http://www.ncbi.nlm.nih.gov/projects/geo>
- Mouse back skin mRNA expression profile for Dab2 [Lin et al., 2004].

RMSE	Root Mean Square Error	
	qr-PCR	x-probe set
MAS 5.0	0.656	0.360
GCRMA	0.694	0.370
multi-mgMOS	0.601	0.233

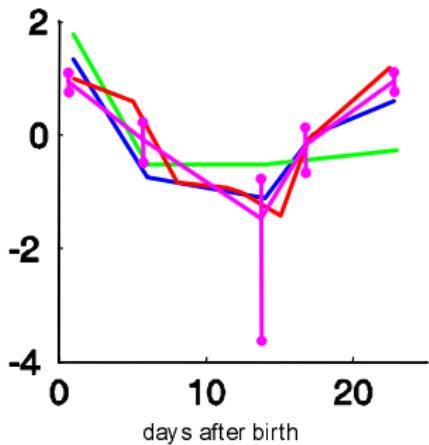


Prediction of Dab2 Expression level from qr-PCR, MAS 5.0, GCRMA and multi-mgMOS.

Mouse Data Set

- <http://www.ncbi.nlm.nih.gov/projects/geo>
- Mouse back skin mRNA expression profile for Dab2 [Lin et al., 2004].

RMSE	Root Mean Square Error	
	qr-PCR	x-probe set
MAS 5.0	0.656	0.360
GCRMA	0.694	0.370
multi-mgMOS	0.601	0.233



Prediction of Dab2 Expression level from qr-PCR, MAS 5.0, GCRMA and multi-mgMOS.

Differential Gene Expression

- Probability of Positive Log Ratio[Liu et al., 2006]
 - ▶ Differential gene expression is normally assessed with log ratios of gene expression.
 - ▶ This measure is very sensitive to noise at low expression levels.
 - ▶ Use variance of expression to obtain Probability of Positive Log Ratio (PPLR).

$$r_{ij} = \log \frac{s_i}{s_j}$$

Differential Gene Expression

- Probability of Positive Log Ratio[Liu et al., 2006]
 - ▶ Differential gene expression is normally assessed with log ratios of gene expression.
 - ▶ This measure is very sensitive to noise at low expression levels.
 - ▶ Use variance of expression to obtain Probability of Positive Log Ratio (PPLR).

$$r_{ij} = \log \frac{s_i}{s_j}$$

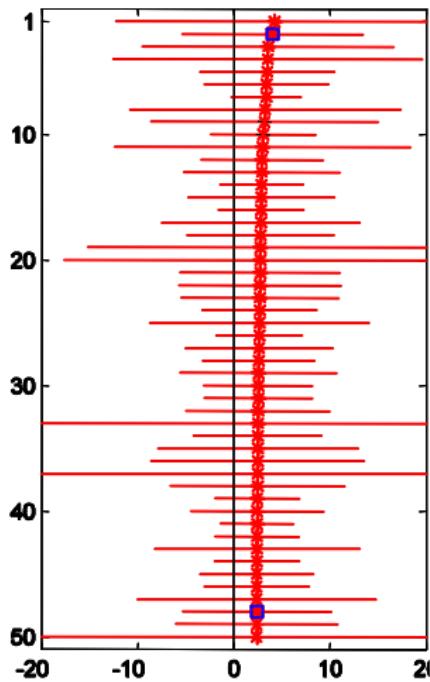
Differential Gene Expression

- Probability of Positive Log Ratio[Liu et al., 2006]
 - ▶ Differential gene expression is normally assessed with log ratios of gene expression.
 - ▶ This measure is very sensitive to noise at low expression levels.
 - ▶ Use variance of expression to obtain Probability of Positive Log Ratio (PPLR).

$$r_{ij} = \log \frac{s_i}{s_j}$$

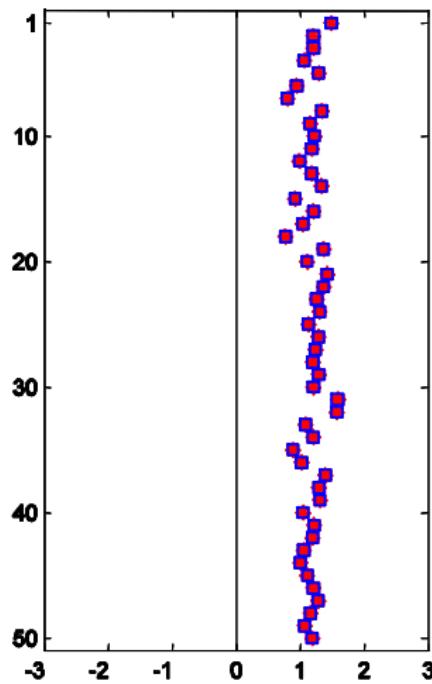
PPLR Results

- Golden spike-in dataset [Choe et al., 2005]
- Ranking (y -axis) against log ratio (x -axis) for.
 - ▶ **Ranking by Expected Log Ratio.**
 - ▶ **Ranking by PPLR.**
- Red stars indicate expected log ratio.
- Red lines indicate error bars.
- Blue squares indicates genes that were spiked-in.



PPLR Results

- Golden spike-in dataset [Choe et al., 2005]
- Ranking (y -axis) against log ratio (x -axis) for.
 - ▶ Ranking by Expected Log Ratio.
 - ▶ Ranking by PPLR.
- Red stars indicate expected log ratio.
- Red lines indicate error bars.
- Blue squares indicate genes that were spiked-in.



Cleaning up Profiles

- Converting Noisy Profiles to Clean
 - ▶ If we can 'clean up' the profiles we can use in other methods.
 - ▶ Construct a probabilistic model for the data and corruption process.
 - ▶ Work with posterior distribution over cleaned up profile.
 - ▶ We designed a *heteroschedastic probabilistic PCA* for doing this [Sanguinetti et al., 2005].

Heteroschedastic PPCA Results

- Mouse Cochlear Dataset

- ▶ Data from a conditionally immortal cell line extracted from mouse cochlear epithelial cells.
- ▶ Twelve samples from 14 days of differentiation after extraction at E13.5 [Rivolta et al., 2002].
- ▶ Experimental setup:
 - ★ Perform HPPCA/PCA on the data.
 - ★ Extract 50 genes most associated with 2nd principal component
 - ★ Cluster original profiles and reconstructed profiles.

Heteroschedastic PPCA Results

- Mouse Cochlear Dataset

- ▶ Data from a conditionally immortal cell line extracted from mouse cochlear epithelial cells.
- ▶ Twelve samples from 14 days of differentiation after extraction at E13.5 [Rivolta et al., 2002].
- ▶ Experimental setup:
 - ★ Perform HPPCA/PCA on the data.
 - ★ Extract 50 genes most associated with 2nd principal component
 - ★ Cluster original profiles and reconstructed profiles.

Heteroschedastic PPCA Results

- Mouse Cochlear Dataset

- ▶ Data from a conditionally immortal cell line extracted from mouse cochlear epithelial cells.
- ▶ Twelve samples from 14 days of differentiation after extraction at E13.5 [Rivolta et al., 2002].
- ▶ Experimental setup:
 - ★ Perform HPPCA/PCA on the data.
 - ★ Extract 50 genes most associated with 2nd principal component
 - ★ Cluster original profiles and reconstructed profiles.

Heteroschedastic PPCA Results

- Mouse Cochlear Dataset
 - ▶ Data from a conditionally immortal cell line extracted from mouse cochlear epithelial cells.
 - ▶ Twelve samples from 14 days of differentiation after extraction at E13.5 [Rivolta et al., 2002].
 - ▶ Experimental setup:
 - ★ Perform HPPCA/PCA on the data.
 - ★ Extract 50 genes most associated with 2nd principal component
 - ★ Cluster original profiles and reconstructed profiles.

Heteroschedastic PPCA Results

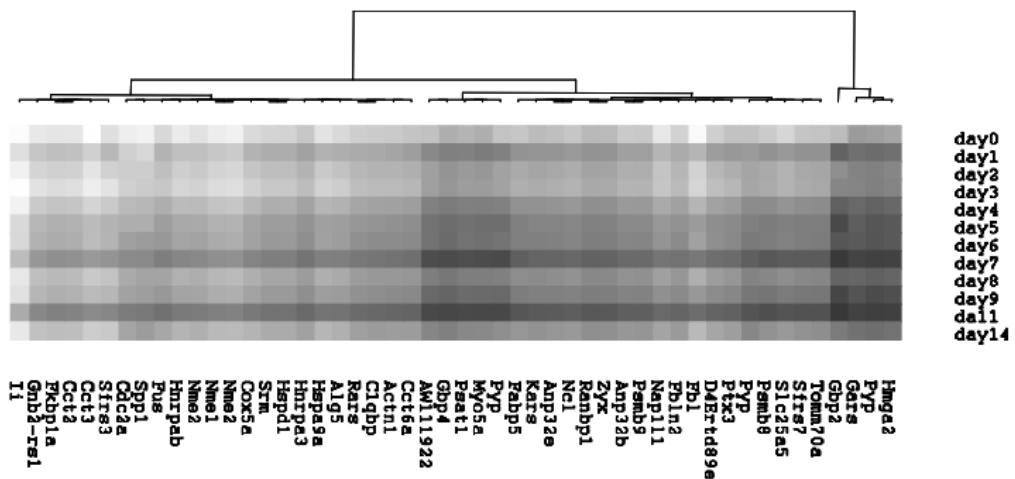


Figure: Hierarchical Clustering on Corrected Profiles.

Heteroschedastic PPCA Results

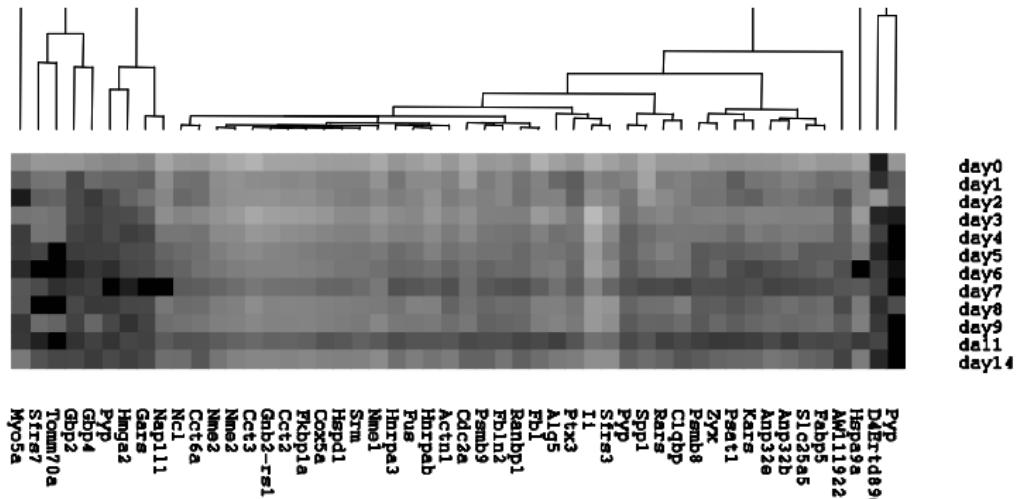


Figure: Hierarchical Clustering on Uncorrected Profiles.

Heteroschedastic PPCA Results

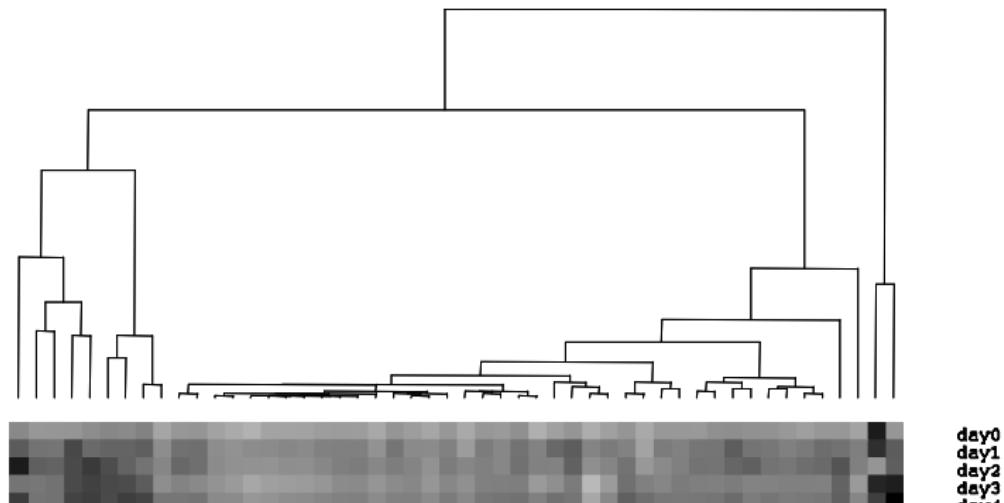


Figure: Hierarchical Clustering on Uncorrected Profiles.

Heteroschedastic PPCA Results

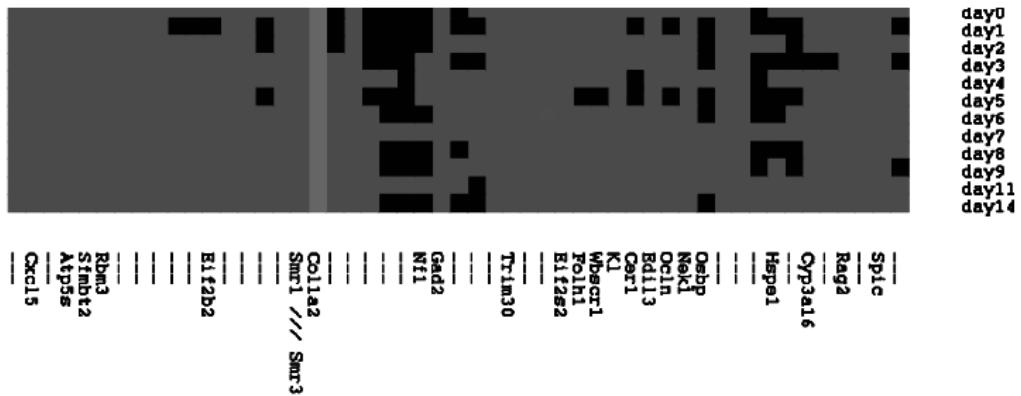


Figure: Hierarchical Clustering on genes selected by normal PCA.

Heteroschedastic PPCA Results

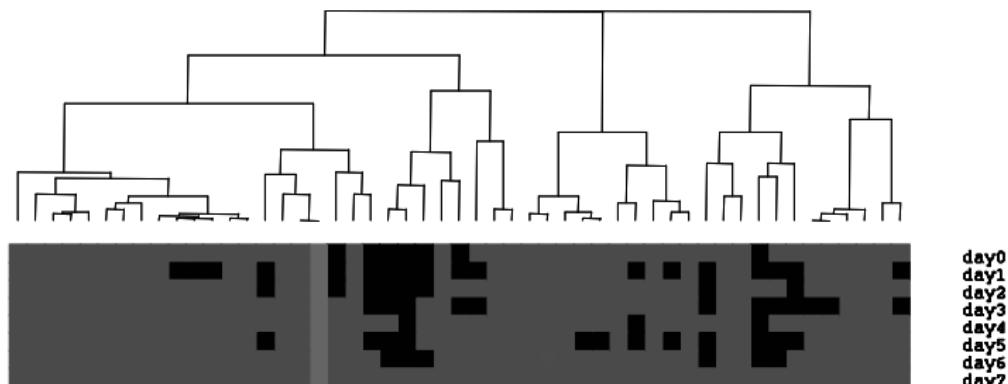
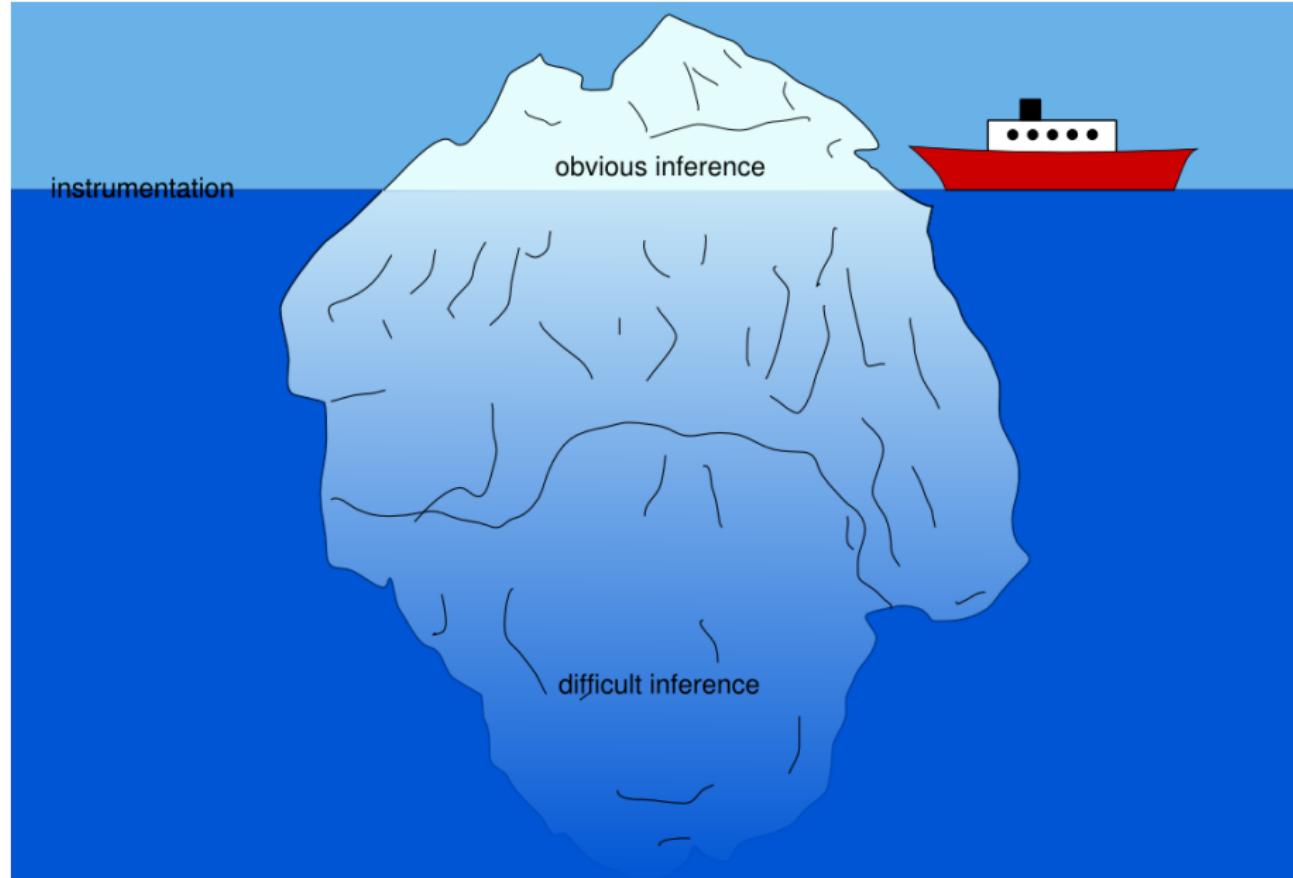
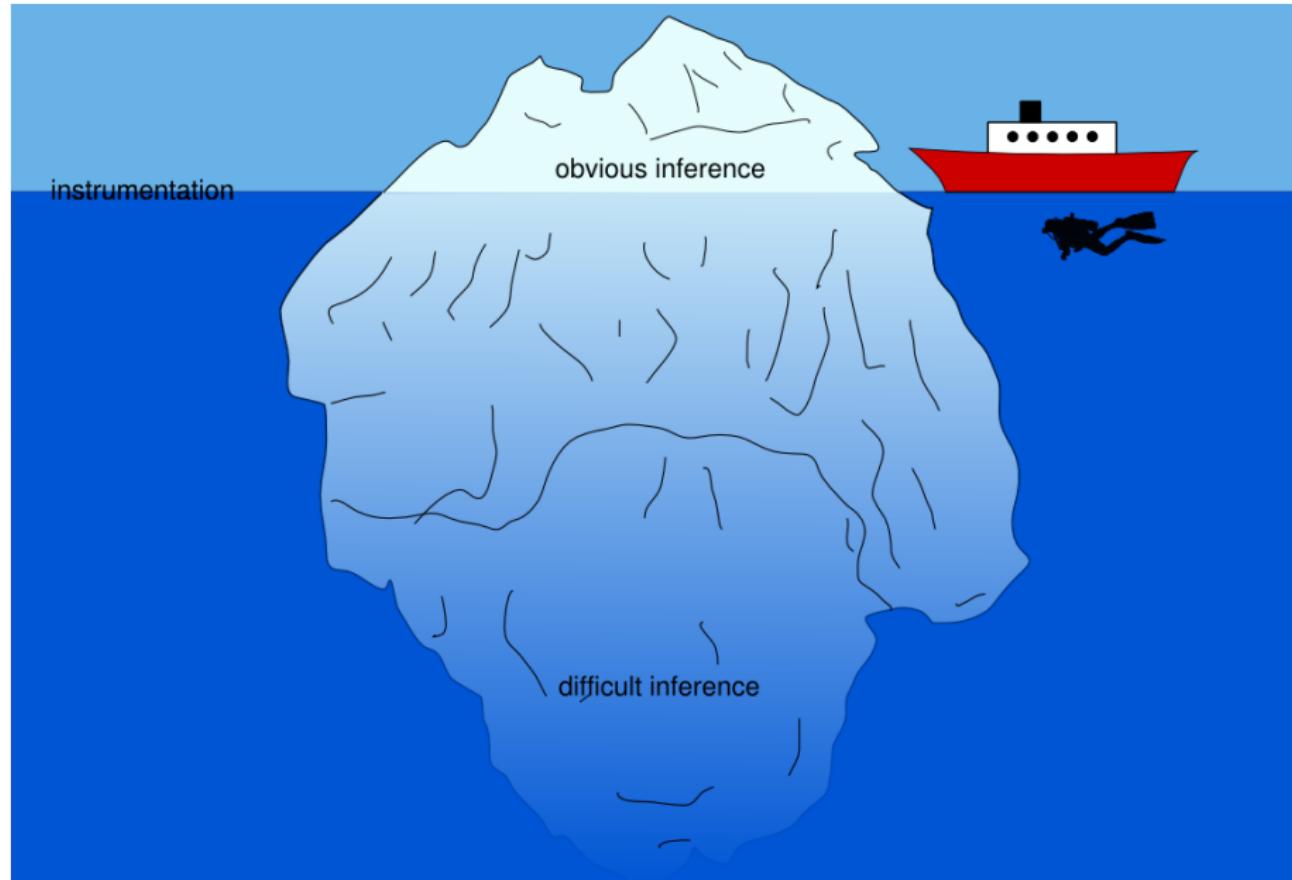


Figure: Hierarchical Clustering on genes selected by normal PCA.

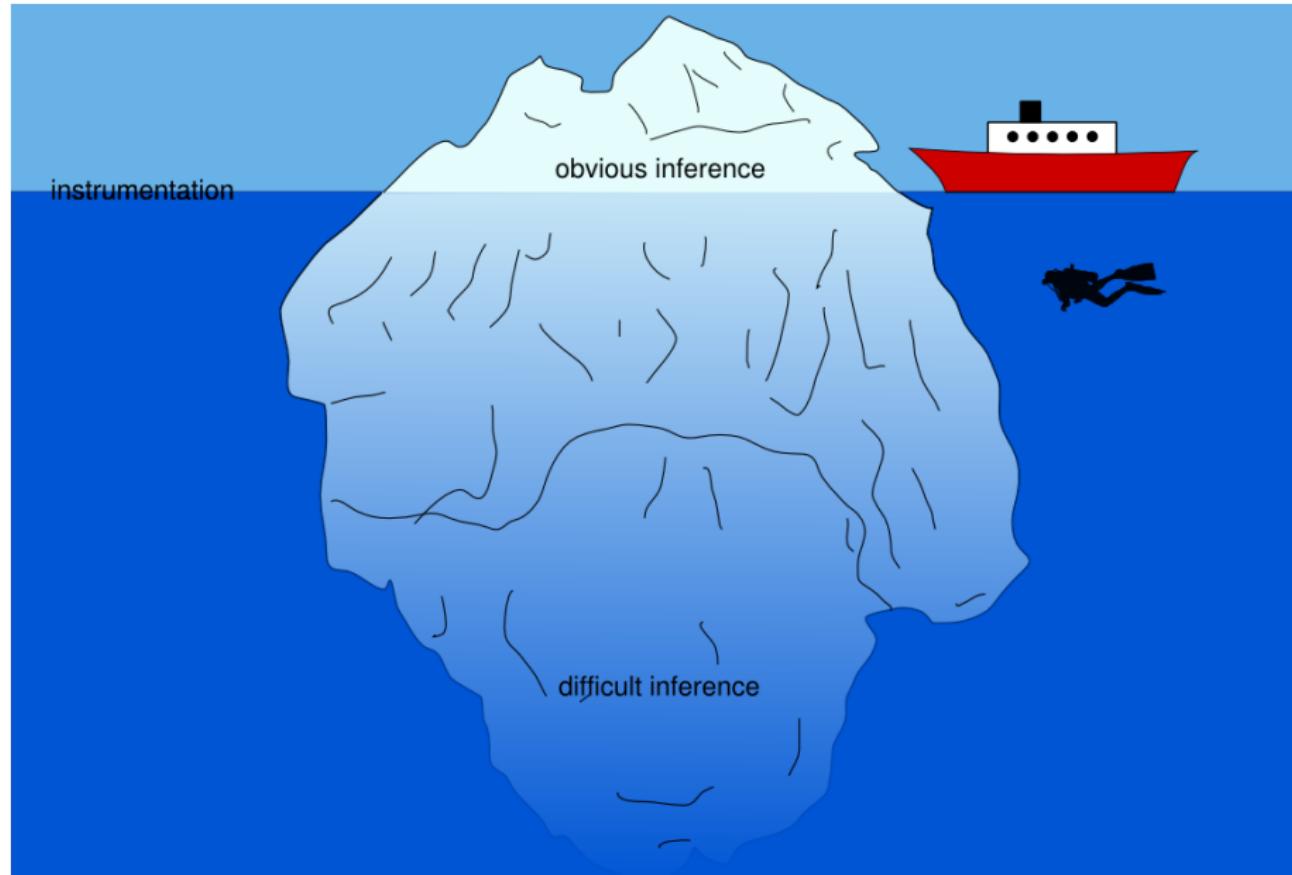
The Iceberg of Information



The Iceberg of Information



The Iceberg of Information



Transcription Factor Activities

- Transcription factors control the expression of genes.
- Knowledge of their 'activity' is key to understanding the mechanism behind biological processes.
- Transcription factors are proteins — activity is a combination of their concentration and effect.
- The mRNA concentration of a given transcription factor may be known but:
 - ▶ Transcription factors are often lowly expressed — mRNA concentrations difficult to measure.
 - ▶ Transcription factors are often post-transcriptionally regulated.
- We can see these TFs as *latent chemical species*.
 - ▶ Latent chemical species are a common issue in biological problems.

ChIP Microarrays

- Chromatine Immunoprecipitation (ChIP) Microarrays
 - ▶ ChIP Microarrays tell us which TFs bind to which genes under certain conditions.
 - ▶ In effect this gives a structure for the regulatory network.
 - ▶ We use *binary* output from ChIP arrays.
 - ▶ Combine this information with gene expression data to obtain transcription factor activities (TFA).
 - ▶ Approach also works for other sources of connectivity information (motifs).

Transcription Factor Activities

- Evaluating Activities of Transcription Factors
 - ▶ Several approaches based on regression [Liao et al., 2003, Gao et al., 2004, Boulesteix and Strimmer, 2005, Alter and Golub, 2004]
 - ▶ Assume a gene's expression is given by a linear relationship

$$\mathbf{y}_i = \mathbf{B}\mathbf{x}_i + \epsilon_i.$$

\mathbf{y}_i is the expression profile of the i th gene with (contains T experiments),

\mathbf{x}_i is binary: indicates which transcription factors bind to the i th gene (there are q transcription factors total)

$\mathbf{B} \in \mathbb{R}^{T \times q}$ is the matrix of TFAs.

ϵ_i is a noise term.

- ▶ Intuition: \mathbf{x}_i 'selects' which columns of \mathbf{B} are switched on to recreate \mathbf{y}_i .
- ▶ Problem: the matrix \mathbf{B} is *not* gene specific. It gives average TFA across genes.

Gene Specific TFAs

- Associate TFAs to Genes [Sanguinetti et al., 2006]

- Introduce gene specific TFAs,

$$\mathbf{y}_i = \mathbf{B}_i \mathbf{x}_i + \boldsymbol{\epsilon}_i.$$

- Parameter Explosion — use Bayesian techniques to deal with the number of parameters in the model.
 - Time Course — encourage transcription factor activity to vary smoothly over time.
 - Temporal continuity parameter, γ , is between 0 and 1
 - When $\gamma = 0$ the experiments are unrelated to each other (in terms of time).
 - For $\gamma = 1$ the experiments are biological replicates.

Gene Specific TFAs

- Associate TFAs to Genes [Sanguinetti et al., 2006]

- Introduce gene specific TFAs,

$$\mathbf{y}_i = \mathbf{B}_i \mathbf{x}_i + \boldsymbol{\epsilon}_i.$$

- Parameter Explosion — use Bayesian techniques to deal with the number of parameters in the model.
 - Time Course — encourage transcription factor activity to vary smoothly over time.
 - Temporal continuity parameter, γ , is between 0 and 1
 - When $\gamma = 0$ the experiments are unrelated to each other (in terms of time).
 - For $\gamma = 1$ the experiments are biological replicates.

Gene Specific TFAs

- Associate TFAs to Genes [Sanguinetti et al., 2006]

- Introduce gene specific TFAs,

$$\mathbf{y}_i = \mathbf{B}_i \mathbf{x}_i + \boldsymbol{\epsilon}_i.$$

- Parameter Explosion — use Bayesian techniques to deal with the number of parameters in the model.
 - Time Course — encourage transcription factor activity to vary smoothly over time.
 - Temporal continuity parameter, γ , is between 0 and 1
 - When $\gamma = 0$ the experiments are unrelated to each other (in terms of time).
 - For $\gamma = 1$ the experiments are biological replicates.

Gene Specific TFAs

- Associate TFAs to Genes [Sanguinetti et al., 2006]

- Introduce gene specific TFAs,

$$\mathbf{y}_i = \mathbf{B}_i \mathbf{x}_i + \boldsymbol{\epsilon}_i.$$

- Parameter Explosion — use Bayesian techniques to deal with the number of parameters in the model.
 - Time Course — encourage transcription factor activity to vary smoothly over time.
 - Temporal continuity parameter, γ , is between 0 and 1
 - When $\gamma = 0$ the experiments are unrelated to each other (in terms of time).
 - For $\gamma = 1$ the experiments are biological replicates.

Gene Specific TFAs

- Associate TFAs to Genes [Sanguinetti et al., 2006]

- Introduce gene specific TFAs,

$$\mathbf{y}_i = \mathbf{B}_i \mathbf{x}_i + \boldsymbol{\epsilon}_i.$$

- Parameter Explosion — use Bayesian techniques to deal with the number of parameters in the model.
 - Time Course — encourage transcription factor activity to vary smoothly over time.
 - Temporal continuity parameter, γ , is between 0 and 1
 - When $\gamma = 0$ the experiments are unrelated to each other (in terms of time).
 - For $\gamma = 1$ the experiments are biological replicates.

Results on TFAs

- Yeast Cell Cycle Data with ChIP-on-chip data
- Yeast cell cycle *cdc15* data set [Spellman et al., 1998].
- ChIP on chip from 113 TFs [Lee et al., 2002].
- 24 experimental points in time series data.
- Compare with non-specific TFAs obtained by Regression.

Results on TFAs II

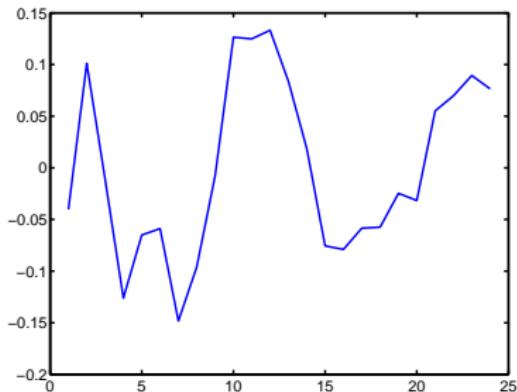
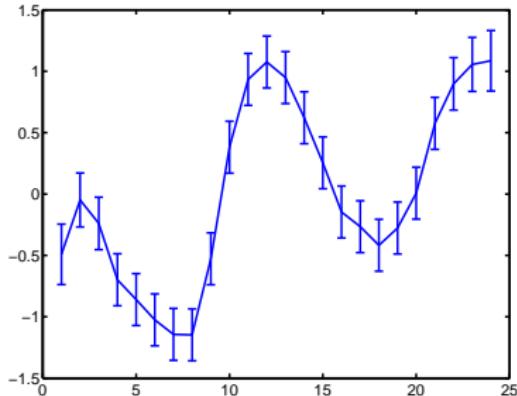


Figure: TFAs of ACE2 from the Spellman data. *Left:* TFA obtained by regression
Right: gene specific TFA for average of \mathbf{B}_i across genes.

Results on TFAs II

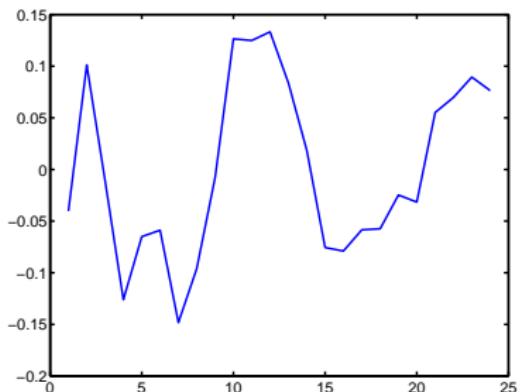
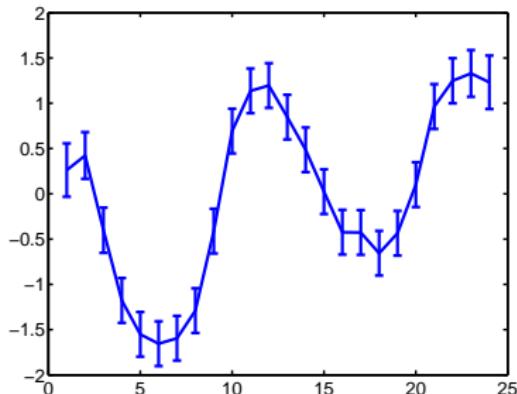


Figure: TFAs of ACE2 from the Spellman data. *Left:* TFA obtained by regression
Right: gene specific TFA SCW11.

Results on TFAs II

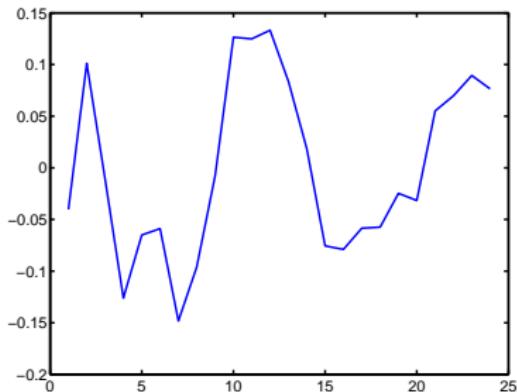
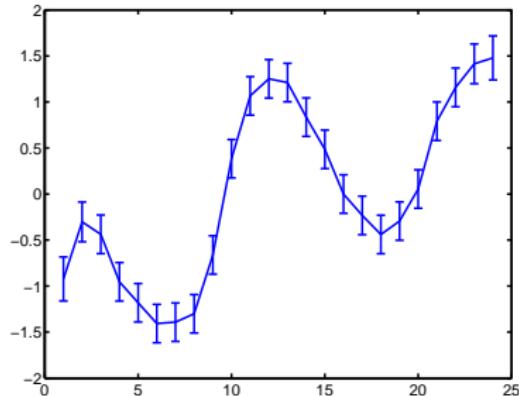


Figure: TFAs of ACE2 from the Spellman data. *Left:* TFA obtained by regression
Right: gene specific TFA CTS1.

Results on TFAs II

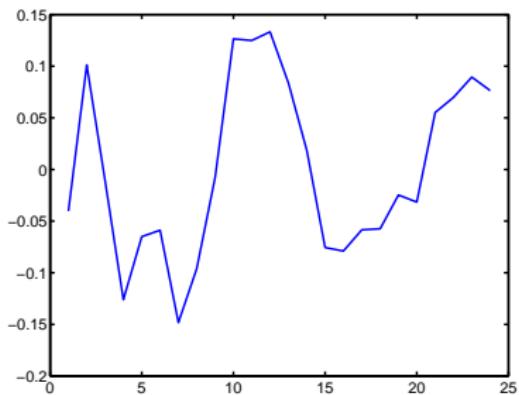
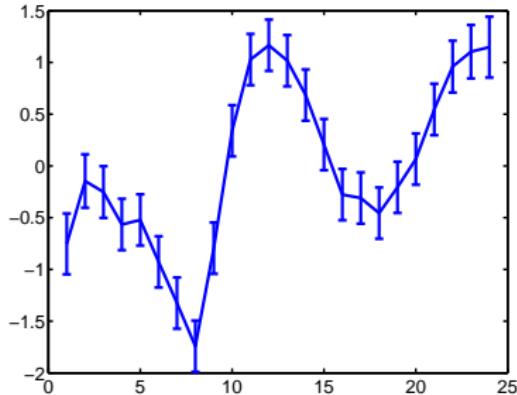


Figure: TFAs of ACE2 from the Spellman data. *Left:* TFA obtained by regression
Right: gene specific TFA YER124C.

Results on TFAs II

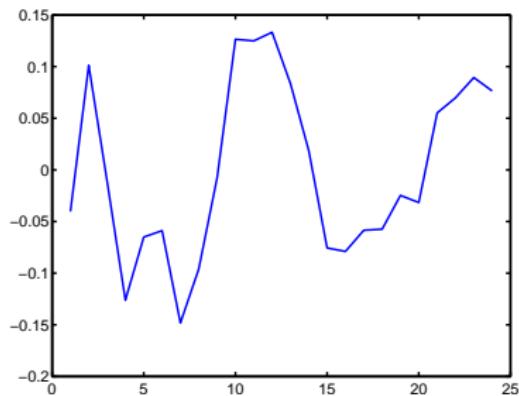
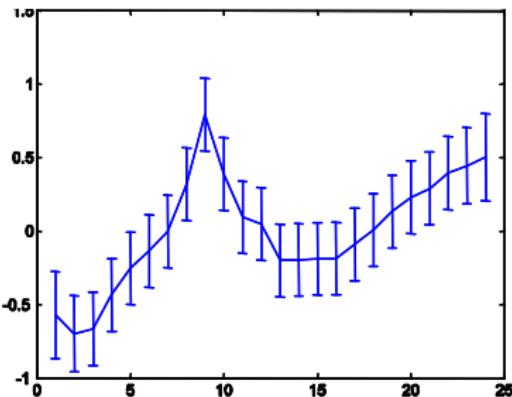


Figure: TFAs of ACE2 from the Spellman data. *Left:* TFA obtained by regression
Right: gene specific TFA YKL51C.

Separation of Concentration and Effect

- Splitting the Activity into Component Parts
 - ▶ TFA is a combination of:
 - ★ TF 'concentration'.
 - ★ TF 'effect'.
 - ▶ Follow up model splits the TFA into its component parts.
 - ★ 'Concentration' is specific to the transcription factor (it's a time course).
 - ★ 'Effect' is specific to the gene (it's a single value — either positive (activation) or negative (repression)).
 - ▶ Bayesian treatment of **c** and **B** through a variational approach.

TF Concentration Results

Concentration of ACE2

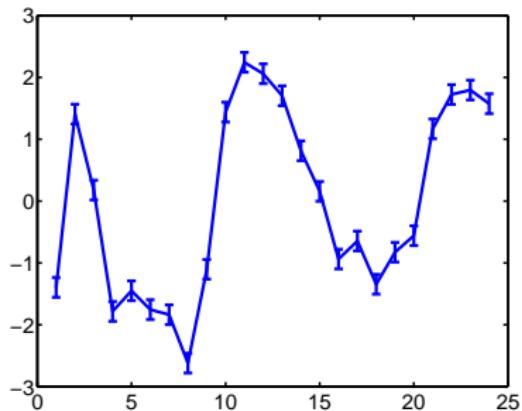
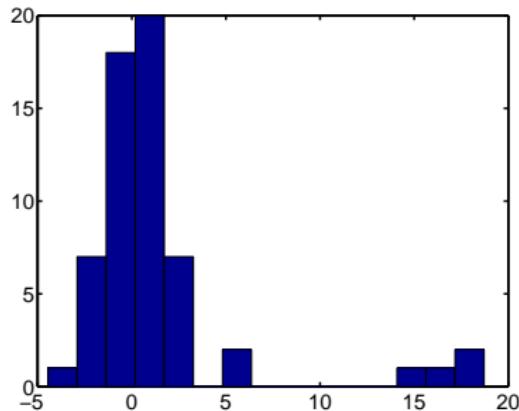
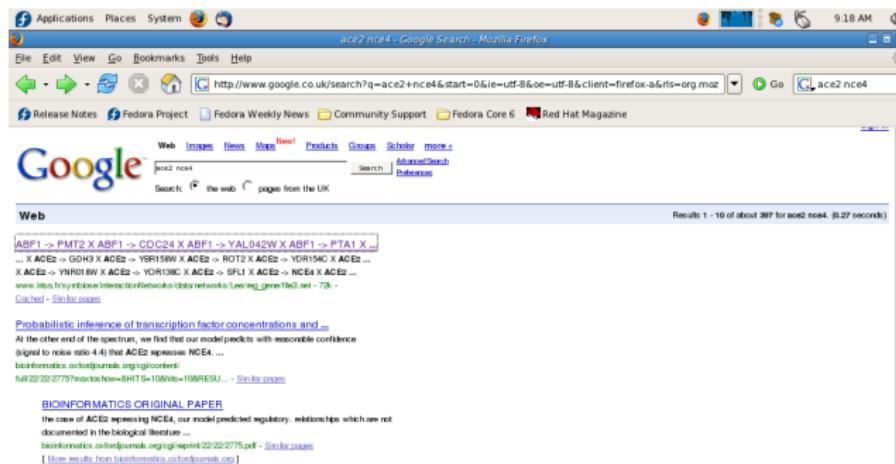


Figure: *Left:* concentration of ACE2 and *right:* effect of ACE2 on its target genes as a histogram.

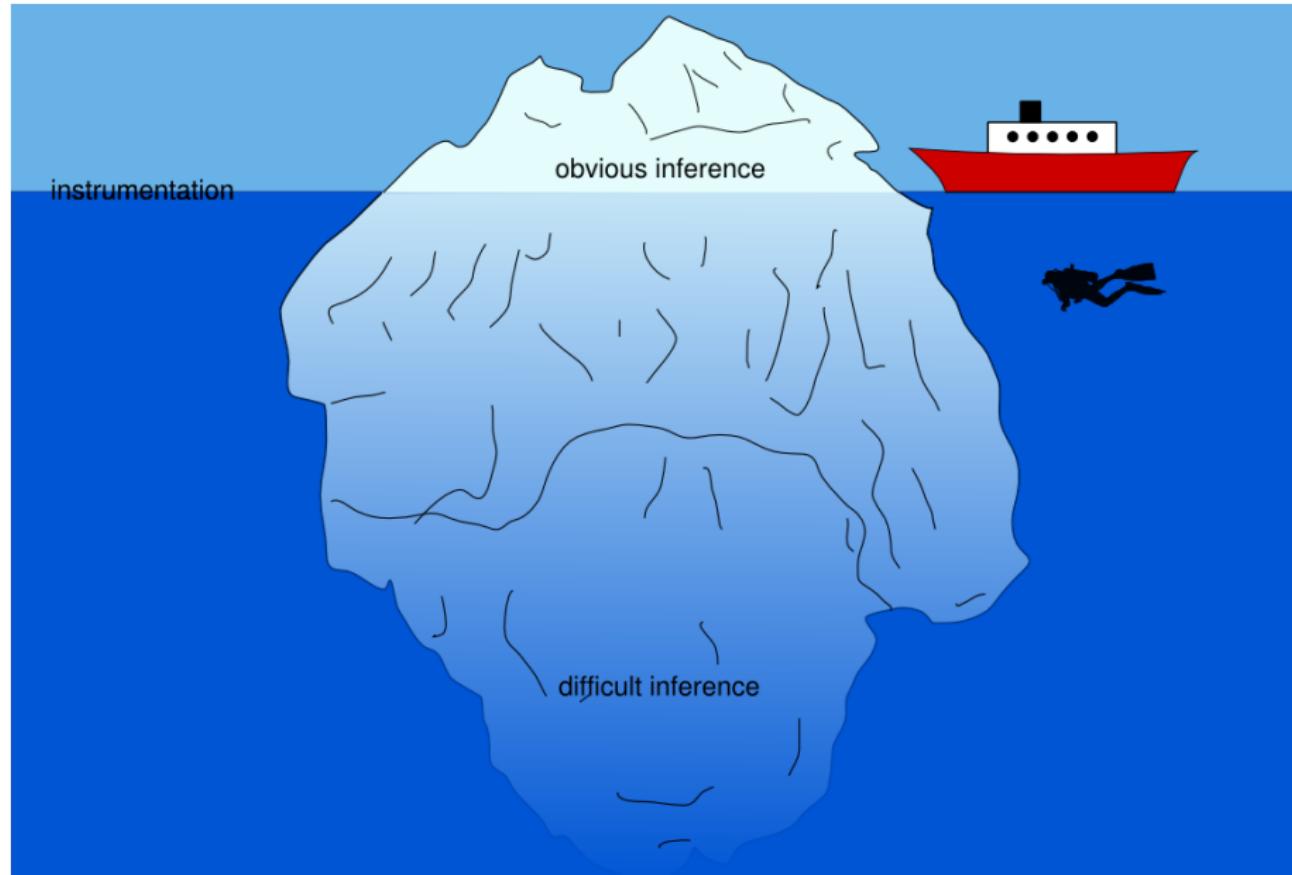
TF Concentration Results II

- Nice ACE2 Stories in Results

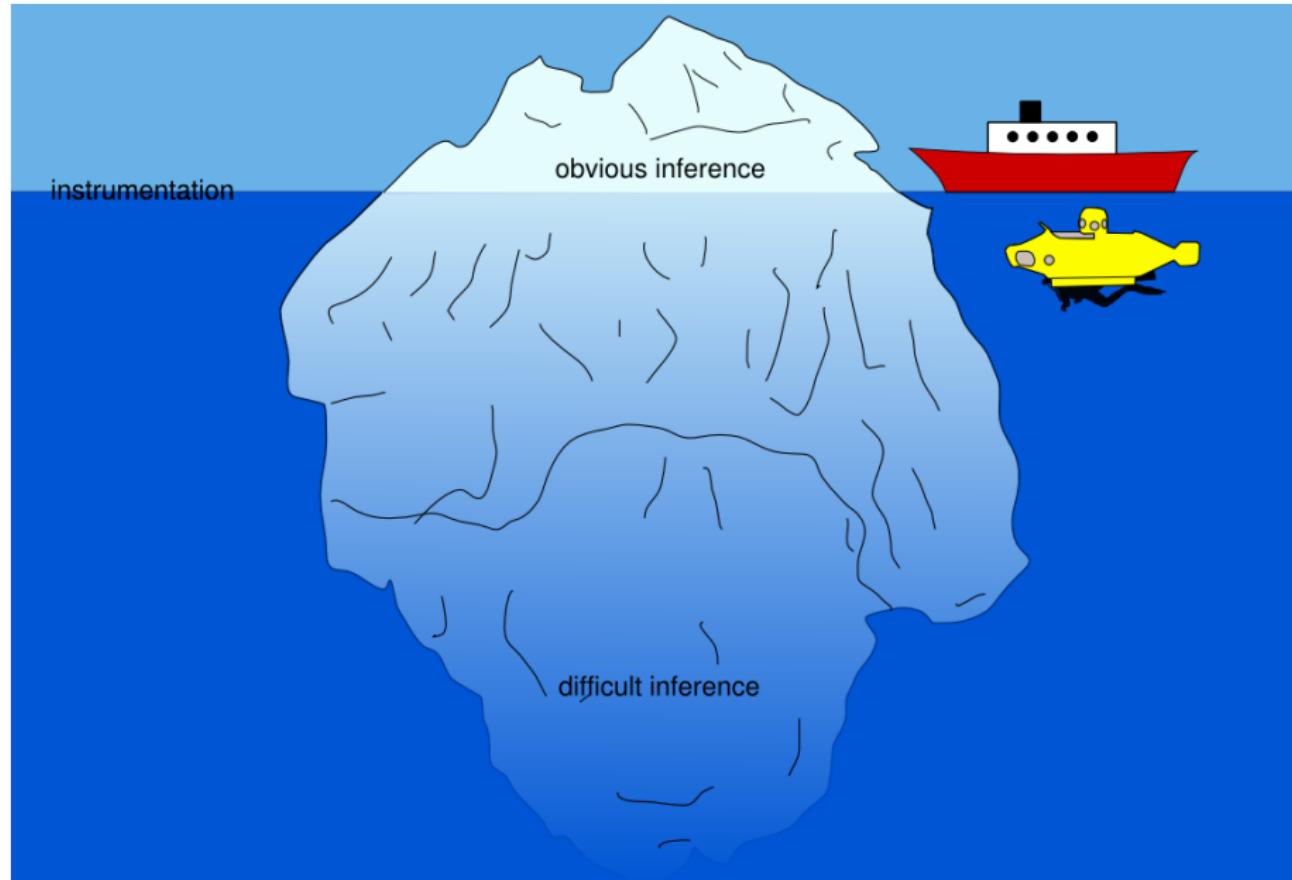
- ▶ ACE2 four most significant targets: CTS1, DSE1, DSE2, SCW11.
 - ★ Evidence to back this up comes from CO data base.
 - ★ CTS1 relationship is known.
 - ★ DSE1 and DSE2 are involved in cell wall degradation causing daughter to separate from parent.
 - ★ SCW11's function is unclear but protein is localised at cell wall.
- ▶ Negative regulation of NCE4
 - ★ Wasn't documented — but now Google search leads to us!!



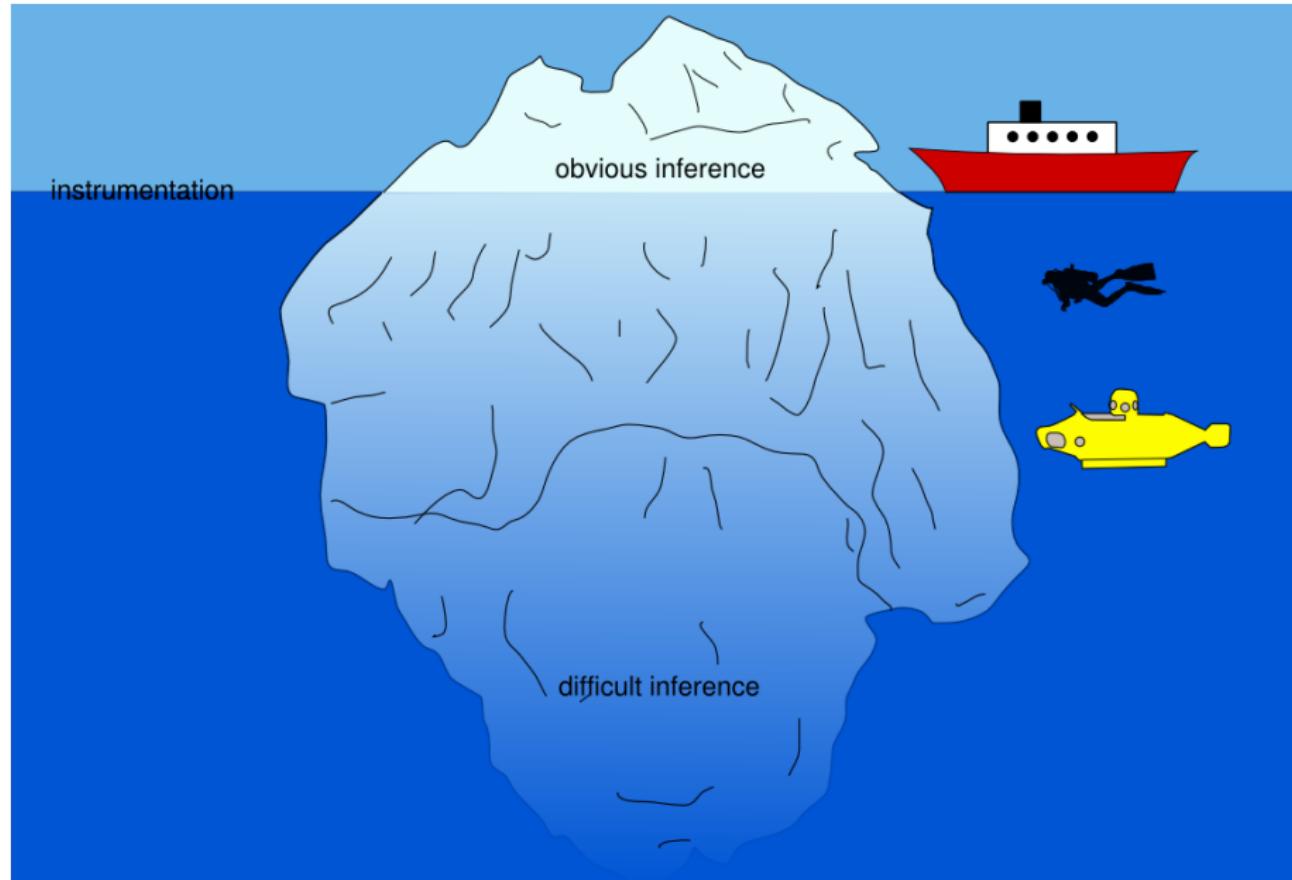
The Iceberg of Information



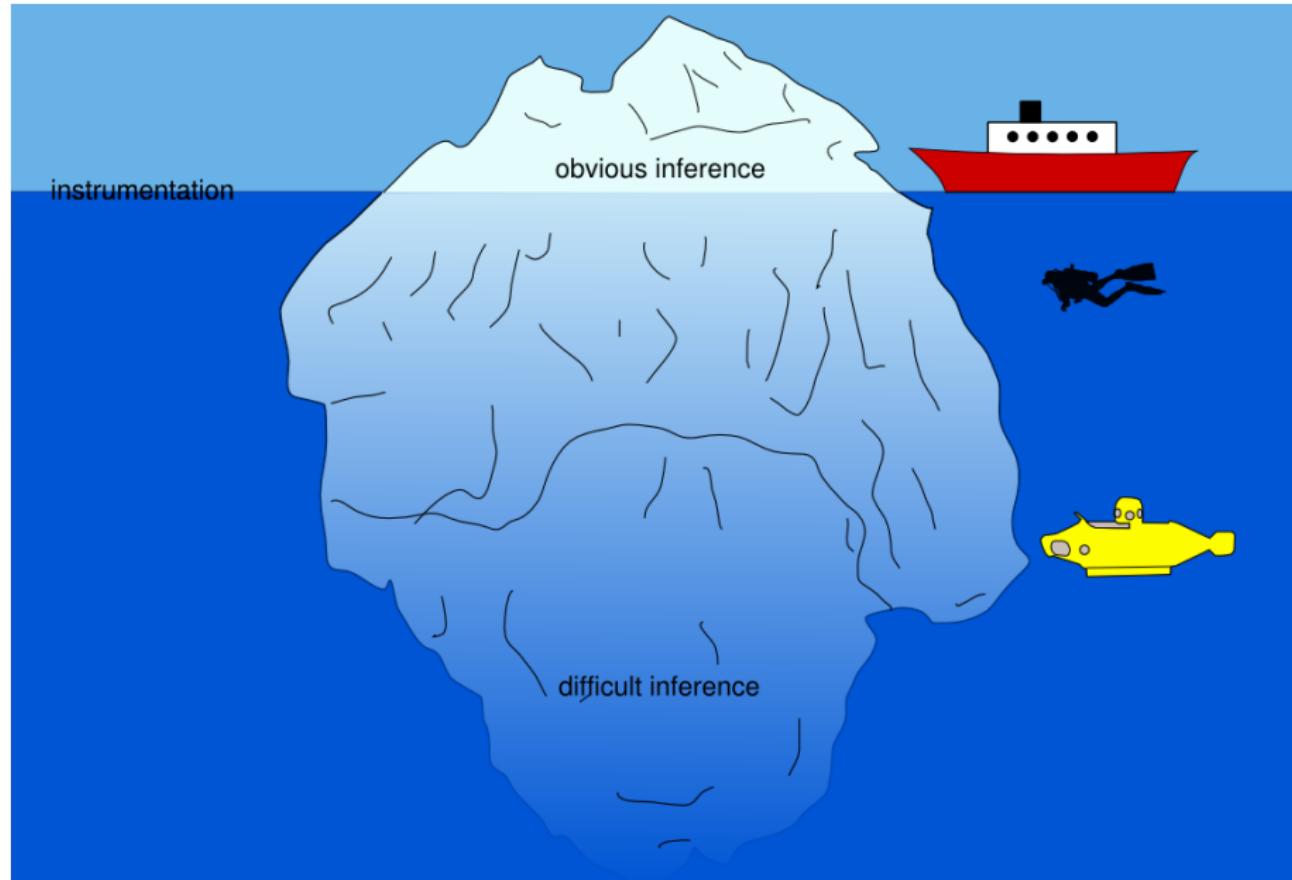
The Iceberg of Information



The Iceberg of Information



The Iceberg of Information



More Complex Model

- Complex Models on Small Networks
 - ▶ Simple linear models allow genome wide analysis of TFAs.
 - ▶ We now consider a more complex model on a much smaller network.
 - ▶ Differential Equation model
 - ★ Simple linear model differential equation model recently used by Barenco et al. [2006].
 - ★ Our inference methodology differs from theirs.

Differential Equation Model

$$\frac{dy_i(t)}{dt} = B_i + S_i f(t) - D_i y_i(t)$$

where:

- $y_i(t)$ — expression of the i th gene at time t .
- $f(t)$ — concentration of the transcription factor at time t .
- D_i — gene's decay rate.
- B_i — basal transcription rate.
- S_i — sensitivity to the transcription factor.

- p53 is an tumour repressor.
 - ▶ Many targets of p53 are not shared with other TFs.
 - ▶ Consider more complex model in the simple p53 network.

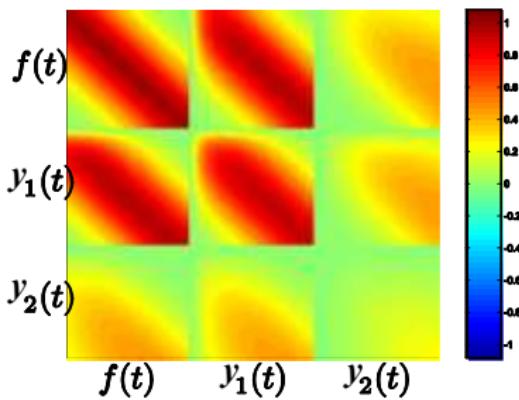
Covariance for Transcription Model

- RBF Kernel function for $f(t)$

$$y_i(t) = \frac{B_i}{D_i} + S_i \exp(-D_i t) \int_0^t f(u) \exp(D_i u) du.$$

- Joint distribution for $x_1(t)$, $x_2(t)$ and $f(t)$.
- Here:

D_1	S_1	D_2	S_2
5	5	0.5	0.5



Joint Sampling of $y(t)$ and $f(t)$ from Covariance

gpsimTest

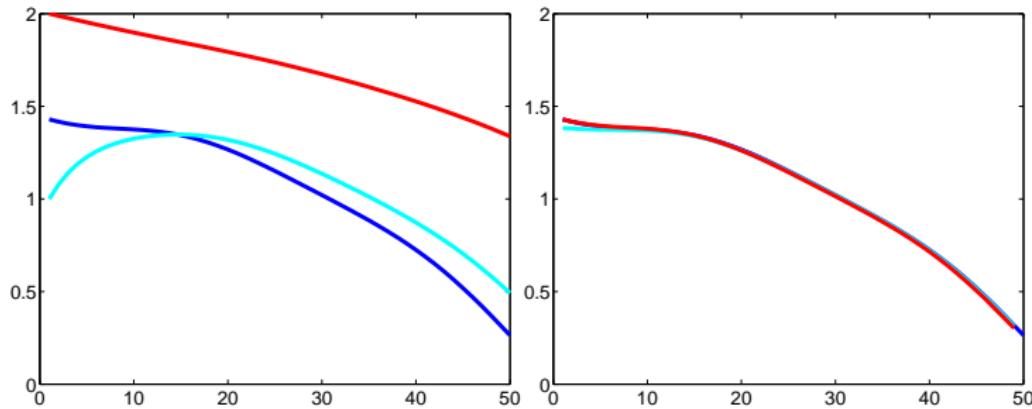


Figure: Left: joint samples from the transcription covariance, blue: $f(t)$, cyan: $y_1(t)$ and red: $y_2(t)$. Right: numerical solution for $f(t)$ of the differential equation from $y_1(t)$ and $y_2(t)$ (blue and cyan). True $f(t)$ included for comparison.

Joint Sampling of $y(t)$ and $f(t)$ from Covariance

gpsimTest

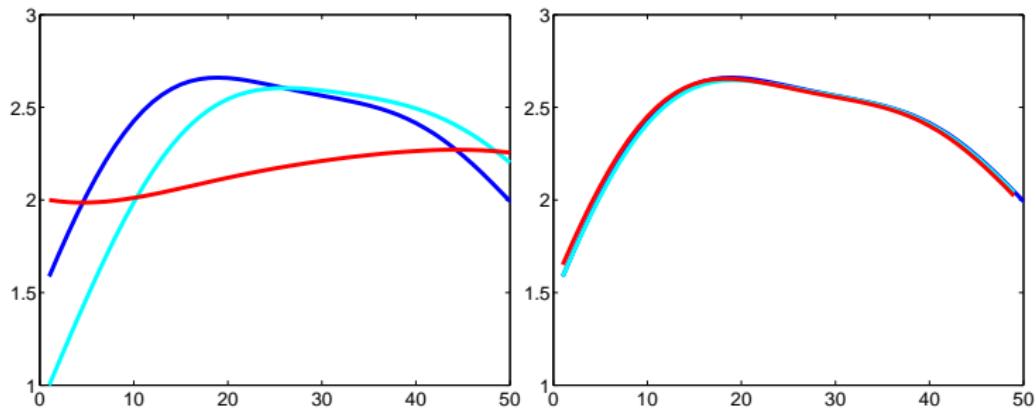


Figure: Left: joint samples from the transcription covariance, blue: $f(t)$, cyan: $y_1(t)$ and red: $y_2(t)$. Right: numerical solution for $f(t)$ of the differential equation from $y_1(t)$ and $y_2(t)$ (blue and cyan). True $f(t)$ included for comparison.

Joint Sampling of $y(t)$ and $f(t)$ from Covariance

gpsimTest

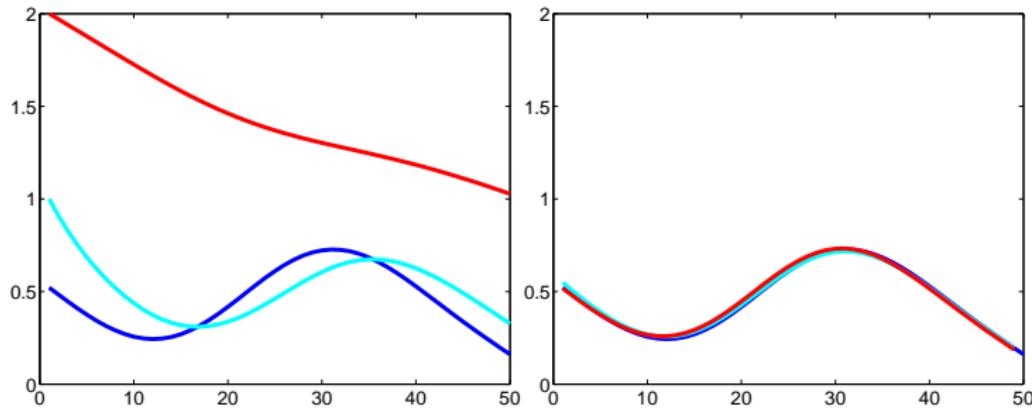


Figure: Left: joint samples from the transcription covariance, blue: $f(t)$, cyan: $y_1(t)$ and red: $y_2(t)$. Right: numerical solution for $f(t)$ of the differential equation from $y_1(t)$ and $y_2(t)$ (blue and cyan). True $f(t)$ included for comparison.

Results — Transcription Rates

- Estimation of Equation Parameters demBarenco1

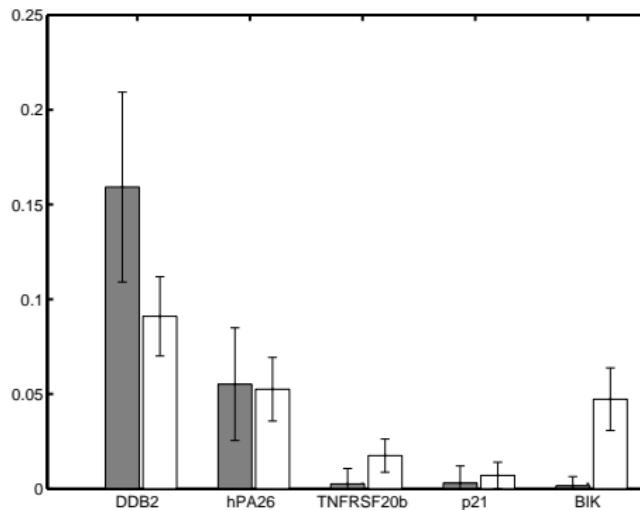


Figure: Basal transcription rates. Our results (black) compared with Barenco et al. [2006] (white).

Results — Transcription Rates

- Estimation of Equation Parameters demBarenco1

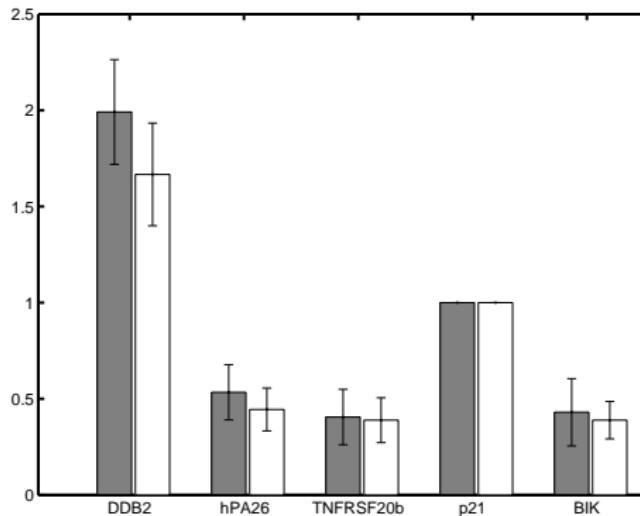


Figure: Sensitivities. Our results (black) compared with Barenco et al. [2006] (white).

Results — Transcription Rates

- Estimation of Equation Parameters demBarenco1

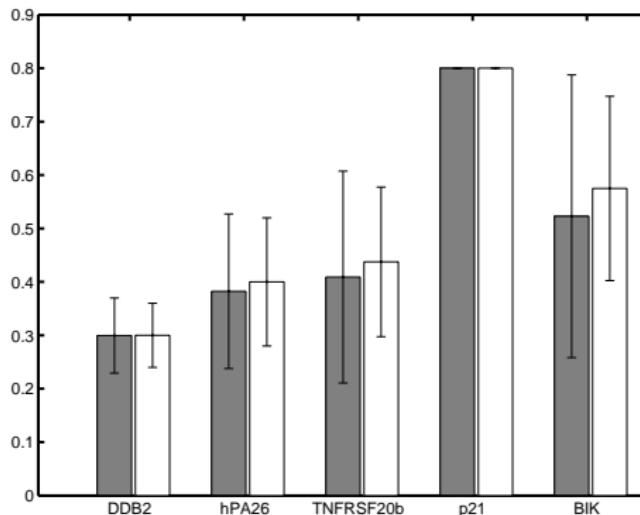
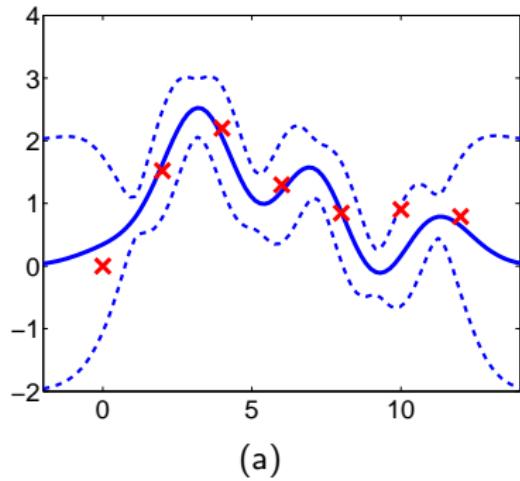


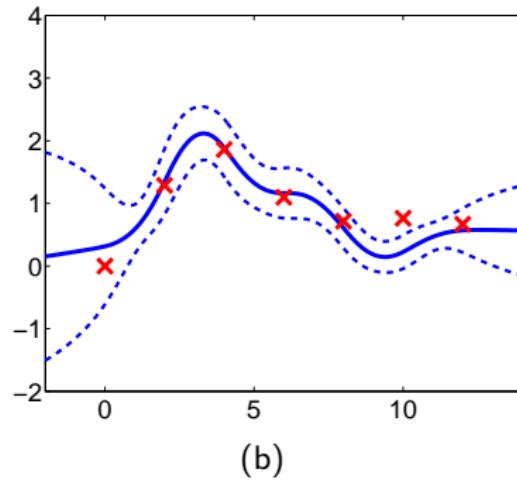
Figure: Decays. Our results (black) compared with Barenco et al. [2006] (white).

Results — Protein Concentration

- Prediction with error bars of protein concentration:
 $p(\mathbf{f}|\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3, \mathbf{y}_4, \mathbf{y}_5)$



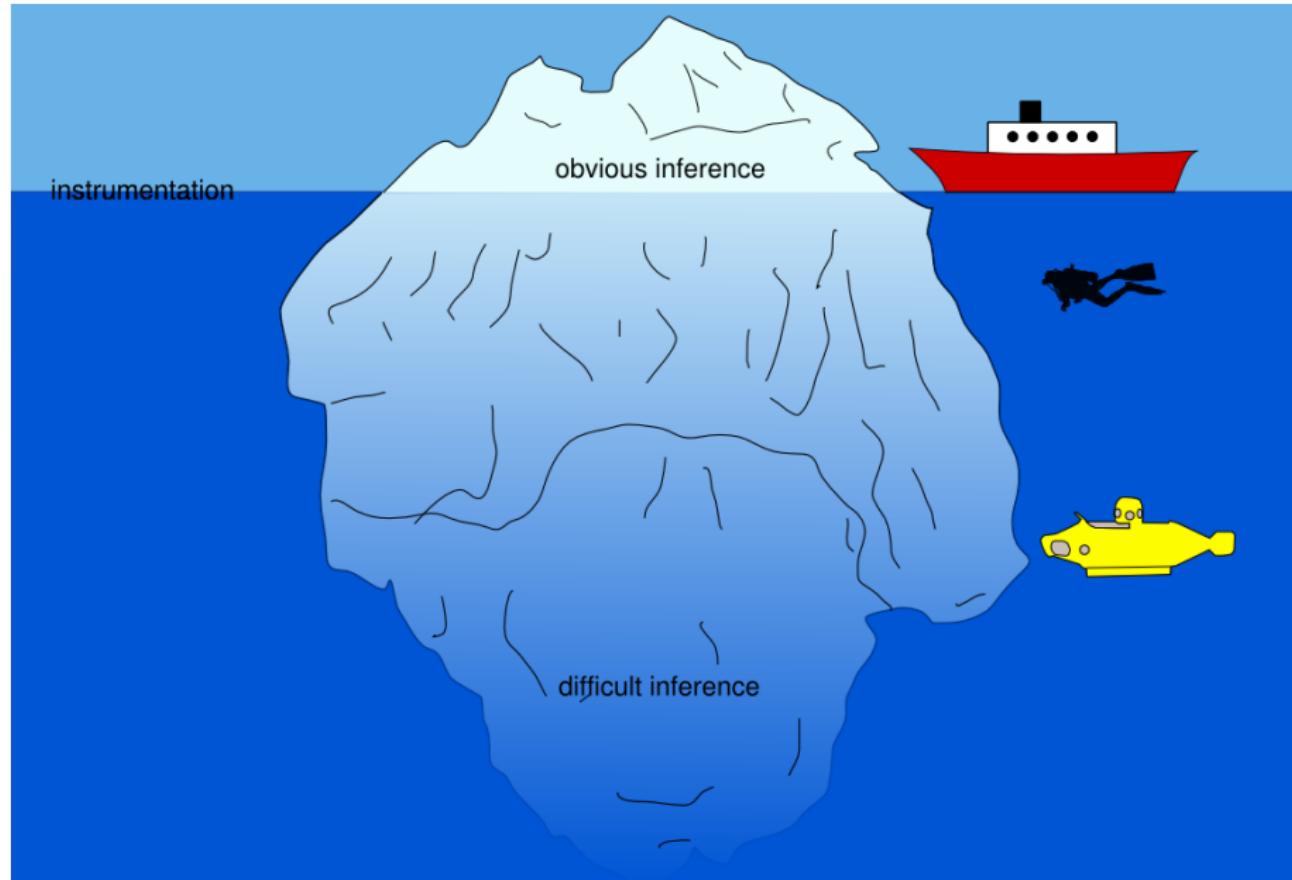
(a)



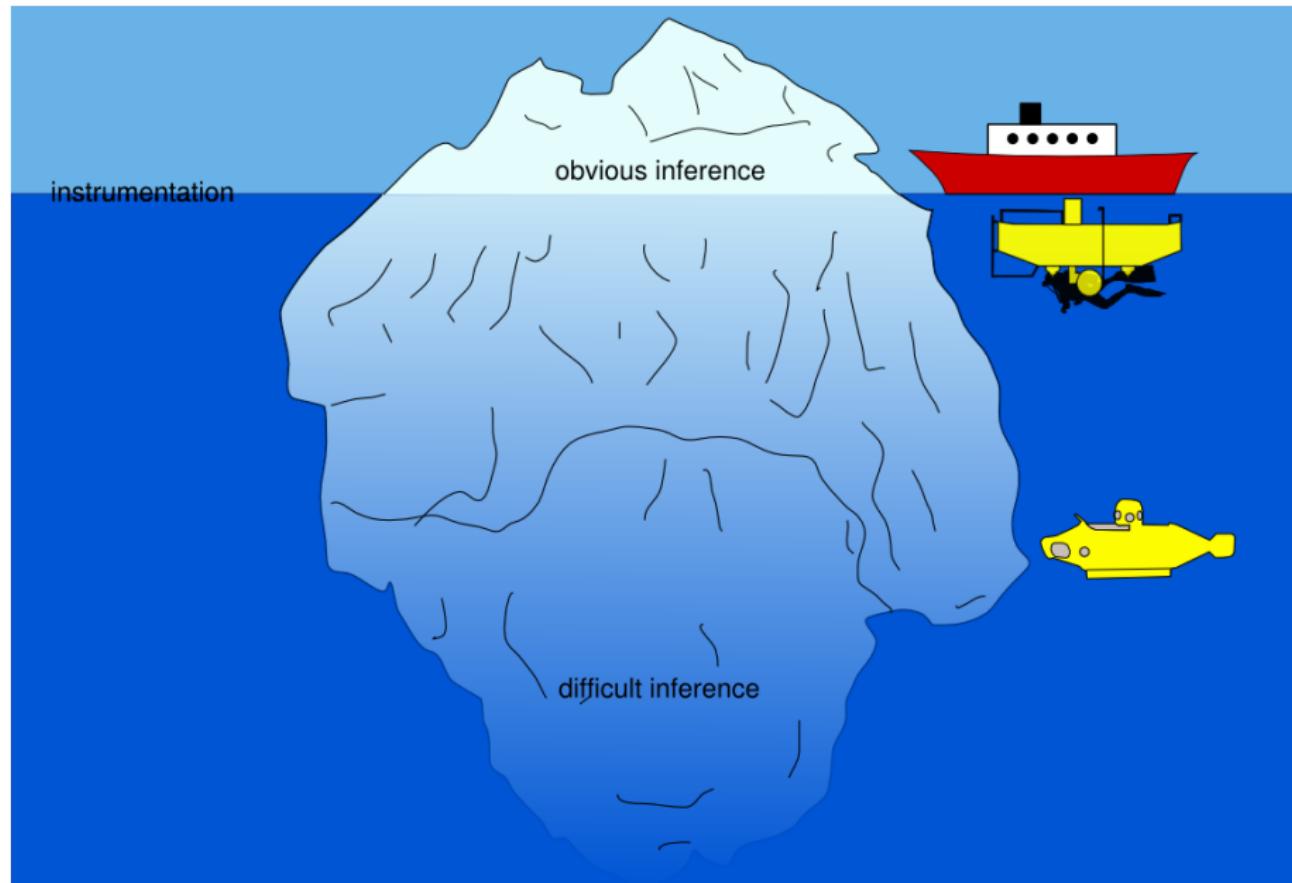
(b)

Figure: (a) RBF covariance function (b) MLP covariance function. Also included are results from Barenco et al. [2006] as crosses.

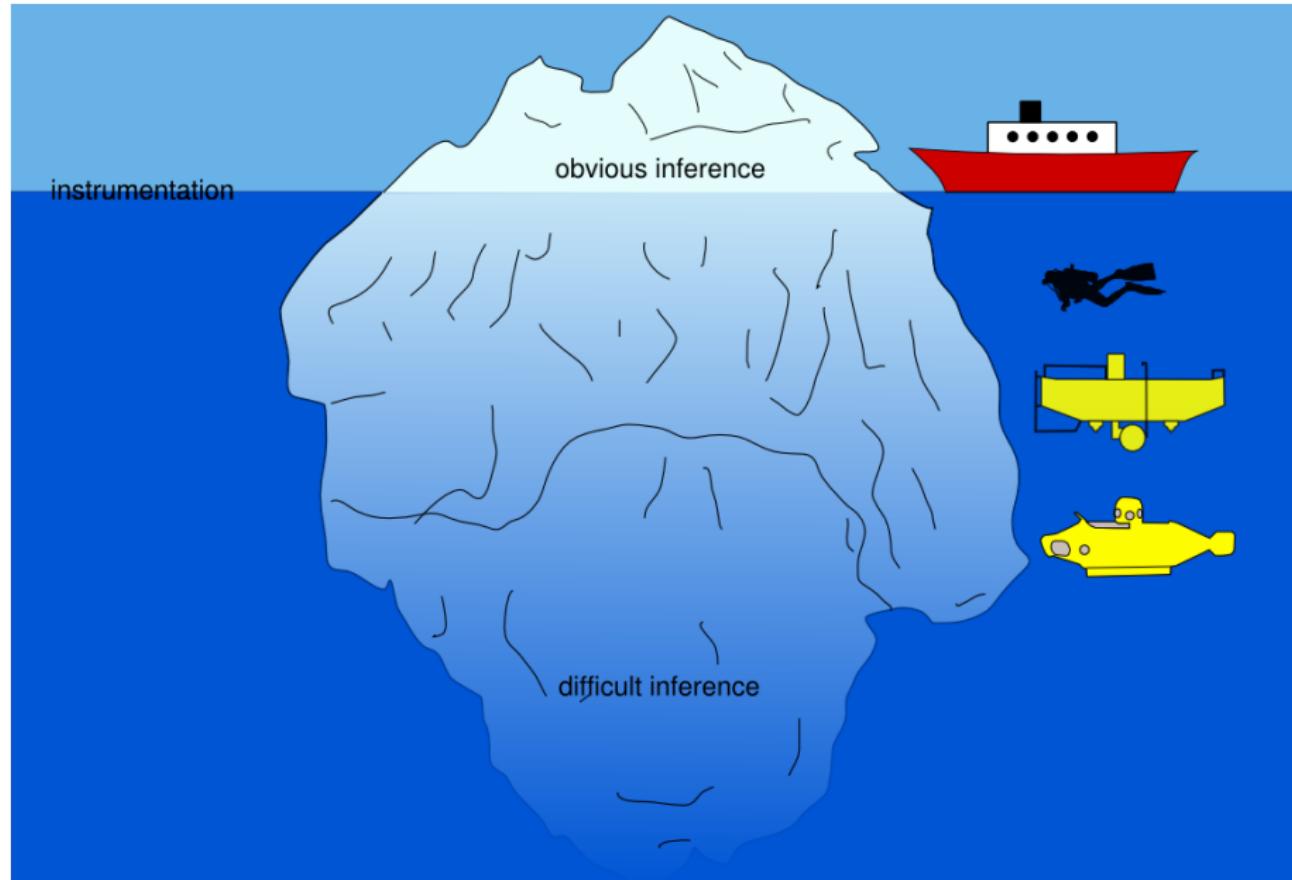
The Iceberg of Information



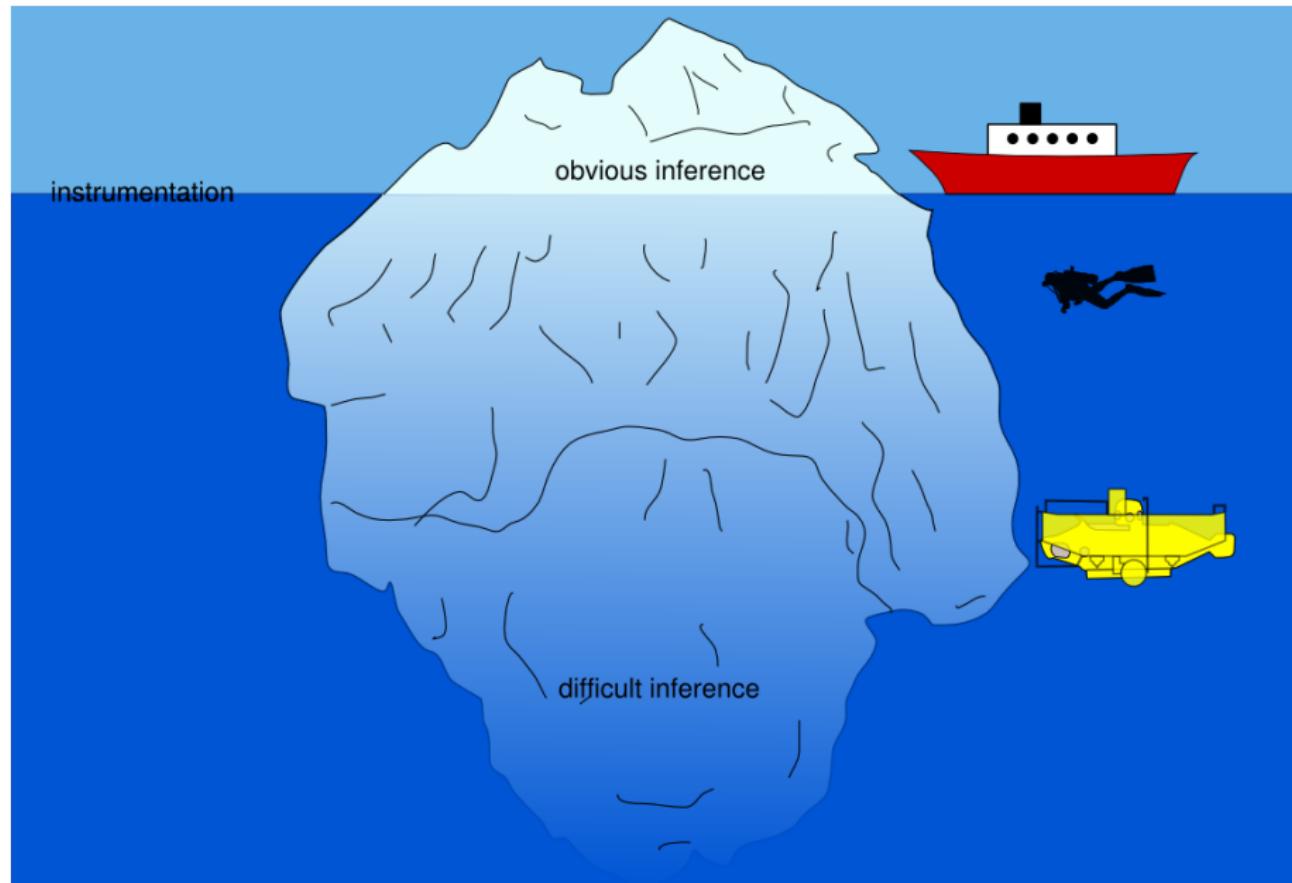
The Iceberg of Information



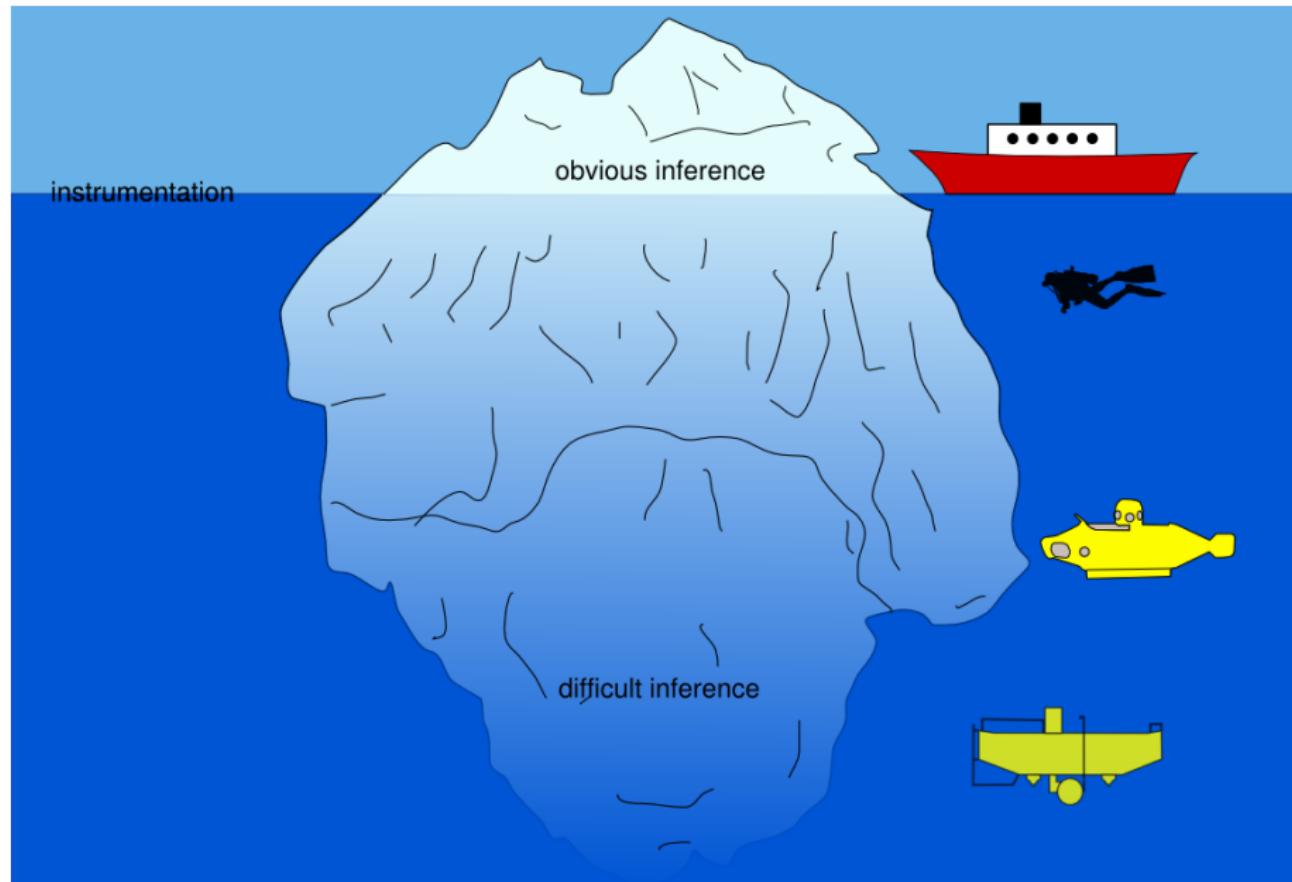
The Iceberg of Information



The Iceberg of Information



The Iceberg of Information



Summary

- PUMA: Propagation of Uncertainty in Microarray Analysis
 - ▶ Level of Noise in the Array can be Assesed (gMOS methods).
 - ▶ Probabilistic Models can:
 - ★ Improve selection of over-expressed genes (PPLR).
 - ★ Clean up gene expression profiles (NPPCA).
 - ▶ Simple (log-linear) probabilistic models can be used with network connectivity data to
 - ★ To infer *genome wide* transcription factor activities (chipdyno).
 - ★ To infer *genome wide* transcription factor protein concentrations (chipvar).
- Differential equation models
 - ▶ Deal with latent species using Gaussian processes.
 - ▶ Structural inference with Thermodynamic Intergration.

Acknowledgements

- Inspiration:
 - ▶ Martino Barenco, Mark Girolami, Mike Hubank, Dirk Husmeier, Andrew Millar, Nick Monk, Magnus Rattray
- Perspiration:
 - ▶ Investigators
 - ★ Neil Lawrence and Magnus Rattray
 - ▶ gMOS family of Methods and PPLR
 - ★ Xuejun Liu (ex PhD student) and Marta Milo (Wellcome Fellow)
 - ▶ Uncertainty Propagation through PCA
 - ★ Marta Milo (Wellcome Fellow), Richard Pearson (PhD student) and Guido Sanguinetti (ex post-doc)
 - ▶ Inference of Transcription Factor Activities
 - ★ Pei Gao (current post-doc), Michalis Titsias (new post-doc), Guido Sanguinetti (ex post-doc)
- Funding
 - ▶ BBSRC Grant No BBS/B/0076X (with Magnus)
 - ▶ EPSRC Grant No EP/F005687/1 (with Magnus, Johannes Yaeger and Nick Monk)

References

O. Alter and G. H. Golub. Integrative analysis of genome-scale data using pseudoinverse projection predicts novel correlation between dna replication and rna transcription. *Proceedings of the National Academy of Sciences USA*, 101(47):16577–16582, 2004.

M. Barenco, D. Tomescu, D. Brewer, R. Callard, J. Stark, and M. Hubank. Ranked prediction of p53 targets using hidden variable dynamic modeling. *Genome Biology*, 7(3):R25, 2006.

A.-L. Boulesteix and K. Strimmer. Predicting transcription factor activities from combined analysis of microarray and ChIP data: a partial least squares approach. *Theor. Biol. Med. Model.*, 2(23):1471–16582, 2005.

S. E. Choe, M. Boutros, A. M. Michelson, G. M. Church, and M. S. Halfon. Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset. *Genome Biology*, 6(R16), 2005.

F. Gao, B. C. Foa, and H. J. Bussemaker. Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data. *BMC Bioinformatics*, 5(31):1471–2105, 2004.

T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-Joseph, G. K. Gerber, N. M. Hannett, C. T. Harbison, C. M. Thompson, I. Simon, J. Zeitlinger, E. G. Jennings, H. L. Murray, D. B. Gordon, B. Ren, J. J. Wyrick, J.-B. Tagne, T. L. Volkert, E. Fraenkel, D. K. Gifford, and R. A. Young. Transcriptional regulatory networks in *Saccharomyces cerevisiae*. *Science*, 298 (5594):799–804, 2002.

J. C. Liao, R. Boscolo, Y.-L. Yang, L. M. Tran, C. Sabatti, and V. P. Roychowdhury. Network component analysis: Reconstruction of regulatory signals in biological systems. *Proceedings of the National Academy of Sciences USA*, 100(26):15522–15527, 2003.

K. K. Lin, D. Chudova, G. W. Hatfield, P. Smyth, , and B. Andersen. Identification of hair cycle-associated genes from time-course gene expression profile data by using replicate variance. 101(45):15955–15960, 2004.

X. Liu, M. Milo, N. D. Lawrence, and M. Rattray. A tractable probabilistic model for Affymetrix probe-level analysis across multiple chips. *Bioinformatics*, 21(18):3637–3644, 2005.

X. Liu, M. Milo, N. D. Lawrence, and M. Rattray. Probe-level measurement error improves accuracy in detecting differential gene expression. *Bioinformatics*, 2006.

M. Milo, A. Fazeli, M. Niranjan, and N. D. Lawrence. A probabilistic model for the extraction of expression levels from oligonucleotide arrays. *Biochemical Translations*, 31(6):1510–1512, 2003.

M. N. Rivolta, A. Halsall, C. Johnson, M. Tones, and M. C. Holley. Genetic profiling of functionally related groups of genes during conditional differentiation of a mammalian cochlear hair cell line. *Genome Research*, 12(7):1091–1099, 2002.

G. Sanguinetti, M. Milo, M. Rattray, and N. D. Lawrence. Accounting for probe-level noise in principal component analysis of microarray data. *Bioinformatics*, 21(19):3748–3754, 2005.

G. Sanguinetti, M. Rattray, and N. D. Lawrence. A probabilistic dynamical model for quantitative inference of the regulatory mechanism of transcription. *Bioinformatics*, 22(14):1753–1759, 2006.

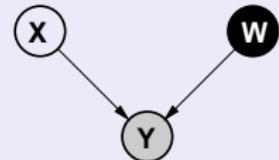
P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein, and B. Futcher. Comprehensive identification of cell cycle regulated genes of the yeast *saccharomyces cerevisiae* by microarray hybridization.

Probabilistic PCA

Probabilistic PCA

- Define *linear-Gaussian relationship* between latent variables and data.
- Latent variable approach:

Define Gaussian prior over *latent space*, \mathbf{X} .
Integrate out *latent variables*.



$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n N(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:} + \boldsymbol{\mu}, \sigma^2 \mathbf{I})$$

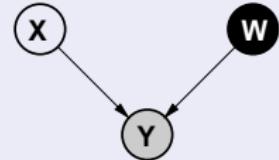
$$p(\mathbf{X}) = \prod_{i=1}^n N(\mathbf{x}_{i,:} | \mathbf{0}, \mathbf{I})$$

$$p(\mathbf{Y}|\mathbf{W}) = \prod_{i=1}^n N(\mathbf{y}_{i,:} | \boldsymbol{\mu}, \mathbf{W}\mathbf{W}^T + \sigma^2 \mathbf{I})$$

Probabilistic PCA

Probabilistic PCA

- Define *linear-Gaussian relationship* between latent variables and data.
- Latent variable approach:
 - Define Gaussian prior over *latent space*, \mathbf{X} .
 - Integrate out *latent variables*.



$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n N(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:} + \boldsymbol{\mu}, \sigma^2 \mathbf{I})$$

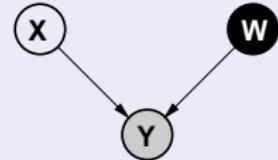
$$p(\mathbf{X}) = \prod_{i=1}^n N(\mathbf{x}_{i,:} | \mathbf{0}, \mathbf{I})$$

$$p(\mathbf{Y}|\mathbf{W}) = \prod_{i=1}^n N(\mathbf{y}_{i,:} | \boldsymbol{\mu}, \mathbf{W}\mathbf{W}^T + \sigma^2 \mathbf{I})$$

Probabilistic PCA

Probabilistic PCA

- Define *linear-Gaussian relationship* between latent variables and data.
- Latent variable approach:
 - ▶ Define Gaussian prior over *latent space*, \mathbf{X} .
 - ▶ Integrate out *latent variables*.



$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n N(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:} + \boldsymbol{\mu}, \sigma^2 \mathbf{I})$$

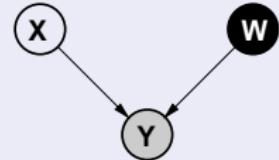
$$p(\mathbf{X}) = \prod_{i=1}^n N(\mathbf{x}_{i,:} | \mathbf{0}, \mathbf{I})$$

$$p(\mathbf{Y}|\mathbf{W}) = \prod_{i=1}^n N(\mathbf{y}_{i,:} | \boldsymbol{\mu}, \mathbf{W}\mathbf{W}^T + \sigma^2 \mathbf{I})$$

Probabilistic PCA

Probabilistic PCA

- Define *linear-Gaussian relationship* between latent variables and data.
- Latent variable approach:
 - ▶ Define Gaussian prior over *latent space*, \mathbf{X} .
 - ▶ Integrate out *latent variables*.



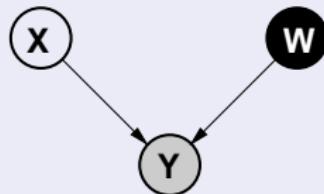
$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n N(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:} + \boldsymbol{\mu}, \sigma^2 \mathbf{I})$$

$$p(\mathbf{X}) = \prod_{i=1}^n N(\mathbf{x}_{i,:} | \mathbf{0}, \mathbf{I})$$

$$p(\mathbf{Y}|\mathbf{W}) = \prod_{i=1}^n N(\mathbf{y}_{i,:} | \boldsymbol{\mu}, \mathbf{W}\mathbf{W}^T + \sigma^2 \mathbf{I})$$

Probabilistic PCA II

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]



$$p(\mathbf{Y}|\mathbf{W}) = \prod_{i=1}^n N(\mathbf{y}_{i,:}|\boldsymbol{\mu}, \mathbf{W}\mathbf{W}^T + \sigma^2 \mathbf{I})$$

Probabilistic PCA II

Probabilistic PCA Max. Likelihood Soln [Tipping and Bishop, 1999]

$$p(\mathbf{Y}|\mathbf{W}) = \prod_{i=1}^n N(\mathbf{y}_{i,:}|\boldsymbol{\mu}, \mathbf{C}), \quad \mathbf{C} = \mathbf{W}\mathbf{W}^T + \sigma^2\mathbf{I}$$

$$\log p(\mathbf{Y}|\mathbf{W}) = -\frac{n}{2} \log |\mathbf{C}| - \frac{1}{2} \text{tr}(\mathbf{C}^{-1} \tilde{\mathbf{Y}}^T \tilde{\mathbf{Y}}) + \text{const.}$$

Where $\tilde{\mathbf{Y}}$ is the matrix \mathbf{Y} with $\boldsymbol{\mu}$ removed. If \mathbf{U}_q are first q principal eigenvectors of $n^{-1}\tilde{\mathbf{Y}}^T \tilde{\mathbf{Y}}$ and the corresponding eigenvalues are Λ_q ,

$$\mathbf{W} = \mathbf{U}_q \mathbf{L} \mathbf{V}^T, \quad \mathbf{L} = (\Lambda_q - \sigma^2 \mathbf{I})^{\frac{1}{2}}$$

where \mathbf{V} is an arbitrary rotation matrix.

$$\boldsymbol{\mu} = n^{-1} \sum_{i=1}^n \mathbf{y}_{i,:}$$

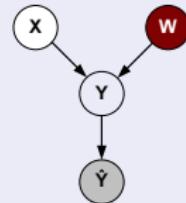
Heteroschedastic Probabilistic PCA

Heteroschedastic PPCA

- Define *linear-Gaussian relationship* between latent variables and \mathbf{Y} .
- Define a *further Gaussian relationship* to corrupted profiles $\hat{\mathbf{Y}}$.

\mathbf{D}_i is a diagonal matrix of estimated variances.

- Integrate out *latent variables*.



$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n N(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:} + \boldsymbol{\mu}, \sigma^2 \mathbf{I})$$

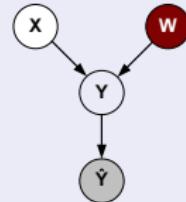
$$p(\hat{\mathbf{Y}}_{i,:} | \mathbf{y}_{i,:}) = N(\hat{\mathbf{y}}_{i,:} | \mathbf{y}_{i,:}, \mathbf{D}_i)$$

$$p(\hat{\mathbf{Y}}|\mathbf{W}) = \prod_{i=1}^n N(\mathbf{y}_{i,:} | \boldsymbol{\mu}, \mathbf{W}\mathbf{W}^T + \sigma^2 \mathbf{I} + \mathbf{D}_i)$$

Heteroschedastic Probabilistic PCA

Heteroschedastic PPCA

- Define *linear-Gaussian relationship* between latent variables and \mathbf{Y} .
- Define a *further Gaussian relationship* to corrupted profiles $\hat{\mathbf{Y}}$.
 - ▶ \mathbf{D}_i is a diagonal matrix of estimated variances.
- Integrate out *latent variables*.



$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n N(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:} + \boldsymbol{\mu}, \sigma^2 \mathbf{I})$$

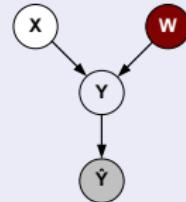
$$p(\hat{\mathbf{Y}}_{i,:} | \mathbf{y}_{i,:}) = N(\hat{\mathbf{y}}_{i,:} | \mathbf{y}_{i,:}, \mathbf{D}_i)$$

$$p(\hat{\mathbf{Y}}|\mathbf{W}) = \prod_{i=1}^n N(\mathbf{y}_{i,:} | \boldsymbol{\mu}, \mathbf{W}\mathbf{W}^T + \sigma^2 \mathbf{I} + \mathbf{D}_i)$$

Heteroschedastic Probabilistic PCA

Heteroschedastic PPCA

- Define *linear-Gaussian relationship* between latent variables and \mathbf{Y} .
- Define a *further Gaussian relationship* to corrupted profiles $\hat{\mathbf{Y}}$.
 - ▶ \mathbf{D}_i is a diagonal matrix of estimated variances.
- Integrate out *latent variables*.



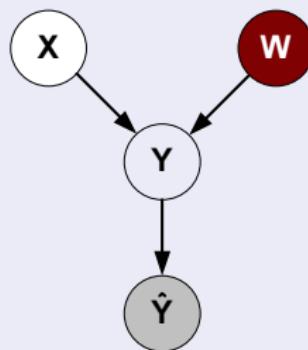
$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^n N(\mathbf{y}_{i,:} | \mathbf{W}\mathbf{x}_{i,:} + \boldsymbol{\mu}, \sigma^2 \mathbf{I})$$

$$p(\hat{\mathbf{Y}}_{i,:} | \mathbf{y}_{i,:}) = N(\hat{\mathbf{y}}_{i,:} | \mathbf{y}_{i,:}, \mathbf{D}_i)$$

$$p(\hat{\mathbf{Y}}|\mathbf{W}) = \prod_{i=1}^n N(\mathbf{y}_{i,:} | \boldsymbol{\mu}, \mathbf{W}\mathbf{W}^T + \sigma^2 \mathbf{I} + \mathbf{D}_i)$$

Heteroschedastic PPCA II

Heteroschedastic PPCA Max. Likelihood Soln [Sanguinetti et al., 2005]



$$p(\mathbf{Y}|\mathbf{W}) = \prod_{i=1}^n N \left(\mathbf{y}_{i,:} | \boldsymbol{\mu}, \mathbf{W}\mathbf{W}^T + \sigma^2 \mathbf{I} + \mathbf{D}_i \right)$$

Heteroschedastic PPCA II

Heteroschedastic PPCA Max. Likelihood Soln [Sanguinetti et al., 2005]

$$p(\mathbf{Y}|\mathbf{W}) = \prod_{i=1}^n N\left(\mathbf{y}_{i,:}|\boldsymbol{\mu}, \mathbf{W}\mathbf{W}^T + \sigma^2\mathbf{I} + \mathbf{D}_i\right)$$

- Can no longer solve via eigenvalue problem.
- We use an EM algorithm.
 - ▶ A major problem is the strong correlation between \mathbf{W} and $\boldsymbol{\mu}$.
 - ▶ We use some tricks to speed up convergence.
- Software available in R and MATLAB.