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Notation

p data dimensionality
q latent dimensionality
n number of data points
Y design matrix containing our data n × p
X matrix of latent variables n × q
D matrix of interpoint squared distances n × n
K similarities/covariance/kernel n × n
L Laplacian matrix n × n

Row vector from matrix A given by ai ,: column vector a:,j and
element given by ai ,j .
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Dimensionality Reduction and Distances

I We consider dimensionality reduction algorithms that operate
on (squared) distances.

I There is an equivalence between squared distances and
similarities/kernels.

di ,j = ki ,i − 2ki ,j + kj ,j .

I It was originally known as the standard transformation
(Mardia et al., 1979).

I If ki ,j = k(yi ,:, yj ,:) it is the “distance in feature space”
(Schölkopf and Smola, 2001).

I If ki ,j is an element from a covariance matrix K, it is the
expected squared distance between two samples from the
corresponding Gaussian.



Moving from Squared Distance to Similarity

I Matrix form of squared distance,

D = diag (K) 1> − 2K + 1diag (K)> .

I Centering matrix H = I− n−111>: H1 = 0.

I This implies,

−1

2
HDH = HKH.



Spectral Dimensionality Reduction

I Spectral approaches to dimensionality reduction.

1. Given a matrix of size n × n.
2. Visualize data with eigenvectors.

I Isomap (Tenenbaum et al., 2000), locally linear embeddings
(LLE, Roweis and Saul, 2000), Laplacian eigenmaps (LE,
Belkin and Niyogi, 2003) and maximum variance unfolding
(MVU, Weinberger et al., 2004).

I Also kernel PCA (Schölkopf et al., 1998; Ham et al., 2004).



Classical Multidimensional Scaling Perspective

I Classical multidimensional scaling (CMDS)

1. Compute an n × n squared distance matrix, D.
2. Form the centered “similarity matrix”HKH = − 1

2HDH.
3. Visualize through principal eigenvectors.

I This minimizes a particular objective.

I Main innovation in ML work: how we compute the distances.



This Talk

I Probabilistic approach to constructing distance matrices.

I Relate isomap, LLE, LE and MVU to our approach.

I Provide a unifying perspective of Gaussian random fields and
CMDS.
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Spectral Approaches

I CMDS gives a linear transformation between X and Y.

I Spectral approaches in machine learning give a nonlinear
relationship between the data and the distances.

I This is very clear for kernel PCA.



Kernel PCA

I Kernel PCA define squared distance:

di ,j = k(yi ,:, yi ,:)− 2k(yi ,:, yj ,:)− k(yj ,:, yj ,:) (1)

I k(·, ·) is a Mercer kernel (Ham et al., 2004).

I Kernel PCA (KPCA) recover an xi ,: and a mapping from Y to
X space.

I The mapping is induced through the choice of the Mercer
kernel.



Classical MDS and KPCA

I CMDS procedure performs eigenvalue problem on

B = HKH.

I This matches the KPCA algorithm (Schölkopf et al., 1998)1.

I However, for the commonly used exponentiated quadratic
kernel,

k(yi ,:, yj ,:) = exp(−γ ‖yi ,: − yj ,:‖2
2),

KPCA actually expands the feature space (Weinberger et al.,
2004).

1Kernel PCA also has an interpretation as a particular form of metric
multidimensional scaling, see Williams (2001) for details.



Maximum Variance Unfolding

Learn a “Kernel” for Dimensionality Reduction

I MVU (Weinberger et al., 2004): learn a “kernel matrix” that
will allow for dimensionality reduction.

I Consider only local relationships in the data.

I Take a set of neighbors.

I Construct a kernel matrix where only distances between
neighbors match data distances.



Maximum Variance Unfolding

I Maximize tr (K).: equivalent to maximizing distances between
non-neighbors.2.
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I MVU constrains “feature space” distances to be equal to
observed

di ,j = ki ,i − 2ki ,j + kj ,j

2The trace is the total variance of the data in feature space



Maximum Entropy Unfolding

Our Contribution

I Maximize entropy instead of variance (Jaynes, 1986): MEU.

I Entropy and variance are closely related.

I Maximum entropy leads to a probabilistic model.

I Each spectral approach approximates MEU in some way.



Maximum Entropy Unfolding

I Maximize entropy of distribution subject to constraints on
moments.
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I MEU constraints are on expected distances between neighbors.

di ,j =
〈
y>i ,:yi ,:

〉
− 2

〈
y>i ,:yj ,:

〉
+
〈
y>j ,:yj ,:

〉



Maximum Entropy Unfolding

I Maximize entropy of distribution subject to constraints on
moments.
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I MEU constraints are on expected distances between neighbors.

di ,j = ki ,i − 2ki ,j + kj ,j



Maximum Entropy

I Maximum entropy distribution.

p(Y) ∝ exp

(
−1

2
tr
(
γYY>

))
exp

−1

2

∑
i

∑
j∈N (i)

λi ,j di ,j


N (i) is neighborhood, {λi ,j}, Lagrange multipliers.



Maximum Entropy

I Maximum entropy distribution.

p(Y) ∝ exp

(
−1

2
tr
(
γYY>

)
− 1

4
tr (ΛD)

)

N (i) is neighborhood, {λi ,j}, Lagrange multipliers. Lagrange
multipliers in sparse matrix Λ.



Maximum Entropy

I Maximum entropy distribution.

p(Y) =
|L + γI|

1
2

(2π)
np
2

exp

(
−1

2
tr
(

(L + γI)YY>
))

N (i) is neighborhood, {λi ,j}, Lagrange multipliers. Introduce
Laplacian: `i ,j = −λi ,j , `i ,i =

∑
j∈N (i) λi ,j , L1 = 0.



Details: Moving to the Laplacian

I D has a zero diagonal.

I tr (LD) is unaffected by diagonal of L.

I Constrain L1 = 0 giving

−tr (ΛD) = tr (LD)
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Details: Moving to the Laplacian

I D has a zero diagonal.

I tr (LD) is unaffected by diagonal of L.

I Constrain L1 = 0 giving

−tr (ΛD) = tr

(
L1diag

(
YY>

)>
− 2LYY> + diag

(
YY>

)
1>L

)



Details: Moving to the Laplacian

I D has a zero diagonal.

I tr (LD) is unaffected by diagonal of L.

I Constrain L1 = 0 giving

−tr (ΛD) = tr

(
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L1diag
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Details: Moving to the Laplacian

I D has a zero diagonal.

I tr (LD) is unaffected by diagonal of L.

I Constrain L1 = 0 giving

−tr (ΛD) = −2tr
(
LYY>

)
.



Gaussian Random Field

I This probability distribution is a Gaussian random field

p(Y) =

p∏
j=1

|L + γI|
1
2

(2π)
n
2

exp

(
−1

2
y>:,j (L + γI)y:,j

)
,
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Relationship to Laplacian Eigenmaps

I Laplacian eigenmaps (Belkin and Niyogi, 2003): graph
Laplacian is specified across the data points.

I Laplacian has exactly the same form as our matrix L.

I Parameters of the Laplacian are set either as constant or
according to the distance between two points.

I Smallest eigenvectors of this Laplacian are then used for
visualizing the data.



Smallest Eigenvalues of Laplacian

I Eigendecomposition of the covariance is

K = UΛU>

I Eigendecomposition of the Laplacian is

L = U
(
Λ−1 − γI

)
U>

I Principal eigenvalues of K are smallest eigenvalues of L.

I (smallest eigenvalue of L is zero)



Laplacian Eigenmaps

I Set parameters of Laplacian.
I Perform CMDS on the implied matrix K.

1. No constraints are imposed in Laplacian eigenmaps so
distances will not be preserved.

2. LE gains significant computational advantage by not
representing the covariance matrix explicitly.

3. No matrix inverses required, eigenvalue problem sparse.



Locally Linear Embedding

I Factorize the Laplacian as

L = MM>

I Now constrain M>1 = 0 giving L1 = 0.
I i.e. mi,i = −

∑
j∈N (i) mj,i

I Set mj,i = 0 if j /∈ N (i).



Locally Linear Embedding

I Locally linear embeddings (Roweis and Saul, 2000) are then a
specific case of MEU where

1. The diagonal sums, mi,i , are further constrained to unity.
2. Model parameters found by maximizing pseudolikelihood of the

data.



Point One

I For unit diagonals we have M = I−W.

I Here the off diagonal sparsity pattern of W matches M.

I Thus
(I−W)>1 = 0.

I LLE proscribes that the smallest eigenvectors of

(I−W)(I−W)> = MM> = L

(like Laplacian Eigenmaps).

I Equivalent to CMDS on the GRF described by L.



Second Point

I Pseudolikelihood approximation (see e.g. Koller and Friedman,
2009, pg 970): product of the conditional densities:

p(Y) ≈
n∏

i=1

p(yi ,:|Y\i ),

Y\i represents data other than the ith point.

I True likelihood is proportional to this but requires
renormalization.

I In pseudolikelihood normalization is ignored.



Relation to LLE

I First note

tr
(
YY>MM>

)
=

n∑
i=1

m>:,iYY
>m:,i

so we have

p(Y) ∝ exp

(
−1

2
tr
(
YY>MM>

))
=

n∏
i=1

exp

(
−1

2
m>i ,:YY

>mi ,:

)
.



Conditionals

I Factors can be written as conditionals

p(yi ,:|Y\i ) =

(
m2

i ,i

2π

) p
2

exp

−m2
i ,i

2

∥∥∥∥∥∥yi ,: −
∑

j∈N (i)

wj ,i

mi ,i
yj ,:

∥∥∥∥∥∥
2

2

 .



Pseudolikelihood Approximation

I Optimizing the pseudolikelihood is equivalent to optimizing

log p(Y) ≈
n∑

i=1

log p(yi ,:|Y\i )

equivalent to solving n independent regression problems.

I A natural constraint that the regression weights that they sum
to one.

I This is how parameters in LLE (Roweis and Saul, 2000) are
optimized.

I Constraint arises because wj ,i/mi ,i and mi ,i =
∑

j∈N (i) wj ,i .

I In LLE a further constraint is imposed mi ,i = 1.



LLE Approximates MEU

I LLE is an approximation to maximum likelihood.

I Laplacian has factorized form.
I Pseudolikelihood also allows for relatively quick parameter

estimation.
I ignoring the partition function removes the need to invert to

recover the covariance matrix.
I LLE can be applied to larger data sets than MEU or MVU.

Note: The sparsity pattern in the Laplacian for LLE will not match
that used in the Laplacian for the other algorithms due to the
factorized representation.



LLE and PCA

I LLE is motivated by considering local linear embeddings of the
data.

I Interestingly, as we increase the neighborhood size to
K = n − 1 we do not recover PCA.

I Strange because PCA is the optimal linear embedding of the
data under linear Gaussian constraints.

I But LLE is optimizing a pseudolikelihood: in contrast the
MEU algorithm, which LLE approximates, does recover PCA
when K = n − 1.



Isomap

I Isomap (Tenenbaum et al., 2000) follows the CMDS
framework.

I Sparse graph of distances is created.

I Fill in graph for non-neighbors with a shortest path algorithm.

I Element-wise square the matrix.

I Process this in the usual manner.



Compare with MEU

I Both MVU and MEU can be thought of as starting with a
sparse graph of (squared) distances.

I Fill in other distances by maximizing the total
variance/entropy.

I Interneighbor distances in this graph are preserved just like in
isomap.

1. For isomap the implied covariance can have negative
eigenvalues (see (Weinberger et al., 2004)).

2. Isomap is slower than LLE and LE: requires a dense eigenvalue
problem and a shortest path algorithm.
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Simple Experiments

I Consider two real data sets.

I We apply each of the spectral methods we have reviewed.

I Apply the MEU framework.

I Follow the suggestion of Harmeling (Harmeling, 2007) and use
the GPLVM likelihood (Lawrence, 2005) for embedding
quality.

I The higher the likelihood the better the embedding.



Motion Capture Data

I Data consists of a 3-dimensional point cloud of the location of
34 points from a subject performing a run.

I 102 dimensional data set containing 55 frames of motion
capture.

I Subject begins the motion from stationary and takes
approximately three strides of run.

I Should see this structure in the visualization: a starting
position followed by a series of loops.

I Data was made available by Ohio State University.

I The two dominant eigenvectors are visualized in following
figures.



Laplacian Eigenmaps and LLE
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Figure: Models capture either the cyclic structure or the structure
associated with the start of the run or both parts.



Isomap and MVU
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Figure: Models capture either the cyclic structure or the structure
associated with the start of the run or both parts.



MEU and DRILL
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Figure: Models capture either the cyclic structure or the structure
associated with the start of the run or both parts.



Motion Capture: Model Scores
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Figure: Model score for the different spectral approaches.



Robot Navigation Example

I Second data set: series of recordings from a robot as it traces
a square path in a building.

I It records the strength of WiFi signals (see Ferris et al., 2007,
for an application).

I Robot only in two dimensions, the inherent dimensionality of
the data should be two.

I Robot completes a single circuit after entry: it is expected to
exhibit “loop closure”.

I Data consists of 215 frames of measurement of WiFi signal
strength of 30 access points.



Laplacian Eigenmaps and LLE
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Figure: Models show loop closure but smooth the trace to different
degrees.



Isomap and MVU
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Figure: Models show loop closure but smooth the trace to different
degrees.



MEU and DRILL
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Figure: Models show loop closure but smooth the trace to different
degrees.



Robot Navigation: Model Scores
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Figure: Model score for the different spectral approaches.
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Discussion

I New perspective on dimensionality reduction algorithms based
around maximum entropy.

I Start with MVU and end with GRFs.

I Hope that this perspective on dimensionality reduction will
encourage new strands of research at the interface of these
areas.



Stages of Spectral Dimensionality Reduction

I Our perspective shows there are three separate stages used in
existing spectral dimensionality algorithms.

1. A neighborhood between data points is selected. Normally
k-nearest neighbors or similar algorithms are used.

2. Interpoint distances between neighbors are fed to the
algorithms which provide a similarity matrix. The way the
entries in the similarity matrix are computed is the main
difference between the different algorithms.

3. The relationship between points in the similarity matrix is
visualized using the eigenvectors of the similarity matrix.



Our Perspective

I Each step is somewhat orthogonal.

I Neighborhood relations need not come from nearest
neighbors: can use structure learning.

I Main difference between approaches is how similarity matrix
entries are determiend.

I Final step attempts to visualize the similarity using
eigenvectors. This is just one possible approach.

I There is an entire field of graph visualization proposing
different approaches to visualizing such graphs.



Advantages of Existing Approaches

I Conflating the three steps allows faster complete algorithms.

I E.g. mixing 2nd & 3rd allows speed ups by never computing
the similarity matrix.

I We still can understand the algorithm from the unifying
perspective while exploiting the computational advantages
offered by this neat shortcut.
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