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Motivation



High Dimensional Data

> Represent objects for processing by a series of features.

> Number of features increases with complexity of
representation. E.g.:

1.
2.
3.

the characteristics of a customer in a database;

the pixel intensities in an image;

a time series of angles associated with data captured from
human motion for animation;

the energy at different frequencies (or across the cepstrum) as
a time series for interpreting speech;

. the frequencies of given words as they appear in a set of

documents;
the level of expression of thousands of genes, across a time
series, or for different diseases.



High Dimensional Representation

> As complexity increases so does number of features.
» This is high dimensional data.

» Example: handwritten digit 6.



Motivation for Non-Linear Dimensionality Reduction

» 3648 Dimensions

> 64 rows by 57 columns
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Simple Model of Digit
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MATLAB Demo

demDigitsManifold([1 2], ’all’)
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MATLAB Demo
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Low Dimensional Manifolds

Pure Rotation is too Simple
> In practice the data may undergo several distortions.
» e.g. digits undergo ‘thinning’, translation and rotation.
» For data with ‘structure’:

» we expect fewer distortions than dimensions;
» we therefore expect the data to live on a lower dimensional
manifold.

» Conclusion: deal with high dimensional data by looking for
lower dimensional non-linear embedding.



Spectral Dimensionality Reduction

» Spectral approaches to dimensionality reduction.

1. Take a data set containing n points and form a matrix of size
n Xxn.

2. Extract eigenvectors and use them to give a representation of
the data in a low dimensional space.

» Examples include isomap (Tenenbaum et al., 2000), locally
linear embeddings (LLE, Roweis and Saul, 2000), Laplacian
eigenmaps (LE, Belkin and Niyogi, 2003) and maximum
variance unfolding (MVU, Weinberger et al., 2004).

» These approaches (and kernel PCA (Schélkopf et al., 1998;
Ham et al., 2004). ) are closely related to classical
multidimensional scaling (CMDS, Mardia et al., 1979).



Classical Multidimensional Scaling

» Classical multidimensional scaling (CMDS)
1. Compute an n x n distance matrix.
2. Convert it to a similarity matrix.
3. Visualize through principal eigenvectors.
» From the CMDS perspective main innovation in ML spectral
approaches is how the (implicitly) compute the distances.



Our Contribution

> Introduce a probabilistic approach to constructing distance
matrices.

> Relate isomap, LLE, LE and MVU to our approach.

> All these methods sit within a unifying perspective of
Gaussian random fields and CMDS.



Classical Multidimensional Scaling

v

Given an n x n matrix of similarities, K, or dissimilarities, D

v

Multidimensional scaling attempts to represent points, x; . in a
low g dimensional latent space.

v

We define a dissimilarity between these points,
2
0ij = IIxi: = %[5

giving a matrix A.

v

Note: here we are using squared distances)



Classical MDS

» Define an error,

n i—1

E(X)=> "> lldij — il » (1)

i=1 j=1

Then the optimal linear dimensionality reduction is given by
the following procedure (Mardia et al., 1979, pg 400),

1. Convert the matrix of dissimilarities to a matrix of similarities
by taking B = —%HDH where H=1—n"111T7 is a centering
matrix.

2. Extract the first g principal eigenvectors of B.

3. Setting X to these principal eigenvectors (appropriately scaled)
gives a global minimum for the error function (1).



Maximum Entropy Unfolding



Spectral Approaches

» CMDS gives a linear transformation between X and Y.

» The spectral approaches in machine learning give a nonlinear
relationship between the data and the distances.

» This is very clear for kernel PCA.



Kernel PCA

> In kernel PCA define distance with:

diJ = k(yi,:a YI,:) - 2k(Yi,:a Yj,:) - k(Yj,:» Yj,:) (2)

> If k(-,-) is a Mercer kernel this is the squared distance in
“feature space” (Ham et al., 2004).

> In CMDS this relationship is the standard transformation
between a similarity and distance (Mardia et al., 1979).

» Kernel PCA (KPCA) recovers an x;. and a mapping from Y
to X space.

» The mapping is induced through the choice of the Mercer
kernel.



Classical MDS and KPCA

» Under the CMDS procedure the eigenvalue problem is
performed on the centered kernel matrix,

B = HKH,

where K = [k(y,-y:,yj,:)]l.’j.
» This matches the KPCA algorithm (Schélkopf et al., 1998)*.

» However, for the commonly used exponentiated quadratic

kernel,
k(}/i,:,yj,:) = exp(—'y ||Yi,: —Y: g),

KPCA actually expands the feature space rather than reducing
the dimension (Weinberger et al., 2004).

1Kernel PCA also has an interpretation as a particular form of metric
multidimensional scaling, see Williams (2001) for details.



Maximum Variance Unfolding

Learn a “Kernel” for Dimensionality Reduction

» The observation that KPCA expands the feature space
motivated maximum variance unfolding (MVU, Weinberger
et al., 2004).

» MVU: learn a kernel matrix that will allow for dimensionality
reduction.

» Do this by considering only local relationships in the data.



Maximum Variance Unfolding

» Define a set of neighbors (e.g. by k-nearest neighbors).

» Construct a kernel matrix where only distances between
neighboring data points are respected.

» Specify the local distances as constraints.

> Fill in other elements by maximizing the trace of the kernel
matrix?, tr (K).

» Maximizing tr (K) maximizes the interpoint squared distances
for all points that are unconnected in the neighborhood graph.

» This “unravels” the manifold.

2The trace is the total variance of the data in feature space



Maximum Entropy Unfolding

Our Contribution

> Instead of maximizing total variance, we maximize entropy
(Jaynes, 1986).

» Entropy is related to variance: so maybe resulting algorithm
will be similar quality.

» Maximum entropy leads to a probability distribution: so we
will also have a probabilistic model.

» The approach is also strongly related to other spectral
techniques: they each turn out to approximate maximum
entropy unfolding in some way.



Maximum Entropy

> In the maximum entropy formalism (Jaynes, 1986), we
maximise the entropy of a distribution subject to constraints
on the moments of that distribution.

» Here those constraints will be the expectations of the squared
distances between two data points sampled from the model.

» Constraints will only apply to points that are defined to be
“neighbors”.



Maximum Entropy

» For continuous data, the maximum entropy can only be
defined relative to a base distribution.

» We follow a common choice and take the base distribution to
be a spherical Gaussian with covariance y~I.

» The maximum entropy distribution is then given by

p(Y) x exp (—%tr <7YYT)> exp —% Z Z Aijdij |

i JeN()

where N (i) represents the set of neighbors of data point i,
and Y =[yi,... ,y,,,:]T € R™P is a design matrix containing
our data.

» Note that we have introduced a factor of —1/2 in front of our
Lagrange multipliers, {)\;;}, for later notational convenience.



Maximum Entropy Unfolding

» We now define the matrix A to contain JA;; if i is a neighbor
of j and zero otherwise.

» This allows us to write the distribution as
1 T 1
p(Y) x exp —tr <nyY ) -t (AD) ).

» We introduce a matrix L which is symmetric and constrained
to have a null space in the constant vector, L1 = 0. Its off
diagonal elements are given by —A and its diagonal elements

are given by
Gi= > A
JEN()

to enforce the null space constraint.



Gaussian Random Field

» This enables us to write

p(Y) = % exp (—%tr ((L + 'yI)YYT)) . (3

> Recall D has a zero diagonal. We can constrain L1 = 0 giving
—tr (AD) =tr (LD)
—tr (leiag (YYT)T — LYY + diag (YYT) 1TL>
——2tr (LyYT).

» This probability distribution is a Gaussian random field

|L—1—'yl|2 1+
Iy (L+ Ay
H ot P YLy )

j=1



Data Feature Independence

» The GRF specifying independence across data features.
» Most applications of Gaussian models are applied
independently across datar points.
> Notable exceptions include Zhu et al. (2003); Lawrence (2004,
2005); Kemp and Tenebaum (2008).
» Maximum likelihood in this model is equivalent maximizing
entropy under distance constraints.



Blessing of Dimensionality

» Maximum likelihood is consistent: (see e.g. Wasserman, 2003,
pg 126)
» As we increase data points parameters become better
determined.
> Not in this model.
> As we increase data features parameters become better
determined.

» This turns the large p small n problem on its head.

» There is a “Blessing of Dimensionality” in this model.



Lagrange Multiplier Gradients

» Gradient of each Lagrange multiplier is given by,

dlogp(Y) 1 1
Thi =5 (di,j>p(v) - Qdiu'a

()p(-) is expectation under p(-).

> This result is expected given our maximum entropy
formulation.

» Need expectation of squared distance:

(di,j> = <y,',T;}/i,:> -2 <}/,',T;yj,:> + <yJTyJ> )

which is computed from K = (L +~1)"%.



Standard Transformation Again

» This is immediately recognized as a scaled version of the
standard transformation between distances and similarities

(dij) = g (kii = 2kij + kjj) -
» This relationship arises naturally in the probabilistic model:
each GRF has an associated distance matrix.

> Not strictly speaking in MEU and MVU these are not Mercer
kernels because we can't represent them as

kij = k(yi.:Yj:)

> Really it is a covariance matrix from a Gaussian model.



Nonparametric Model

» If K neighbors are used for each data point there are O(Kn)
parameters in the model.

» The model is nonparametric.

> For the parameters to be well determined we require a large
number of features, p.

» Otherwise we would need to look to regularize the model.

» The model is excellent for the so-called “large p small n
domain”.



Visualization

» Given the maximum likelihood solution we look for a reduced
dimensional representation.

> This is done, as for MVU and kernel PCA, by looking at the
eigenvectors of the centered covariance matrix HKH.

» We call this algorithm maximum entropy unfolding (MEU).

» Note that this is just one way of visualizing the underlying
GRF.

> It happens to be easy to compute!



Relation with MVU

» Determinant and trace of covariance are functions of
eigenvalues.

» The entropy of a Gaussian depends on the determinant of the
covariance matrix.

» Determinant of K is

log |K| = Z log A;.

i=1

» MVU maximizes the total variance (the trace)

tr(K) = zn: A
i=1



Positive Definitiveness

Need to ensure that the covariance matrix is positive definite.

v

v

v

v

In MVU use a semidefinite program.

In MEU the objective is not linear in K, need other
approaches.
Possibilities include:

1.

@

building an “attractive” system (see e.g. Koller and Friedman,
2009, pg 255), although now the distance constraints would be
inequalities;

constrain L to be diagonally dominant through adjusting ~;
factored representation like L =BBT;

or design an algorithm that maintains positive definitiveness.



Generalization of PCA

» For MEU and MVU, as we increase the neighborhood size to
K = n — 1, we recover principal component analysis.

> In this limit all expected squared distances, implied by the
GRF model, are required to match the observed squared
distances and L becomes non-sparse.

» Classical multidimensional scaling on the resulting squared
distance matrix is known as principal coordinate analysis and
is equivalent to principal component analysis (see Mardia
et al.,, 1979).



Relationship to Laplacian Eigenmaps

» In Laplacian eigenmaps (Belkin and Niyogi, 2003) a graph
Laplacian is specified across the data points.

» This Laplacian has exactly the same form as our matrix L.

> The parameters of the Laplacian are set either as constant or
according to the distance between two points.

» The smallest eigenvectors of this Laplacian are then used for
visualizing the data



Smallest Eigenvalues of Laplacian

> The eigendecomposition of the covariance is
K=UAU"
» The eigendecomposition of the Laplacian is
L=UA'-y)UT

> In other words, the principal eigenvalues of K will be the
smallest eigenvalues of L.

> Note the smallest eigenvalue of L is zero and associated with
the constant eigenvector.

> In CMDS this is removed by the centering operation and in LE
it is discarded.



Laplacian Eigenmaps

> Once the parameters of the Laplacian are set CMDS is being
performed to recover the latent variables in Laplacian
eigenmaps.

> No constraints are imposed in Laplacian eigenmaps so
distances will not be preserved.

» LE gains significant computational advantage by not
representing the covariance matrix explicitly.

» No matrix inverses are required in the algorithm and the
resulting eigenvalue problem is sparse.

> LE can be applied to much larger data sets than would be
possible for MEU or MVU.



Factored Algorithm

v

Impose positive definite constraint through
L=BB"

Constrain B"1 = 0 giving L1 = 0.

Do this by setting b; ; = — Zje/\/(i) bj,i
Force bj; = 0 if j & N (i).

Laplacian is now positive definite.

v

v

v

v



Locally Linear Embeddings

» Locally linear embeddings (Roweis and Saul, 2000) are then a
specific case of this random field model where
1. The diagonal sums, b; ;, are further constrained to unity.
2. The parameters of the model are optimized by maximizing the
pseudolikelihood of the resulting GRF.



For unit diagonals we have B =1 - W.

v

v

Here the off diagonal sparsity pattern of W matches B.
Thus

v

(1-w)'1=0.

v

LLE proscribes that the smallest eigenvectors of
(I-wW)(I—-wW)"'=BB" =L

(like Laplacian Eigenmaps).
» This is equivalent to CMDS on the Gaussian random field
described by L.



» Pseudolikelihood approximation (see e.g. Koller and Friedman,
2009, pg 970) is the product of the conditional densities:

p(Y) ~ H p(yi:[Y\i);
i=1

Y\; represents all that data other than the ith point.

» True joint likelihood is proportional to this but requires
renormalization.

> In pseudolikelihood this normalization is ignored.



Relation to LLE

» To see how it relates to LLE note
r(YYTBBT) =Y b/ YYTb,
i=1
so we have
p(Y) o exp (—~tr (YYTBBT) — ﬁexp L bTYYTh,.
2 i=1 2" A

» The conditionals can be rewritten as

2\ % 2 2
bi; bi; wji
Y\i) = (E) exp | = ||¥i: — Z b Y
JEN() 7

p(yi.
2



Pseudolikelihood Approximation

» Optimizing the pseudolikelihood is equivalent to optimizing

n
log p(Y) ~ ) " log p(yi:[Y\;)
=1

which is equivalent to solving n independent regression
problems with a constraint on the regression weights that they
sum to one.

» This is how parameters in LLE (Roweis and Saul, 2000) are
optimized.

» The constraint arises because the regression weights are
constrained to be wj;/bi; and bjj =" ;c\r(iy Wj,i-

» In LLE a further constraint is imposed b; ; = 1.



LLE Approximates MEU

» Locally linear embeddings are an approximation to maximum
likelihood on the Gaussian random field.

» Constrain Laplacian to be positive semidefinite by a factorized
form.
» Pseudolikelihood also allows for relatively quick parameter
estimation.
» ignoring the partition function removes the need to invert to

recover the covariance matrix.
» LLE can be applied to larger data sets than MEU or MVU.

Note: The sparsity pattern in the Laplacian for LLE will not match
that used in the Laplacian for the other algorithms due to the
factorized representation.



LLE and PCA

» LLE is motivated by considering local linear embeddings of the
data.

> Interestingly, as we increase the neighborhood size to
K = n— 1 we do not recover PCA.

» Strange because PCA is the optimal linear embedding of the
data under linear Gaussian constraints.

» But LLE is optimizing a pseudolikelihood: in contrast the
MEU algorithm, which LLE approximates, does recover PCA
when K =n—1.



Isomap

» Isomap (Tenenbaum et al., 2000) directly follows the CMDS
framework.

> A sparse graph of distances is created between all points
considered to be neighbors.

» This graph is then filled in for all non-neighbors with a
shortest path algorithm.

» This matrix is element-wise squared to give a matrix of square
distances.

» This is then processed in the usual manner (centering and
multiplying by -0.5) to provide a similarity matrix for
multidimensional scaling.



Compare with MEU

» Both MVU and MEU can be thought of as starting with a
sparse graph of (squared) distances.

» Other distances are then filled in by maximizing the total
variance or entropy.

» The interneighbor distances in this graph are preserved just
like in isomap.

» For MVU and MEU K, is constrained positive definite.

» For isomap the implied covariance can have negative
eigenvalues (see (Weinberger et al., 2004)).

> Isomap is slower than LLE and LE: requires a dense eigenvalue
problem and a shortest path algorithm.



Sparse Inverse Covariances

» Spectral algorithms are related to Gaussian Random Fields.
» Suggests fitting a GRF with a sparse inverse covariance, L.
> Regularize the elements of the inverse covariance with e.g. L1.

» This can be done quickly through an iterative regression
problems (see Hastie et al., 2009, Chapter 17).

» The method retains a positive definite L.

> We call this algorithm Dimensionality Reduction through
Iterative Log Likelihood maximization (DRILL).

» This involves a slightly different interpretation of the inverse
covariance.

» It is no longer distances that are constrained (directly) but
covariances.

» Marginal variances are also constrained, ensuring distances
also match.



Experiments



Simple Experiments

» Consider two real data sets.
» We apply each of the spectral methods we have reviewed.

> Also apply MEU using positive constraints on the Lagrange
multipliers (denoted MEU) and the DRILL.

» Follow the suggestion of Harmeling (Harmeling, 2007) and use
the GPLVM likelihood (Lawrence, 2005) for embedding
quality.

» The higher the likelihood the better the embedding.



Motion Capture Data

» Data consists of a 3-dimensional point cloud of the location of
34 points from a subject performing a run.

» 102 dimensional data set containing 55 frames of motion
capture.

» Subject begins the motion from stationary and takes
approximately three strides of run.

> Should see this structure in the visualization: a starting
position followed by a series of loops.

» Data was made available by Ohio State University.

» The two dominant eigenvectors are visualized in following
figures.



Laplacian Eigenmaps and LLE
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(a) Laplacian Eigenmaps (b) Locally Linear Embedding

Figure: Models capture either the cyclic structure or the structure
associated with the start of the run or both parts.



Isomap and MVU
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Figure: Models capture either the cyclic structure or the structure
associated with the start of the run or both parts.



MEU and DRILL
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Figure: Models capture either the cyclic structure or the structure
associated with the start of the run or both parts.



Motion Capture: Model Scores
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Figure: Model score for the different spectral approaches.



Robot Navigation Example

» Second data set: series of recordings from a robot as it traces
a square path in a building.

> It records the strength of WiFi signals (see Ferris et al., 2007,
for an application).

> Robot only in two dimensions, the inherent dimensionality of
the data should be two.

» Robot completes a single circuit after entry: it is expected to
exhibit “loop closure”.

» Data consists of 215 frames of measurement of WiFi signal
strength of 30 access points.



Laplacian Eigenmaps and LLE
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degrees.



Isomap and MVU
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MEU and DRILL
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Robot Navigation: Model Scores
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Final Experiment: Structure Learning

» Test the ability of L1 regularization of the random field to
learn the neighborhood.

» Considered the motion capture data and used the DRILL with
a neighborhood size of 20 and full connectivity.

» L1 regularization on the parameters: vary regularization size
and seek a maximum under the GPLVM.



Structure Learning from Neighborhood of 20
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Figure: Model scores for different regularization coefficients.



Structure Learning from Neighborhood of 20

Figure: Visualization associated with highest model score.



Full Structure Learning
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Full Structure Learning
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Discussion and Conclusions



Discussion

> New perspective on dimensionality reduction algorithms based
around maximum entropy.

» Start with MVU and end with GRFs and L1 based structure
learning.

» We hope that this perspective on dimensionality reduction will
encourage new strands of research at the interface of these
areas.



Stages of Spectral Dimensionality Reduction

» Our perspective shows there are three separate stages used in
existing spectral dimensionality algorithms.

1. A neighborhood between data points is selected. Normally
k-nearest neighbors or similar algorithms are used.

2. Interpoint distances between neighbors are fed to the
algorithms which provide a similarity matrix. The way the
entries in the similarity matrix are computed is the main
difference between the different algorithms.

3. The relationship between points in the similarity matrix is
visualized using the eigenvectors of the similarity matrix.



Our Perspective

» Each step is somewhat orthogonal.

» Neighborhood relations need not come from nearest
neighbors: can use structure learning.

» Main difference between approaches is how similarity matrix
entries are determiend.

> Final step attempts to visualize the similarity using
eigenvectors. This is just one possible approach.

» There is an entire field of graph visualization proposing
different approaches to visualizing such graphs.



Advantages of Existing Approaches

» Conflating the three steps allows faster complete algorithms.

» E.g. mixing 2nd & 3rd allows speed ups by never computing
the similarity matrix.

» We still can understand the algorithm from the unifying
perspective while exploiting the computational advantages
offered by this neat shortcut.
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