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Notation

p data dimensionality
q latent dimensionality
n number of data points
Y design matrix containing our data n × p
X matrix of latent variables n × q
D matrix of interpoint squared distances n × n
K similarities/covariance/kernel n × n
L Laplacian matrix n × n

Row vector from matrix A given by ai ,: column vector a:,j and
element given by ai ,j .
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Distances and Similarities

I Typical scenario, a data set, Y stored in a matrix of dimension
n × p.

I Proximity data: a data set in form of distances, D,
orsimilarities K. These matrices are dimension n × n.

I Similarity matrices have large entries when data points are
close.

I Distance matrices have large entries when points are far apart.



Multidimensional Scaling

I Multidimensional scaling (MDS) algorithms are dimensionality
reduction for proximity matrices.

I We can move between similarity and squared distance as
follows di ,j = ki ,i − 2ki ,j + kj ,j .

I In MDS this is known as the standard transformation (Mardia
et al., 1979).

I If ki,j = k(yi,:, yj,:) is a “kernel” this is the “distance in feature
space” (Schölkopf and Smola, 2001).

I If ki,j is an element from a covariance matrix K, it is the
expected squared distance between two samples with that
covariance.



Note: Centering and Squared Distances

I Consider matrix form of squared distance,

D = diag (K) 1> − 2K + 1diag (K)> .

I A Centering matrix has the form

H = I− n−111> : H1 = 0

I This implies:

−1

2
HDH = HKH.

I i.e. centered distance matrix is closely related to centred
similarity/kernel.



Spectral Dimensionality Reduction in Machine Learning

I Spectral approach to dimensionality reduction.

1. Convert data to a matrix of dimension n × n.
2. Visualize data with eigenvectors of matrix.

I Examples:
I Isomap (Tenenbaum et al., 2000),
I locally linear embeddings (LLE, Roweis and Saul, 2000),
I Laplacian eigenmaps (LE, Belkin and Niyogi, 2003) and
I maximum variance unfolding (MVU, Weinberger et al., 2004).
I Also kernel PCA (Schölkopf et al., 1998; Ham et al., 2004).



Classical Multidimensional Scaling Perspective

I Classical multidimensional scaling (CMDS)

1. Compute an n × n squared distance matrix, D.
2. Form the centered “similarity matrix”HKH = − 1

2HDH.
3. Visualize through q principal eigenvectors (as latent matrix X).

I This algorithm matches squared distances computed in X to
those computed in Y through an L1 error.

I Our Argument:
I Main innovation in ML work: how to compute the squared

distance matrix D.



This Talk

I Introduce probabilistic approach to constructing squared
distance matrices.

I Relate isomap, LLE, LE and MVU to the approach.

I Wrap spectral methods in a unifying perspective of Gaussian
random fields and CMDS.
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Spectral Approaches

I Standard classical MDS gives a linear embedding in the
Euclidean space implied by D.

I This implies a linear transformation between X and Y (if
squared distances are computed directly in Y).

I Spectral approaches in machine learning give a nonlinear
relationship between the data and the distances.

I This is done by not computing D directly in the space of Y.

I This is very clear for kernel PCA, where D is computed in a
feature space derived from Y.
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Kernel PCA

I Kernel PCA squared distance is defined through a kernel:

di ,j = k(yi ,:, yi ,:)− 2k(yi ,:, yj ,:)− k(yj ,:, yj ,:) (1)

I k(·, ·) is a Mercer kernel (Ham et al., 2004).

I Kernel PCA (KPCA) recovers an xi ,: and a mapping from Y
to X space.

I The mapping is induced through the choice of the Mercer
kernel.
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Classical MDS and KPCA

I CMDS procedure performs eigenvalue problem on

B = HKH.

I This matches the KPCA algorithm (Schölkopf et al., 1998)1.

I However, for the commonly used exponentiated quadratic
kernel,

k(yi ,:, yj ,:) = exp(−γ ‖yi ,: − yj ,:‖2
2),

KPCA actually expands the feature space (Weinberger et al.,
2004).

1Kernel PCA also has an interpretation as a particular form of metric
multidimensional scaling, see Williams (2001) for details.
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Maximum Variance Unfolding

Learn a “Kernel” for Dimensionality Reduction

I In maximum variance unfolding (MVU) (Weinberger et al.,
2004): learn a“kernel matrix”that will allow for dimensionality
reduction.

I Preserve only local proximity relationships in the data.
I Take a set of neighbors.
I Construct a kernel matrix where only distances between

neighbors match data distances.
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Maximum Variance Unfolding

I Optimize elements of K by maximizing2 tr (K).

d1,5

d1,4

d1,2

d1,3

5

1

2

3
4

I Subject to squared distance constraints between neighbors

di ,j = ki ,i − 2ki ,j + kj ,j

2The trace is the total variance of the data in feature space



Maximum Entropy Unfolding

Our Contribution

I Maximize entropy instead of variance (Jaynes, 1986): MEU.

I Entropy and variance are closely related.

I Maximum entropy leads to a probabilistic model.

I Each spectral approach approximates MEU in some way.
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Maximum Entropy Unfolding

I Find distribution with maximum entropy subject to constraints
on moments.
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I MEU constraints are on expected distances between neighbors.

di ,j =
〈
y>i ,:yi ,:

〉
− 2

〈
y>i ,:yj ,:

〉
+
〈
y>j ,:yj ,:

〉



Maximum Entropy Unfolding

I Find distribution with maximum entropy subject to constraints
on moments.

d1,5

d1,4

d1,2

d1,3

5

1

2

3
4

I MEU constraints are on expected distances between neighbors.

di ,j = ki ,i − 2ki ,j + kj ,j

which can be written in terms of the covariance.



Gaussian Random Field

I The maximum entropy probability distribution is a Gaussian
random field

p(Y) =

p∏
j=1

1

|K|
1
2 (2π)

n
2

exp

(
−1

2
y>:,jK

−1y:,j

)
,

I Covariance matrix is

K = (L + γI)−1

.

I Where L is the Laplacian matrix associated with the
neighborhood graph.

I Off diagonal elements of the Laplacian are Lagrange
multipliers from moment constraints.

I On diagonal elements given by negative sum of off-diagonal
(L1 = 0).
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Relationship to Laplacian Eigenmaps

I Laplacian eigenmaps (Belkin and Niyogi, 2003): graph
Laplacian is specified across the data points.

I Laplacian has exactly the same form as our matrix L.

I Parameters of the Laplacian are set either as constant or
according to the distance between two points.

I Smallest eigenvectors of this Laplacian are then used for
visualizing the data.
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Smallest Eigenvalues of Laplacian

I Eigendecomposition of the covariance is

K = UΛU>

I Eigendecomposition of the Laplacian is

L = U
(
Λ−1 − γI

)
U>

I Principal eigenvalues of K are smallest eigenvalues of L.
I (smallest eigenvalue of L is zero, but this is removed by the

centering operation on K, or discarded in LE)
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Laplacian Eigenmaps

I Set parameters of Laplacian.
I Perform CMDS on the implied matrix K.

1. No constraints are imposed in Laplacian eigenmaps so
distances will not be preserved.

2. LE gains significant computational advantage by not
representing the covariance matrix explicitly.

3. No matrix inverses required, eigenvalue problem sparse.
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Locally Linear Embedding

I The Laplacian should be constrained positive definite.

I This constraint can be imposed by factorizing it as

L = MM>

I To ensure it is a Laplacian, we need to constrain M>1 = 0
giving L1 = 0.

I i.e. mi,i = −
∑

j∈N (i) mj,i

I Set mj,i = 0 if j /∈ N (i).
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Locally Linear Embedding

I Locally linear embeddings (Roweis and Saul, 2000) are then a
specific case of MEU where

1. The diagonal sums, mi,i , are further constrained to unity.
2. Model parameters found by maximizing pseudolikelihood of the

data.
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Point One

I For unit diagonals we have M = I−W.

I Here the off diagonal sparsity pattern of W matches M.

I Thus
(I−W)>1 = 0.

I LLE proscribes that the smallest eigenvectors of

(I−W)(I−W)> = MM> = L

(like Laplacian Eigenmaps).

I Equivalent to CMDS on the GRF described by L.
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Second Point

I Pseudolikelihood approximation (see e.g. Koller and Friedman,
2009, pg 970): product of the conditional densities:

p(Y) ≈
n∏

i=1

p(yi ,:|Y\i ),

Y\i represents data other than the ith point.

I True likelihood is proportional to this but requires
renormalization.

I In pseudolikelihood normalization is ignored.
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Conditionals

I Factors in the GRF are the conditionals,

p(yi ,:|Y\i ) =

(
m2

i ,i

2π

) p
2

exp

−m2
i ,i

2

∥∥∥∥∥∥yi ,: −
∑

j∈N (i)

wj ,i

mi ,i
yj ,:

∥∥∥∥∥∥
2

2

 .

I Maximizing each conditional is equivalent to optimizing LLE
objective.

I Constraint that LLE weights sum to one arises naturally
because wj ,i/mi ,i and mi ,i =

∑
j∈N (i) wj ,i .

I In LLE a further constraint is imposed mi ,i = 1.
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LLE Approximates MEU

I LLE is an approximation to maximum likelihood.

I Laplacian has factorized form.
I Pseudolikelihood also allows for relatively quick parameter

estimation.
I ignoring the partition function removes the need to invert to

recover the covariance matrix.
I LLE can be applied to larger data sets than MEU or MVU.

Note: The sparsity pattern in the Laplacian for LLE will not match
that used in the Laplacian for the other algorithms due to the
factorized representation.
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LLE and PCA

I LLE is motivated by considering local linear embeddings of the
data.

I Interestingly, as we increase the neighborhood size to
K = n − 1 we do not recover PCA.

I But PCA is the “optimal” linear embedding!!

I LLE is optimizing a pseudolikelihood: in contrast the MEU
algorithm, which LLE approximates, does recover PCA when
K = n − 1.
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Isomap

I Isomap (Tenenbaum et al., 2000) follows the CMDS
framework.

I Sparse graph of distances is created.

I Fill in graph for non-neighbors with a shortest path algorithm.

I Element-wise square the matrix.

I Process this in the usual manner.



Isomap

I Isomap (Tenenbaum et al., 2000) follows the CMDS
framework.

I Sparse graph of distances is created.

I Fill in graph for non-neighbors with a shortest path algorithm.

I Element-wise square the matrix.

I Process this in the usual manner.



Isomap

I Isomap (Tenenbaum et al., 2000) follows the CMDS
framework.

I Sparse graph of distances is created.

I Fill in graph for non-neighbors with a shortest path algorithm.

I Element-wise square the matrix.

I Process this in the usual manner.



Isomap

I Isomap (Tenenbaum et al., 2000) follows the CMDS
framework.

I Sparse graph of distances is created.

I Fill in graph for non-neighbors with a shortest path algorithm.

I Element-wise square the matrix.

I Process this in the usual manner.



Isomap

I Isomap (Tenenbaum et al., 2000) follows the CMDS
framework.

I Sparse graph of distances is created.

I Fill in graph for non-neighbors with a shortest path algorithm.

I Element-wise square the matrix.

I Process this in the usual manner.



Compare with MEU

I Both MVU and MEU can be thought of as starting with a
sparse graph of (squared) distances.

I Fill in other distances by maximizing the total
variance/entropy.

I Interneighbor distances in this graph are preserved just like in
isomap.

1. For isomap the implied covariance can have negative
eigenvalues (see (Weinberger et al., 2004)).

2. Isomap is slower than LLE and LE: requires a dense eigenvalue
problem and a shortest path algorithm.
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Relationship to GP-LVM

I Gaussian Process latent variable models (Lawrence, 2005) also
define Gaussian densities independently over the features.

I GP-LVMs construct a Gaussian process by specifying a
covariance function (Mercer kernel) in X.

I A Gauss Markov random field can be specified by a Gaussian
process through appropriate covariance functions

k(x , x ′) = exp(−‖x − x ′‖1)

I Inverse covariance will be sparse and based on neighborhood.

I In the GP-LVM the neighborhood is learnt by optimization of
X.
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Campaign for Real Data

Say NO to the Swiss Roll



Simple Experiments

I Consider two real data sets.

I We apply each of the spectral methods we have reviewed.

I Apply the MEU framework.

I Follow the suggestion of Harmeling (Harmeling, 2007) and use
the GPLVM likelihood (Lawrence, 2005) for embedding
quality.

I The higher the likelihood the better the embedding.
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Motion Capture Data

I Data consists of a 3-dimensional point cloud of the location of
34 points from a subject performing a run.

I 102 dimensional data set containing 55 frames of motion
capture.

I Subject begins the motion from stationary and takes
approximately three strides of run.

I Should see this structure in the visualization: a starting
position followed by a series of loops.

I Data was made available by Ohio State University.

I The two dominant eigenvectors are visualized in following
figures.
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Laplacian Eigenmaps and LLE
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Figure: Models capture either the cyclic structure or the structure
associated with the start of the run or both parts.
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Figure: Models capture either the cyclic structure or the structure
associated with the start of the run or both parts.



Motion Capture: Model Scores
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Figure: Model score for the different spectral approaches.



Robot Navigation Example

I Second data set: series of recordings from a robot as it traces
a square path in a building.

I It records the strength of WiFi signals (see Ferris et al., 2007,
for an application).

I Robot only in two dimensions, the inherent dimensionality of
the data should be two.

I Robot completes a single circuit after entry: it is expected to
exhibit “loop closure”.

I Data consists of 215 frames of measurement of WiFi signal
strength of 30 access points.
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Figure: Models show loop closure but smooth the trace to different
degrees.
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Discussion

I New perspective on dimensionality reduction algorithms based
around maximum entropy.

I Start with MVU and end with GRFs.

I Hope that this perspective on dimensionality reduction will
encourage new strands of research at the interface of these
areas.
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Stages of Spectral Dimensionality Reduction

I Our perspective shows there are three separate stages used in
existing spectral dimensionality algorithms.

1. A neighborhood between data points is selected. Normally
k-nearest neighbors or similar algorithms are used.

2. Interpoint distances between neighbors are fed to the
algorithms which provide a similarity matrix. The way the
entries in the similarity matrix are computed is the main
difference between the different algorithms.

3. The relationship between points in the similarity matrix is
visualized using the eigenvectors of the similarity matrix.
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Our Perspective

I Each step is somewhat orthogonal.

I Neighborhood relations need not come from nearest
neighbors: can use structure learning.

I Main difference between approaches is how similarity matrix
entries are determined.

I Final step attempts to visualize the similarity using
eigenvectors. This is just one possible approach.

I There is an entire field of graph visualization proposing
different approaches to visualizing such graphs.
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Advantages of Existing Approaches

I Conflating the three steps allows faster complete algorithms.

I E.g. mixing 2nd & 3rd allows speed ups by never computing
the similarity matrix.

I We still can understand the algorithm from the unifying
perspective while exploiting the computational advantages
offered by this neat shortcut.
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Final Experiment: Structure Learning

I Test the ability of L1 regularization of the random field to
learn the neighborhood.

I Considered the motion capture data and used the DRILL with
a neighborhood size of 20 and full connectivity.

I L1 regularization on the parameters: vary regularization size
and seek a maximum under the GPLVM.
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Figure: Visualization associated with highest model score.



Different Neighborhood Scores
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